
Week 9

The Gamma 2 Norm and Its Variants

This week, we will study a lower bound technique for quantum communication complexity which is
analogous to approximate degree. Actually, in communication complexity, we will have two closely
related measures: approximate logrank, and (log of) approximate gamma 2 norm. We will also
look at analogues for discrepancy (\sansP \sansP degree). Before we get to that, we start with a few general
comments about lifting theorems.

9.1 More on lifting theorems

As mentioned last week, lifting theorems take the form

\forall f MCC(f \circ G) = \Omega (M(f)),

or sometimes the form
\forall f MCC(f \circ G) = \Omega (M(f)MCC(G)),

where f is a query function and G is a communication “gadget”. Here M(f) is a query measure of
f , and MCC is an analogous communication measure.

In order to understand how lifting theorems work, let’s start by reviewing some common commu-
nication complexity functions. We’ve already seen the equality function EQn, whose communication
matrix is the 2n \times 2n identity matrix. Another common function is called the inner product func-
tion: here Alice and Bob get strings in \{ 0, 1\} n, and their goal is to compute the inner product
of the strings modulo 2. That is to say, if Alice holds x and Bob holds y, they must output
IP(x, y) = Parity(x1y1, x2y2, . . . , xnyn). Note that the product x1y1 is the product in the \{ 0, 1\} -
basis, meaning the AND function; hence we can write

IPn(x, y) = Parityn(x1ANDy1, x2ANDy2, . . . , xnANDyn).

Note that Parityn : \{ 0, 1\} n \rightarrow \{ 0, 1\} is a query function, while IPn : \{ 0, 1\} n\times \{ 0, 1\} n \rightarrow \{ 0, 1\} and
AND : \{ 0, 1\} \times \{ 0, 1\} \rightarrow \{ 0, 1\} are communication functions. Hence, if we take f = Parityn and
G = AND, we can write IPn = f \circ G. In other words, inner product can be viewed as a lifted
function: the corresponding query function is Parity, and the lifting gadget is the 2-bit AND
function.

Another commonly-encountered function in communication complexity is called disjointness.
For this function, Alice and Bob each get a string in \{ 0, 1\} n, which they interpret as their schedules
over n time slots: if xi = 1, it means Alice is free at the time slot i, and if xi = 0, it means Alice
is busy; similarly, if yi = 1, it means Bob is free at time i, and if yi = 0, Bob is busy. The goal
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of Alice and Bob is to figure out whether their availabilities are disjoint: whether it is possible for
them to meet. In other words, they wish to compute

DISJn(x, y) = ORn(x1ANDy1, x2ANDy2, . . . , xnANDyn).

Note that disjointness is once again a lifted function: the corresponding query function is ORn, and
the gadget is the 2-bit AND function.

Now, if we had a lifting function with the AND gadget for some complexity measure – say
randomized algorithms – then we could lower bound both IP and DISJ at once: we could write
\mathrm{R}CC(f \circ AND) = \Omega (\mathrm{R}(f)), and this will give both \mathrm{R}CC(IP) = \Omega (n) and \mathrm{R}CC(DISJ) = \Omega (n).

Unfortunately, a lifting theorem with the AND gadget is not possible: consider the query
function f = ANDn. Then f \circ AND is the communication function where Alice and Bob each get
a string in \{ 0, 1\} n, and they must compute the AND of all 2n bits they received. This can be done
using O(1) communication: Alice sends ANDn(x) to Bob, and Bob computes ANDn(y)\wedge ANDn(x).
Hence \mathrm{R}CC(ANDn \circ AND) = O(1), but \mathrm{R}(ANDn) = \Omega (n), so we cannot have \mathrm{R}CC(f \circ AND) =
\Omega (\mathrm{R}(f)) for all f .

While lifting theorems using 2-bit gadgets like AND, OR, and XOR are impossible, it is some-
times possible to lift using slightly more complex gadgets. Interestingly, this often suffices. For exam-
ple, consider the gadget G = DISJ2 : \{ 0, 1\} 2\times \{ 0, 1\} 2 \rightarrow \{ 0, 1\} . Note that DISJn = ORn/2\circ DISJ2;
hence if we had a lifting theorem with G = DISJ2, then we would have a lower bound on DISJn.
Similarly, if we had a lifting theorem with G = IP2, then we would have a lower bound on IPn.

Interestingly, lifting with a constant-sized inner product gadget and lifting with a constant-sized
disjointness gadget are equivalent theorems. This is because for each k, DISJ2k contains a copy of
IPk as a sub-function (submatrix of the communication matrix), and similarly IP2k contains a copy
of DISJk. Hence, if we knew that \mathrm{R}CC(f \circ IPk) = \Omega (\mathrm{R}(f)) for all f , then we would also know that
\mathrm{R}CC(f \circ DISJ2k) = \Omega (\mathrm{R}(f)) for all f , and the latter already gives \mathrm{R}CC(DISJn) = \Omega (\mathrm{R}(ORn/2k)) =
\Omega (n) when k is constant. Similarly, if we had a lifting theorem with a constant-size disjointness
gadget, then we would have a lifting theorem with a constant-size inner product gadget. In fact,
both disjointness on 2k bits and inner product on 2k bits contain all communication functions on
k bits as sub-functions; hence lifting with any constant size gadget suffices to lift with both a
constant-size disjointness gadget and a constant-size inner product gadget.

Lemma 9.1. Let G : \{ 0, 1\} k\times \{ 0, 1\} k \rightarrow \{ 0, 1\} . Then DISJ2k contains a copy of G as a sub-function
(after removing duplicate rows and columns from G).

Proof. Note that we can always remove duplicate rows and columns without affecting the commu-
nication complexity, since if G has duplicate rows, it means two different inputs x and x\prime satisfy
G(x, y) = G(x\prime , y) for all y, and hence can be treated identically for the purposes of computing G.

Now, let \phi (x) be the string of length 2k which is all 0 except for a single 1 at the index
corresponding to x; that is, \phi (x)x = 1. Let \psi (y) be the string of length 2k which has \psi (y)x = 1
for all x \in \{ 0, 1\} k such that G(x, y) = 1, and \psi (y)x = 0 for all x \in \{ 0, 1\} k such that G(x, y) = 0.
Then DISJ2k(\phi (x), \psi (y)) = 1 if and only if G(x, y) = 1. Moreover, x uniquely determines \phi (x)
and vice versa, and y uniquely determines \psi (y) and vice versa. Hence \phi (x) and \psi (y) are just
renamings of x and y respectively, so the communication function DISJ2k restricted to \{ \phi (x) : x \in 
\{ 0, 1\} k\} \times \{ \psi (y) : y \in \{ 0, 1\} k\} has the same communication matrix as G.

A similar thing can be shown for inner product, and for many other “sufficiently rich” families of
functions. Hence a lifting theorem with a constant-sized gadget is the holy grail of lifting theorems:
one you have it, then you effectively also have it with any gadget of your choice, and in particular
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you can show disjointness and inner product lower bounds in the model you lifted (assuming you
have query lower bounds on ORn and Parityn for the model you lifted).

For many computational models, we do not have a lifting theorem with a constant-sized gadget;
it remains an open problem. This includes important models such as\mathrm{D}CC, \mathrm{R}CC, and\mathrm{Q}CC. However,
we can sometimes show lifting theorems with a gadget G whose size grows with the input size n. A
common form of such a theorem is as follows: if f is any query function on n bits, then

MCC(f \circ IP100 \mathrm{l}\mathrm{o}\mathrm{g}n) = \Omega (M(f)),

where M is a query measure and MCC is a corresponding communication measure. Sometimes, the
stronger statement

MCC(f \circ IP100 \mathrm{l}\mathrm{o}\mathrm{g}n) = \Omega (M(f) \mathrm{l}\mathrm{o}\mathrm{g} n)

can be shown; note the we expect the \mathrm{l}\mathrm{o}\mathrm{g} n factor to be there because we’ve added a O(\mathrm{l}\mathrm{o}\mathrm{g} n)-sized
gadget to f , presumably increasing its complexity by a \mathrm{l}\mathrm{o}\mathrm{g} n factor.

This type of lifting theorem cannot be used to give disjointness lower bounds in the modelMCC,
and it can only give inner product lower bounds if the gadget is precisely the inner product gadget;
hence it is much less useful than a lifting theorem with a constant-sized gadget. However, this type
of lifting theorem can still be used to convert query separations to communication separations. For
example, recently it has been shown there is a total query function f with \mathrm{R}(f) = \Omega (\mathrm{Q}(f)2.66).
Can we come up with a communication function F that has \mathrm{R}CC(F ) = \Omega (\mathrm{Q}CC(F )2.66)? Well, if
we had a lifting theorem for \mathrm{R} with a \mathrm{l}\mathrm{o}\mathrm{g} n size gadget, then we can lift f with that gadget G and
get a lower bound on \mathrm{R}CC(f \circ G); we could then argue that \mathrm{Q}CC(f \circ G) = \~O(\mathrm{Q}(f)), because Alice
and Bob can compute f by mimicking the quantum query algorithm for f , and by computing the
corresponding gadgets G whenever the query algorithm for f needs to read a bit of the input. This
would let us conclude \mathrm{R}CC(f \circ G) = \Omega (\mathrm{Q}CC(f \circ G)2.66) just by lifting the query separation, without
having to do any extra work.

To get the above strategy to work, we actually only needed the gadget G to be computable using
O(\mathrm{l}\mathrm{o}\mathrm{g} n) communication, rather than needing it to be defined on O(\mathrm{l}\mathrm{o}\mathrm{g} n) bits. There is therefore
a third type of lifting theorem, which is even weaker: a lifting theorem with an index gadget that
has 100 \mathrm{l}\mathrm{o}\mathrm{g} n bits of input to Alice and n100 bits on input to Bob. Lifting theorems with an index
gadget can still be used to lift query separations to communication separations, but they are less
satisfying.

As a final note, we mention that the index function with k bits on one side and 2k bits on the
other side contains all gadgets G : \{ 0, 1\} k \times \{ 0, 1\} k \rightarrow \{ 0, 1\} as sub-functions. This is because we
can map from (x, y) to (x, \psi (y)) and vice versa, where \psi (y) was defined in the proof of Lemma 9.1.
Hence lifting with a O(\mathrm{l}\mathrm{o}\mathrm{g} n) size gadget is strictly stronger than lifting with an index gadget.

Many measures, including both \mathrm{R}CC and \mathrm{D}CC, have been lifted with O(\mathrm{l}\mathrm{o}\mathrm{g} n) sized gadgets, but
not constant sized gadgets. Typically, the first proof uses an index gadget, and this gets improved to
a O(\mathrm{l}\mathrm{o}\mathrm{g} n) inner product gadget after a year or two. Other measures, primarily degree-like measures
including \mathrm{d}\mathrm{e}\mathrm{g}, \widetilde \mathrm{d}\mathrm{e}\mathrm{g}, and \mathrm{d}\mathrm{e}\mathrm{g}\mathrm{P}\mathrm{P}, have been lifted with a constant sized gadget. Unfortunately, \mathrm{Q}CC

has not been lifted with any gadget.
In the rest of this note, we will examine the communication analogues of the degree measures.

9.2 Approximate logrank

We’ve already seen the measure logrank, which was just defined as the logarithm of the rank of the
communication matrix. We claimed that this measure corresponds to (exact) polynomial degree in
query complexity.



4 WEEK 9. THE GAMMA 2 NORM AND ITS VARIANTS

We will now introduce an approximate version of logrank. Fix a communication function F : \scrX \times 
\scrY \rightarrow \{ 0, 1\} , and consider its communication matrix. This is a \{ 0, 1\} -valued matrix. We say that a
real matrix A, with rows and columns indexed by \scrX and \scrY respectively, approximates F to error \epsilon 
if the following conditions hold:

1. A[x, y] \in [0, 1] for all (x, y) \in \scrX \times \scrY ,

2. | A[x, y] - F [x, y]| \leq \epsilon for all (x, y) \in \mathrm{D}\mathrm{o}\mathrm{m}(F ).

Note that this definition also generalizes to partial functions F ; if F [x, y] = \ast , we simply require
that the approximating matrix A satisfies A[x, y] \in [0, 1].

Actually, we will usually switch from the \{ 0, 1\} representation of a Boolean function to the
\{ +1, - 1\} representation. In the latter representation, the matrix F has entries in \{ +1, - 1, \ast \} , and
any matrix A approximating F must satisfy | A[x, y]| \leq 1 for all (x, y) \in \scrX \times \scrY and | A[x, y]  - 
F [x, y]| \leq 2\epsilon for all (x, y) \in \mathrm{D}\mathrm{o}\mathrm{m}(F ). Note that the allowed error increased to 2\epsilon in the \{ +1, - 1\} 
representation, since the values of F and A got stretched by a factor of 2. This is also what we did
for polynomial approximations of a query function.

The approximate rank of a communication matrix F to error \epsilon is the minimum rank of a matrix
A which approximates F to error \epsilon . Note that this can actually be slightly different when F
is represented as a \{ 0, 1\} -valued matrix and when it is represented as a \{ +1, - 1\} -valued matrix;
converting between the two requires the transformations J  - 2F in one direction and (J  - F )/2
in the other direction, where J is the all-1s matrix. Since \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(J) = 1, these transformations may
change the rank of F by at most 1. By default, we will represent F as a \{ +1, - 1\} matrix, as this
will turn out to be more convenient.

The approximate logrank of F is simply the log of the approximate rank of F . We denote this
measure by \mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon (F ). It turns out that the error \epsilon can be amplified; if we have a matrix A of
rank k which approximates F to error \epsilon , and if we have another target level \epsilon \prime < \epsilon , then there is a
constant c which depends only on \epsilon and \epsilon \prime such that there must exist a matrix A\prime of rank at most
kc which approximates F to error \epsilon \prime . Since \mathrm{l}\mathrm{o}\mathrm{g} kc = c \mathrm{l}\mathrm{o}\mathrm{g} k, this is only a constant factor loss on the
logarithm of the rank. We will not generally care about constant factors. This means that for our
purposes, approximate logrank to any constant error \epsilon \in (0, 1/2) is equivalent to any other constant
error level. We will pick \epsilon = 1/3 to be the standard, and when \epsilon = 1/3, we omit it and simply write
\mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(F ).

Theorem 9.2. For any (possibly partial) communication function F and any \epsilon \in (0, 1/2), we have
\mathrm{R}CC,priv

\epsilon (F ) \geq \mathrm{l}\mathrm{o}\mathrm{g}(\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon (F ) - 1).

Proof. Consider any randomized communication protocol which solves F to error \epsilon . Let A be the
matrix for which A[x, y] is the probability that Alice and Bob output 1 in this protocol when given
input (x, y). Since the protocol solves F to error \epsilon against all inputs, we know that A approximates
the \{ 0, 1\} version of F to error \epsilon . We now claim that the rank of A is at most 2T , where T is the
number of rounds in this communication protocol.

Note that A[x, y], the probability that Alice and Bob output 1, can be written as the sum over
all transcripts \Pi \in \{ 0, 1\} T of the probability that Alice and Bob output 1 and have exactly this
transcript; here the transcript is the sequence of bits Alice and Bob sent to each other, in order.
Let’s denote by M\Pi the matrix where M\Pi [x, y] is the probability that Alice and Bob communicate
the transcript \Pi to each other, and then output 1. Then we have A =

\sum 
\Pi \in \{ 0,1\} T M\Pi . We now

claim that each M\Pi is a rank-1 matrix. To see this, note that since this is a private randomness
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protocol, for any fixed (x, y) the probability that Alice sends the bits specified by \Pi is independent
of the probability Bob sends the bits specified by \Pi . In other words, M\Pi [x, y] is equal to

\mathrm{P}\mathrm{r}[Alice and Bob send bits specified by \Pi ] =

\mathrm{P}\mathrm{r}[Alice sends the bits specified by \Pi ] \cdot \mathrm{P}\mathrm{r}[Bob sends the bits specified by \Pi ].

This means that M\Pi [x, y] = V\Pi (x)U\Pi (y) for some functions V\Pi (x) and U\Pi (y). Interpreting V\Pi and
U\Pi as vectors, we can write M\Pi = V\Pi U

\dagger 
\Pi . This means M\Pi is rank-1, and hence A is a sum of

2T rank-1 matrices, meaning that it has rank at most 2T ; this means the approximate rank of the
\{ 0, 1\} formulation of F is at most 2T , so the approximate rank of the \{ +1, - 1\} formulation is at
most 2T + 1, as desired.

It turns out that approximate logrank also lower bounds quantum communication complexity
(without shared entanglement).

Theorem 9.3. For any (possibly partial) communication function F and any \epsilon \in (0, 1/2), we have
\mathrm{Q}CC

\epsilon (F ) \geq 1
2 \mathrm{l}\mathrm{o}\mathrm{g}(

\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon (F ) - 1), where \mathrm{Q}CC denotes the quantum communication complexity without
shared entanglement.

We will not go over the proof (see [BW01]). Note that this only applies to non-shared-
entanglement quantum communication complexity; to lower bound the stronger shared entangle-
ment model, we will need Theorem 9.6 in the next section.

One interesting corollary of these results is that \widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(In) = O(\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{l}\mathrm{o}\mathrm{g}(n)), even though we know
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(In) = n (here In denotes the n\times n identity matrix). This is because we know that

\mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(I2k) = \mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(EQk) \leq \mathrm{R}CC,priv(EQk) = O(\mathrm{R}CC(EQk) + \mathrm{l}\mathrm{o}\mathrm{g} k) = O(\mathrm{l}\mathrm{o}\mathrm{g} k),

and exponentienting both sides gives \widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(I2k) = O(\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{y} k), where k = \mathrm{l}\mathrm{o}\mathrm{g} n. This result may
seem surprising, because we know that the identity matrix has rank n and it’s hard to imagine an
approximation matrix which is close to the identity matrix entry-wise but has rank logarithmic in
n. Nevertheless, we know that such a matrix must exist.

9.3 Discrepancy and sign rank

Next, we define communication analogues of \mathrm{d}\mathrm{e}\mathrm{g}\mathrm{P}\mathrm{P} and \mathrm{d}\mathrm{e}\mathrm{g}\pm . The analogue of \mathrm{d}\mathrm{e}\mathrm{g}\pm is called sign
rank.

Definition 9.4. The sign rank of a communication function, denoted \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\pm (F ), is the minimum
rank of a real matrix A such that A[x, y]F [x, y] > 0 for all (x, y) \in \mathrm{D}\mathrm{o}\mathrm{m}(F ), where we use the
\{ +1, - 1\} version of F .

Similar to how we showed that \mathrm{d}\mathrm{e}\mathrm{g}\pm is equal to \mathrm{R}\pm and \mathrm{Q}\pm up to constant factors, ot is
possible to show that \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\pm (F ) is equal to unbounded-error communication complexity (in the
randomized or quantum models) up to constant factors, though we need additive constants as well
as multiplicative constants (so things might break down a little bit when the sign rank is constant).
Note that the definition of sign rank is equivalent to approximate rank where we take \epsilon \rightarrow 1/2. This
measure is \sansU \sansP \sansP in communication complexity.

We also define \sansP \sansP in communication complexity, which we call discrepancy. Instead of defining
it in terms of the rank of an approximating matrix, though, we will define it in terms of an analogue
of the dual of \mathrm{d}\mathrm{e}\mathrm{g}\mathrm{P}\mathrm{P} in query complexity.
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Definition 9.5. Let F be a (possibly partial) communication function. For a probability distribution
\mu over \mathrm{D}\mathrm{o}\mathrm{m}(F ), we define

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}\mu (F ) := \mathrm{m}\mathrm{a}\mathrm{x}
u\in \{ 0,1\} | \scrX | ,v\in \{ 0,1\} | \scrY | 

| uT (\mu \circ F )v| ,

where we use F to denote the communication matrix in \{ +1, - 1\} representation. We further define

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}(F ) := \mathrm{m}\mathrm{i}\mathrm{n}
\mu 

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}\mu (F ).

Note that \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}\mu (F ) is the maximum, over rectangles vuT , of the difference between the 0-
probability mass of \mu in the rectangle and the 1-probability mass of \mu in the rectangle. This can
sort of be viewed as the correlation between F and the rectangle (under distribution \mu ), which is
analogous to how in query complexity we wanted a distribution under which f has small correlation
with every monomial.

Note that the discrepancy, as we’ve defined it, is smaller than 1; to get an actual communication
measure, we generally look at

\mathrm{l}\mathrm{o}\mathrm{g}
1

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}(F )
.

We will soon try to relate some of these communication measures to each other and to randomized
and quantum communication complexity, but first, we’ll go on a long detour about a certain matrix
norm called the gamma 2 norm.

9.4 The gamma 2 norm

An important matrix norm for the study of quantum computation is the gamma 2 norm. We’ve
already briefly encountered a variant of it (called filtered gamma 2 norm) in the context of the
negative-weight quantum adversary.

The gamma 2 norm satisfies the following important relationship with communication complex-
ity.

Theorem 9.6. Let \Pi be any T -round quantum communication protocol with shared entanglement
which specifies Alice and Bob’s communication and output when given input from \scrX \times \scrY . Let
M \in [0, 1]| \scrX | \times | \scrY | be the matrix where M [x, y] is the probability that Alice and Bob output 1 on input
(x, y). Then \gamma 2(M) \leq 2T .

This theorem was shown by [LS09b], and we will not reproduce the proof here. Instead, we’ll
focus our attention on the study of \gamma 2 and its properties. It will turn out to be related to both
discrepancy and approximate rank.

The gamma 2 norm can be viewed as a way of defining a “smoother” version of rank. The rank
of a matrix, of course, is always an integer. The gamma 2 norm has many properties that make it
similar to rank, but it is a norm, which means that if we scale a matrix by a factor of \alpha , the gamma
2 norm would change by | \alpha | (the rank would not change at all). In what follows, we roughly follow
the presentation of [LSŠ08].

9.4.1 Definitions of the gamma 2 norm

We define the gamma 2 norm as follows. We call this definition the “min” formulation of the gamma
2 norm.
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Definition 9.7. Let A be an m\times n real matrix. Then

\gamma 2(A) := \mathrm{m}\mathrm{i}\mathrm{n}
B,C:BC=A

\| B\| r\| C\| c,

where the minimum is taken over pairs of matrices B and C such that BC = A, and where \| B\| r is
the maximum 2-norm of a row of B and \| C\| c denotes the maximum 2-norm of a column of C.

This norm looks pretty unwieldy at first sight. It is not even clear why the minimum over B and
C should be attained; is it a minimum, or an infimum? We now show that the gamma 2 norm can
be written as the optimal solution of a semidefinite program. To do so, we will need the following
notation. For an m\times n matrix A, let \^A denote the (m+ n)\times (m+ n) block matrix

\^A :=

\biggl[ 
0 A
AT 0

\biggr] 
.

Let Jm,n denote the m \times n all-1s matrix. Note that the statement BC = A is equivalent to the
statement

(BT C)T (BT C) =

\biggl[ 
BBT A
AT CTC

\biggr] 
,

and hence BC = A if and only if (BT C)T (BT C) \circ \^Jm,n = \^A, where \circ denotes the Hadamard
(entry-wise) product. Also note that when we minimize \| B\| r\| C\| c in the gamma 2 norm of A,
we can always assume without loss of generality that \| B\| r = \| C\| c, because otherwise we could
multiply B by a constant and divide C by the same constant. Therefore, \gamma 2(A) is equal to the
minimum, over matrices D = (BT C) such that DTD \circ \^Jm,n = \^A, of the maximum squared 2-norm
of a column of D.

Since a matrix is positive semidefinite if and only if it can be written as DTD for some matrix
D, we can write \gamma 2(A) as the minimum, over positive semidefinite (m + n) \times (m + n) matrices X
such that X \circ \^Jm,n = \^A, of the maximum diagonal entry of X. That is,

\gamma 2(A) = min \eta 
s.t. Xii \leq \eta \forall i \in [m+ n]

X \circ \^Jm,n = \^A
X \succeq 0.

Now that we have written \gamma 2(A) as the optimal solution to a semidefinite program, we can take the
dual. We also need to check that strong duality holds (as it usually does), but we skip over that for
this presentation. Then we have

\gamma 2(A) = max \langle Q, \^A\rangle 
s.t. \Delta \circ I = \Delta 

\langle \Delta , I\rangle = 1
\Delta \succeq Q

Q \circ \^Jm,n = Q.

Note that \Delta is diagonal, and that all matrices are (m + n) \times (m + n). Since \Delta \succeq Q, we have
\Delta \geq 0. Now, note that \Delta \succeq Q is equivalent to uT (\Delta  - Q)u \geq 0 for all u. For any positive vector
\beta > 0, this is equivalent to (\beta \circ u)T (\Delta  - Q)(\beta \circ u) \geq 0, since quantifying over all vectors u is the
same as quantifying over all vectors \beta \circ u when \beta has nonzero entries. The latter is equivalent to
uT ((\Delta  - Q) \circ \beta \beta T )u \geq 0, which is equivalent to \Delta \circ \beta \beta T \succeq Q \circ \beta \beta T .
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We will restrict to \Delta [i, i] > 0 for all i for now, and take the supremum instead of the maximum;
since in the limit, we get take diagonal entries of \Delta to 0, this supremum will equal the previous
objective value. We then pick \beta [i] = 1/

\sqrt{} 
\Delta [i, i]. Setting Q\prime = \beta \beta T \circ Q, the condition \Delta \succeq Q

becomes equivalent to the condition I \succeq Q\prime , or equivalently \| Q\prime \| \leq 1, where \| \cdot \| is the spectral
(operator) norm. The constraint Q \circ \^Jm,n = Q becomes equivalent to Q\prime \circ \^Jm,n = Q\prime . Let v be
the vector v[i] = 1/\beta [i]. Then the objective value becomes \langle Q\prime \circ vvT , \^A\rangle = vT (Q\prime \circ \^A)v, and the
constraint \langle \Delta , I\rangle = 1 becomes \langle vvT , I\rangle = 1 or \| v\| 2 = 1. The maximum of vT (Q\prime \circ \^A)v over unit
vectors v is the definition of \| Q\prime \circ \^A\| , so we can replace the objective value with the latter expression
and remove the constraint \| v\| 2 = 1 and the variable v.

We’ve concluded that \gamma 2(A) is the maximum, over symmetric matrices matrices Q\prime satisfying
Q\prime \circ \^Jm,n = Q\prime and \| Q\prime \| \leq 1, of \| Q\prime \circ \^A\| . Since Q\prime is symmetric and Q\prime \circ \^Jm,n = Q\prime , we can write

Q\prime =

\biggl[ 
0 P
P T 0

\biggr] 
for some matrix P , and then \| Q\prime \circ \^A\| = \| P \circ A\| and \| Q\prime \| = \| P\| . Hence \gamma 2(A) is equal to the
maximum, over m\times n matrices P satisfying \| P\| \leq 1, of \| P \circ A\| . By scaling, we can conclude

\gamma 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}
P \not =0

\| P \circ A\| 
\| P\| 

,

where \| \cdot \| denotes the spectral norm. We call this the “max” formulation of the gamma 2 norm.

9.4.2 Basic properties of the gamma 2 norm

We collect a few other useful properties of the gamma 2 norm, which we compare with rank.

Lemma 9.8. Let A and B be real m\times n matrices, and let \lambda \in \BbbR \setminus \{ 0\} . Then the following hold:

1. \gamma 2(A+B) \leq \gamma 2(A) + \gamma 2(B), \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A+B) \leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) + \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(B).

2. \gamma 2(\lambda A) = | \lambda | \gamma 2(A), \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\lambda A) = \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A).

3. \gamma 2(A) = 0 \leftrightarrow A = 0 \leftrightarrow \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) = 0.

4. \gamma 2(J) = \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(J) = 1 if J is an all-1 matrix of any dimension.

5. \gamma 2(AT ) = \gamma 2(A) and \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(AT ) = \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A).

6. \gamma 2(A) is invariant under rearranging, duplicating, or negating rows or columns of A. \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A)
is invariant under these, and also under scaling rows or columns of A by a non-zero scalar.

7. If C is a submatrix of A, then \gamma 2(C) \leq \gamma 2(A) and \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(C) \leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A).

8. \gamma 2(A \otimes B) = \gamma 2(A)\gamma 2(B) and \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A \otimes B) = \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(B), where \otimes is the Kronecker
(tensor) product.

9. \gamma 2(A \circ B) \leq \gamma 2(A)\gamma 2(B) and \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A \circ B) \leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(B), where \circ is the Hadamard
(entry-wise) product.

10. \| A\| \infty \leq \gamma 2(A) \leq \| A\| \infty 
\sqrt{} 
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A), where \| A\| \infty is the largest absolute value of an entry in A.

11. \gamma 2(A) is a continuous function of A, whereas \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) is an integer-valued function of A.
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The first three properties say that \gamma 2 is a norm. It shares many properties with rank, though
of course, rank is invariant under scaling by \lambda whereas \gamma 2(\lambda A) = | \lambda | \gamma 2(A). For this reason, it is
sometimes better to think of \gamma 2(A) as similar to (but smaller than) \| A\| \infty \cdot \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A), that is, the
rank of A multiplied by the largest entry of A.

Proof. (1) follows because there is some matrix P such that \| P\| = 1 and \gamma 2(A+B) = \| (A+B)\circ P\| ,
and then \gamma 2(A+B) = \| A\circ P +B \circ P\| \leq \| A\circ P\| +\| B \circ P\| \leq \gamma 2(A)+\gamma 2(B). (2), (3), and (4) follow
easily from \gamma 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}P \not =0 \| A\circ P\| /\| P\| . (5) follows from the fact that the spectral norm stays the
same when we take the transpose of a matrix. (6) follows from the fact that rearranging and negating
rows or columns does not change the spectral norm \| \cdot \| ; it remains to handle duplicating rows or
columns. Due to (5), it suffices to handle duplicating rows. Since rearranging doesn’t change \gamma 2(A),
we can assume the first row is duplicated. It is clear that this cannot decrease \gamma 2(A), because we
could always take P to have an all-0 row on the duplicate row. This also cannot increase \gamma 2(A) due
to its characterization as \mathrm{m}\mathrm{i}\mathrm{n}BC=A \| B\| r\| C\| c, because we could always duplicate the corresponding
row of B. (7) follows by setting the rows and columns of P that are outside of C to be all 0.

For (8), the lower bound \gamma 2(A \otimes B) \geq \gamma 2(A)\gamma 2(B) follows by using the max characterization
of \gamma 2 and taking P for A \otimes B to be PA \otimes PB, where PA and PB maximize \| A \circ PA\| /\| PA\| and
\| B \circ PB\| /\| PB\| respectively. The upper bound \gamma 2(A \otimes B) \leq \gamma 2(A)\gamma 2(B) follows by using the
min characterization of \gamma 2, writing A = CD and B = EF such that \| C\| r\| D\| c = \gamma 2(A) and
\| E\| r\| F\| c = \gamma 2(B), and then taking the matrices C\otimes E and D\otimes F . The Kronecker product satisfies
(C\otimes E)(D\otimes F ) = (CD)\otimes (EF ) = A\otimes B, so these matrices are feasible for the minimization version
of \gamma 2(A \otimes B). The 2-norm of each row of C \otimes E is the product of a 2-norm of a row of C and a
2-norm of a row of E, and the 2-norm of each column of D \otimes F is the product of a 2-norm of a
column of D and a 2-norm of a column of F . From this it follows that \gamma 2(A\otimes B) \leq \gamma 2(A)\gamma 2(B).

(9) follows from observing that the Hadamard product A \circ B is a submatrix of the Kronecker
product A \otimes B. For (10), the inequality \gamma 2(A) \geq \| A\| \infty follows from the max characterization of
\gamma 2(A), picking P to be all-0s except for a single 1 entry at the coordinate where the largest entry
of A is. We prove the other inequality in Section 9.4.4 (based on [LSŠ08]). Finally, (11) follows
from the fact that \gamma 2(A+ \epsilon B) \leq \gamma 2(A) + \epsilon \gamma 2(B) \leq \gamma 2(A) + \epsilon \| B\| \infty 

\sqrt{} 
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(B), so as \epsilon \rightarrow 0, we have

\gamma 2(A+ \epsilon B) \rightarrow \gamma 2(A).

9.4.3 A quick detour about other matrix norms

We review some other matrix norms. There are many, many of these norms, which can get quite con-
fusing; we’ll categorize them into three primary categories: norms which treat matrices as vectors,
operator norms, and Schatten norms. The \gamma 2 norm is in none of these categories.

Vector p-norms. One way of getting a norm is to treat the matrix as a vector, and take some
p-norm (recall that the p-norm of a vector v, denoted \| v\| p, is defined as (

\sum 
i | vi| p)1/p). This would

depend on the absolute values of the entries of the matrix, but not on their arrangement inside the
matrix or their signs. Common values of p are p = 1, 2,\infty ; recall that p = \infty means the largest
absolute value of an entry. Any value of p \in [1,\infty ] gives a norm.

Duality of norms. Before we proceed to discuss other matrix norms, we will define the dual of
the norm \| \cdot \| \ast by

\| v\| dual := \mathrm{m}\mathrm{a}\mathrm{x}
u:\| u\| \ast \leq 1

| \langle u, v\rangle | = \mathrm{m}\mathrm{a}\mathrm{x}
u\not =0

| \langle u, v\rangle | 
\| u\| \ast 

.
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This is the maximum inner product v can have with a vector of norm 1, where the “norm 1” is
measured according to the original vector norm. Note that by interpreting the inner product \langle A,B\rangle 
of matrices in the natural way, this lets us take the dual of any matrix norm. The dual norm of the
dual norm always gives back the original norm. It turns out that the dual of the vector p-norm is
a vector p\prime -norm, where 1/p\prime + 1/p = 1; that is, p\prime = p/(p  - 1). This is called the conjugate of p.
In particular, the dual of the 2-norm is the 2-norm, the dual of the 1-norm is the \infty -norm, and the
dual of the \infty -norm is the 1-norm.

Operator norms. Another way to define a norm of a matrix is to treat the matrix as an operator,
that is, a function from vectors to vectors. Then we can pick a norm on the input vectors and a
different norm on the output vectors, and define the norm of the matrix as the largest amount by
which it might “stretch” an input vector. That is, we define

\| A\| p\rightarrow q := \mathrm{s}\mathrm{u}\mathrm{p}
v \not =0

\| Av\| q
\| v\| p

.

Equivalently, by scaling v so that \| v\| p = 1, this is the maximum norm of a vector A may output
when given a vector of norm 1 as input. Note that we allow the input space to be measured by a
possibly different norm than the output space; we measure the input vector v using a p-norm, and
we measure the output vector Av using a q-norm. The resulting measure of A turns out to be a
norm, which we call the “p to q operator norm”. Since \| Av\| q = \mathrm{m}\mathrm{a}\mathrm{x}u:\| u\| q/(q - 1)\leq 1\langle u,Av\rangle , the p\rightarrow q
norm can be written

\| A\| p\rightarrow q = \mathrm{m}\mathrm{a}\mathrm{x}
u,v:\| u\| q\prime \leq 1,\| v\| p\leq 1

uTAv,

where q\prime = q/(q  - 1) is the conjugate of q.
Note that the spectral norm, which we’ve previously denoted by \| A\| , is the 2-to-2 operator norm

\| A\| 2\rightarrow 2. For any p, the 1 \rightarrow p norm is the maximum p-norm of a column, because maximizing
over vectors with \| v\| 1 = 1 turns out to be the same as maximizing over basis vectors ei. Similarly,
the p \rightarrow \infty norm is the maximum p\prime -norm of a row, where p\prime = p/(p  - 1) is the conjugate of p.
In particular, the 1 \rightarrow \infty norm is just \| A\| \infty , the maximum absolute value of an entry of A. The
dual norm of an operator norm does not have a closed form in general; it does not have to be an
operator norm. Another property is that \| AT \| p\rightarrow q = \| A\| q\prime \rightarrow p\prime , where q\prime and p\prime are the conjugates
of q and p.

Let’s go over all values of p, q \in \{ 1, 2,\infty \} . When p = 1 or q = \infty , the p \rightarrow q norm is just
the maximum norm of a row or column of A, as previously described. When they are both 2,
we get the spectral norm. The remaining cases are \infty \rightarrow 1, \infty \rightarrow 2, and 2 \rightarrow 1. Note that
\| A\| \infty \rightarrow 2 = \| AT \| 2\rightarrow 1, so we can convert from one to the other by taking the transpose; we’ve
essentially reduced to just two norms we don’t understand, the \infty \rightarrow 1 norm and the 2 \rightarrow 1 norm.
They don’t have a closed-form representation (they are \sansN \sansP -hard to compute), but we will discuss
the \infty \rightarrow 1 norm in detail later, as it turns out to be closely related to the \gamma 2 norm. Also note that
p \rightarrow q norms are increasing in p and decreasing in q, so the largest operator norm is \infty \rightarrow 1 and
the smallest is 1 \rightarrow \infty (which is \| A\| \infty ).

Schatten norms. There is yet a third popular way of defining the norm of a matrix: this is
to take the singular values \sigma 1, \sigma 2, . . . , \sigma k of the matrix, and apply some p-norm to the vector
(\sigma 1, \sigma 2, . . . , \sigma k). This third way is called the Schatten p-norm of a matrix. The notation \| A\| p
is therefore ambiguous, because it might denote either the Schatten p-norm, or the p-norm of A
treated as a vector, or sometimes the p \rightarrow p operator norm. The important cases of the Schatten
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p-norms are p = 1, 2,\infty . The p = 1 case is called the trace norm. The p = 2 case is called the
Frobenius norm, and it turns out to equal \| A\| 2, the 2-norm of A treated as a vector. The case
p = \infty gives the spectral norm \| A\| = \| A\| 2\rightarrow 2. Hence out of p \in \{ 1, 2,\infty \} , only p = 1 gave a new
norm we didn’t see before, which is the fairly important trace norm.

The trace norm, which is the sum of singular values, is the dual norm of the spectral norm.
This is because the dual of a Schatten p-norm is the Schatten p\prime -norm, with 1/p\prime + 1/p = 1. The
Frobenius norm is its own dual.

We note that the Schatten norms can give us a lower bound on the rank. The reason is
that using Cauchy-Schwartz on the trace norm \sigma 1 + \sigma 2 + \cdot \cdot \cdot + \sigma k, we get that it is at most\sqrt{} 
k(\sigma 21 + \sigma 22 + \cdot \cdot \cdot + \sigma 2k), which means that the trace norm of a matrix is at most

\surd 
k times the

Frobenius norm. The value k is the number of non-zero singular values, which is the rank; hence
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) \geq \| A\| 2tr/\| A\| 2F , where \| \cdot \| tr is the trace norm and \| \cdot \| F is the Frobenius norm.

9.4.4 More properties of the gamma 2 norm

The \gamma 2 norm is not any of the norms mentioned in the previous section. In its min formulation, it
is

\gamma 2(A) = \mathrm{m}\mathrm{i}\mathrm{n}
B,C:BC=A

\| B\| 2\rightarrow \infty \| C\| 1\rightarrow 2.

In its max formulation, it is \gamma 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}Q:\| Q\| =1 \| Q \circ A\| . We can apply the dual definition of the
spectral norm: since it is the dual of the trace norm, it satisfies

\| Q\| = \mathrm{m}\mathrm{a}\mathrm{x}
B \not =0

\langle B,Q\rangle 
\| B\| tr

\| Q \circ A\| = \mathrm{m}\mathrm{a}\mathrm{x}
C \not =0

\langle C,Q \circ A\rangle 
\| C\| tr

,

and hence
\gamma 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}

Q,C \not =0
\mathrm{m}\mathrm{i}\mathrm{n}
B \not =0

\langle Q,C \circ A\rangle \| B\| tr
\| C\| tr\langle B,Q\rangle 

.

Note that we could always take B = C \circ A, in which case we would get \| C \circ A\| tr/\| C\| tr; hence
\gamma 2(A) \leq \mathrm{m}\mathrm{a}\mathrm{x}C \not =0 \| C \circ A\| tr/\| C\| tr. Using the dual characterization of \| C \circ A\| tr and of \| C\| tr, we
can similarly show that \mathrm{m}\mathrm{a}\mathrm{x}C \not =0 \| C \circ A\| tr/\| C\| tr \leq \mathrm{m}\mathrm{a}\mathrm{x}Q\not =0 \| Q \circ A\| /\| Q\| . Hence we have a new
characterization for the gamma 2 norm:

\gamma 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}
Q \not =0

\| Q \circ A\| tr
\| Q\| tr

.

Now, consider the matrix Q which maximizes this expression, and write its singular value decom-
position Q = \sigma 1v1u

T
1 + \sigma 2v2u

T
2 + \cdot \cdot \cdot + \sigma kvku

T
k , where the vi vectors are orthonormal and the ui

vectors are orthonormal. Then \| Q\| tr = \sigma 1 + \cdot \cdot \cdot + \sigma k = \sigma 1\| v1uT1 \| tr + \cdot \cdot \cdot + \sigma k\| vkuTk \| tr. Moreover,
since the trace norm is a norm, we have \| Q \circ A\| tr \leq \sigma 1\| v1uT1 \circ A\| tr + \cdot \cdot \cdot + \sigma k\| vkuTk \circ A\| tr. Since
a weighted average of a list is less than or equal to the maximum, we have

\| Q \circ A\| tr
\| Q\| tr

\leq \mathrm{m}\mathrm{a}\mathrm{x}
i

\| viuTi \circ A\| tr
\| viuTi \| tr

,

and hence the maximum over Q is always attained for a rank-1 matrix vuT . Hence we actually have

\gamma 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}
u,v:\| u\| 2=\| v\| 2=1

\| vuT \circ A\| tr.
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We call this the trace norm formulation of the gamma 2 norm.
We saw the inequality \| B\| tr \leq \| B\| F

\surd 
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}B, and hence we have \gamma 2(A) \leq \mathrm{m}\mathrm{a}\mathrm{x}u,v:\| u\| =\| v\| =1 \| A\circ 

vuT \| F
\sqrt{} 
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A \circ vuT ). Note that \| A\circ vuT \| 2F =

\sum 
ij A

2
ijv

2
i u

2
j \leq 

\sum 
ij \| A\| 2\infty v2i u2j = \| A\| 2\infty , and hence

\| A \circ vuT \| F \leq \| A\| \infty . Also, it is not hard to see that \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A \circ vuT ) \leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A), and hence we get
\gamma 2(A) \leq \| A\| \infty 

\sqrt{} 
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A), completing the proof of Lemma 9.8.

9.4.5 The dual norm of the gamma 2 norm

It will also be important to study the dual norm of the gamma 2 norm, which we denote \gamma \ast 2(A). By
definition of a dual norm, we have

\gamma \ast 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}
B:\gamma 2(B)=1

\langle B,A\rangle ,

and since the dual norm of a dual norm is the original norm, we have

\gamma 2(A) = \mathrm{m}\mathrm{a}\mathrm{x}
B:\gamma \ast 

2 (B)=1
\langle B,A\rangle .

Recall that we’ve already seen such a definition of \gamma 2(A): the dual of the semidefinite program was

\gamma 2(A) = max \langle Q, \^A\rangle 
s.t. \Delta \circ I = \Delta 

\langle \Delta , I\rangle = 1
\Delta \succeq Q

Q \circ \^Jm,n = Q.

In the above program, Q is a symmetric matrix satisfying Q \circ \^Jm,n, which means that Q = \^B for
some matrix B. Hence \langle Q, \^A\rangle = 2\langle B,A\rangle . Letting C = 2B, we see that \gamma 2(A) is the maximum over
matrices C of \langle C,A\rangle , subject to \^B \preceq \Delta where \Delta is a diagonal matrix which sums to 2. Since \gamma 2(A)
is also the maximum over matrices C of \langle C,A\rangle subject to \gamma \ast 2(C) = 1, we conclude that \gamma \ast 2(C) is the
minimum value of \lambda such that \^C \preceq \Delta , where \Delta is a diagonal matrix with

\sum 
i\Delta [i, i] \leq 2\lambda . That is,

\gamma \ast 2(A) = \mathrm{m}\mathrm{i}\mathrm{n}

\biggl\{ 
\langle I,\Delta \rangle 

2
: \Delta \succeq \^A,\Delta diagonal

\biggr\} 
.

We can also get a formulation of \gamma \ast 2(A) in terms of the Frobenius norm of a factorization of A
(recall that the Frobenius norm is the vector 2-norm of the matrix).

Lemma 9.9. For any real matrix A,

\gamma \ast 2(A) = \mathrm{m}\mathrm{i}\mathrm{n} \| B\| F \| C\| F ,

where the minimum is taken over matrices B and C such that BC = A, B has orthogonal rows,
and C has orthogonal columns.

Proof. Let \Delta be a diagonal matrix with \langle I,\Delta \rangle /2 = \gamma \ast 2(A) and \Delta \succeq \^A. Then we have \Delta  - \^A \succeq 0,
so we can write \Delta  - \^A = MTM for some matrix M . If A is an m \times n matrix, we can write
M = [ - BT C], where BT constitutes the first m columns of M and C constitutes the last n
columns of M ; then since MTM = \Delta  - \^A, we have BC = A, and BBT and CTC must be diagonal
matrices which are diagonal blocks of \Delta (in particular, B and C must have orthogonal rows and
columns, respectively). Hence the squared singular values of B are just the diagonal entries of
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BTB, and similarly for C; this means that \| B\| 2F + \| C\| 2F = \langle I,\Delta \rangle (using the Schatten 2-norm
interpretation of the Frobenius norm), so (\| B\| 2F + \| C\| 2F )/2 = \gamma \ast 2(A). We can now scale B by a
constant and divide C by the same constant in order to get \| B\| F = \| C\| F ; this does not affect the
identity A = BC or the orthogonality of the rows and columns. Hence the minimum of \| B\| F \| C\| F
at most \gamma \ast 2(A).

In the other direction, suppose we have A = BC where B has orthogonal rows and C has
orthogonal columns. By scaling, we can assume \| B\| F = \| C\| F . Then let M = [ - BT C], and
observe that MTM is a matrix which looks like \Delta  - \^A for a diagonal matrix \Delta . Hence \Delta  - \^A \succeq 0,
and \langle \Delta , I\rangle /2 = (\| B\| 2F + \| C\| 2F )/2 = \| B\| F \| C\| F , from which the desired result follows.

While we don’t prove this here, the trace norm has a very similar formulation to the above.

Lemma 9.10. For any real matrix A,

\| A\| tr = \mathrm{m}\mathrm{i}\mathrm{n}
B,C:BC=A

\| B\| F \| C\| F .

The difference between the trace norm and \gamma \ast 2 is therefore just the requirement that the rows of
B and columns of C are orthogonal; hence for all A, we have

\| A\| tr \leq \gamma \ast 2(A),

and taking duals,
\gamma 2(A) \leq \| A\| .

9.4.6 Grothendieck’s inequality

An important and highly nontrivial property of the \gamma 2 norm is something known as Grothendieck’s
inequality.

Theorem 9.11 (Grothendieck). There is a universal constant KG such that for any real matrix A,

\| A\| \infty \rightarrow 1 \leq \gamma \ast 2(A) \leq KG\| A\| \infty \rightarrow 1.

The constant KG is known as Grothendieck’s constant. The best value of KG is not known,
though it is known to be between 1.67 and 1.79.

Up to constant factors, this gives us a completely different interpretation of \gamma \ast 2(A): it is simply
the \infty \rightarrow 1 operator norm, which is the largest of the operator norms. It’s worth saying a few words
about this operator norm. Recall that it can be defined

\| A\| \infty \rightarrow 1 = \mathrm{m}\mathrm{a}\mathrm{x}
u,v:\| u\| \infty =\| v\| \infty \leq 1

uTAv.

Note that the only constraints on u and v are the linear constraints  - 1 \leq ui, vj \leq 1 for all i and j;
hence v and u are constrained to be in a box. It’s not hard to see that the optimal choices of u and
v will be at some corner of the box, so we can take u \in \{ +1, - 1\} m, v \in \{ +1, - 1\} n, and get

\| A\| \infty \rightarrow 1 = \mathrm{m}\mathrm{a}\mathrm{x}
u\in \{ +1, - 1\} m,v\in \{ +1, - 1\} n

\langle A, vuT \rangle .

Equivalently, \| A\| \infty \rightarrow 1 is the largest value we can get by negating some set of rows S and some set
of columns T of A, and then summing up the entries of the resulting matrix. In particular, this
will always be at most \| A\| 1 (the sum of absolute values of the entries of A), and if A \geq 0, then
\| A\| \infty \rightarrow 1 = \| A\| 1.
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The dual norm of the \infty \rightarrow 1 operator norm is something known as the nuclear norm, which we
denote \nu (A). If A is m\times n, it can be written

\nu (A) = \mathrm{m}\mathrm{i}\mathrm{n}

\Biggl\{ 
k\sum 

i=1

\Delta ii : X\Delta Y = A,X \in \{ +1, - 1\} m\times k, Y \in \{ +1, - 1\} k\times n,\Delta \geq 0,\Delta diagonal

\Biggr\} 
.

Since \nu (A) is the dual norm of \| A\| \infty \rightarrow 1 (something we don’t prove here), we can take the dual norms
of the norms in Grothendieck’s inequality. Note that if some pair of norms satisfies \| A\| n1 \leq \| A\| n2
for all A, then their dual norms n1\ast and n2\ast satisfy \| A\| n1\ast \geq \| A\| n2\ast for all A. This is because

\| A\| n1\ast = \mathrm{m}\mathrm{a}\mathrm{x}
B:\| B\| n1\leq 1

\langle A,B\rangle \geq \mathrm{m}\mathrm{a}\mathrm{x}
B:\| B\| n2\leq 1

\langle A,B\rangle = \| A\| n2\ast .

Also note that while the dual norm of \| \cdot \| \infty \rightarrow 1 is \nu (\cdot ), if we define KG \cdot \| \cdot \| \infty \rightarrow 1 as its own norm,
its dual would be \nu (\cdot )/KG. Hence Grothendieck’s inequality is equivalent to the following.

Corollary 9.12. For any real matrix A,

\gamma 2(A) \leq \nu (A) \leq KG \cdot \gamma 2(A),

where KG is Grothendieck’s constant, 1.67 \leq KG \leq 1.79.

Up to constant factors, this gives us yet another interpretation for the magical norm \gamma 2(\cdot ).

9.4.7 The cut norm and the mu norm

We define yet another matrix norm, called the cut norm, which is closely related to the \infty \rightarrow 1
operator norm.

Definition 9.13. Let A be a real matrix. The cut norm of A, denoted \| A\| C , is the maximum value
of | \langle R,A\rangle | over all rectangles R, where recall that a rectangle is R = vuT for \{ 0, 1\} -valued vectors
v and u.

The cut norm is important for our purposes, as it comes up in the definition of discrepancy: by
definition, we have \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}\mu (F ) = \| \mu \circ F\| C , and hence \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}(F ) = \mathrm{m}\mathrm{i}\mathrm{n}\mu \| \mu \circ F\| C , where the minimum
is over matrices \mu which are probability distributions (i.e. \mu \geq 0 and the entries of \mu sum to 1).

The dual of the cut norm is sometimes called the mu norm.

Definition 9.14. Let A be a real matrix. The mu norm of A, denoted \mu (A), is the minimum value
of
\sum k

i=1 | wi| over real numbers w1, w2, . . . , wk \in \BbbR which satisfy A = w1R1 + w2R2 + . . . wkRk for
rectangles R1, R2, . . . , Rk.

We claim that the cut norm and the mu norm are duals.

Lemma 9.15. The dual of the cut norm is the mu norm.

Proof. The dual of the cut norm, applied to a matrix A, is \mathrm{m}\mathrm{a}\mathrm{x}B:\| B\| C\leq 1\langle B,A\rangle . We can write this
as a linear program, where the variables are the entries of B, the objective value is \langle B,A\rangle , and the
constraints are \langle B,R\rangle \leq 1 and  - \langle B,R\rangle \leq 1 for each rectangle R. The dual of this linear program is
the minimum of

\sum 
R yR+zR subject to

\sum 
R yRR - 

\sum 
R zRR = A, and yR, zR \geq 0 for all R. It is clear

that in the optimal solution, we won’t have yR > 0 and zR > 0 for the same rectangle R. Hence
setting wR = yR  - zR, the program becomes the minimum of

\sum 
R | wR| subject to

\sum 
R wRR = A,

which is the mu norm.
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We now show that the cut norm is equivalent to \gamma \ast 2 , and the mu norm is equivalent to \gamma 2.

Theorem 9.16. For every real matrix A,

\| A\| C \leq \gamma \ast 2(A) \leq 4KG\| A\| C ,

\gamma 2(A) \leq \mu (A) \leq 4KG\gamma 2(A),

where 1.67 \leq KG \leq 1.79 is Grothendieck’s constant. In particular, 4KG \leq 8.

Proof. We only need to show the first line, relating \gamma \ast 2 to the cut norm \| \cdot \| C ; the rest will follow
from duality. Additionally, we appeal to Grothendieck’s inequality, and show only that \| A\| C \leq 
\| A\| \infty \rightarrow 1 \leq 4\| A\| C .

We start with the right hand side. Recall that \| A\| \infty \rightarrow 1 = \mathrm{m}\mathrm{a}\mathrm{x}u,v:\| u\| \infty =\| v\| \infty =1 u
TAv, and that

we can always assume the maximum over u and v will occur for \{ +1, - 1\} -valued vectors (this is
because uTAv is either increasing or decreasing in each entry of u or v, when that entry is considered
separately from the rest; hence we can increase or decrease that entry until it reaches 1 or  - 1 and
only increase uTAv, without affecting \| u\| \infty or \| v\| \infty ). Now, uTAv = \langle vuT , A\rangle , and vuT is a matrix
made up of two all-ones rectangles and two all-minus-ones rectangles; hence vuT can be written
R1 +R2  - R3  - R4 for rectangles R1, R2, R3, R4. Hence | \langle vuT , A\rangle | \leq 4\mathrm{m}\mathrm{a}\mathrm{x}R | \langle R,A\rangle | = 4\| A\| C .

To see that \| A\| C \leq \| A\| \infty \rightarrow 1, consider the rectangle R1 = vuT for which \| A\| C = | \langle A,R1\rangle | .
Consider the three complementary rectangles R2, R3, R4 that we can get by flipping the 0s and
1s in u, or in v, or in both. Take all the combinations of writing R1 + Ri  - Rj  - Rk where
\{ 1, i, j, k\} = \{ 1, 2, 3, 4\} . There are three such combinations, and gives a matrix which can be
written baT for sign vectors a and b. Adding them together gives 3R1  - R2  - R3  - R4. Adding J
as well gives 4R1. Hence we’ve represented 4R1 as the sum of 4 matrices of the form baT for sign
vectors a and b; this means that 4| \langle R1A\rangle | \leq 4\| A\| \infty \rightarrow 1, as desired.

We note that this mu norm gives us the most intuitive version of the gamma 2 norm we’ve seen
so far. Of course, the rank of a matrix A is the minimum number k such that A can be written
as a sum of k rank-1 matrices. The gamma 2 norm of A is different from the rank in two ways:
first, instead of representing A as a sum of rank-1 matrices, it represents A as a (weighted) sum
of rectangles. However, rectangles aren’t too different from rank-1 matrices in practice. Second,
instead of counting how many rectangles were used, we measure the total weight assigned to the
rectangles.

9.5 Approximate gamma 2 norm and logrank

We now define a new complexity measure called the approximate gamma 2 norm, which we’ll see is
closely related to the approximate rank.

Definition 9.17. Let F be a (possibly partial) communication function. The approximate gamma
2 norm of F to error \epsilon , denoted \~\gamma 2,\epsilon (F ), is the minimum value of \gamma 2(A) over matrices A which
\epsilon -approximate F in the \{ +1, - 1\} representation. In other words, it is the minimum of \gamma 2(A) over
matrices A with entries in [ - 1, 1] and satisfying | A[x, y] - F [x, y]| \leq 2\epsilon whenever F [x, y] \not = \ast .

When \epsilon = 1/3, we omit it and write \~\gamma 2(F ).

Note that the set of all matrices A which \epsilon -approximate F is compact, and since \gamma 2(\cdot ) is contin-
uous, we know that this minimum is attained; in other words, we our use of minimum in the above
definition did not need to be an infimum, and for every F and \epsilon \in [0, 1/2) there is an \epsilon -approximating
matrix A such that \gamma 2(A) = \~\gamma 2,\epsilon (F ).



16 WEEK 9. THE GAMMA 2 NORM AND ITS VARIANTS

Now, recall that if a quantum communication protocol computes F to error \epsilon , then the matrix
M of acceptance probabilities associated with that protocol must \epsilon -approximate F in the \{ 0, 1\} 
representation. This gives the following corrolary.

Corollary 9.18. For any (possibly partial) communication function F , the quantum communication
complexity with shared entanglement of F satisfies \mathrm{Q}CC,\ast 

\epsilon (F ) \geq \mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2,\epsilon (F ) - 1.

Proof. Consider a such a protocol \Pi for F , and let A be the matrix of its acceptance probabilities.
Then A \epsilon -approximates F in the \{ 0, 1\} representation, and by Theorem 9.6, \gamma 2(A) \leq 2\mathrm{Q}

CC,\ast (F ).
Now consider the negated protocol on which Alice and Bob run \Pi but output the opposite value.
The matrix of acceptance probabilities of this negated protocol is J  - A, and since this protocol has
the same quantum communication cost, we have J  - A \leq 2\mathrm{Q}

CC,\ast (F ). Note that J  - 2A is a matrix
which \epsilon -approximates F . Also,

\gamma 2(J  - 2A) \leq \gamma 2(J  - A) + \gamma 2(A) \leq 2\mathrm{Q}
CC,\ast (F )+1.

Hence \mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2,\epsilon (F ) \leq \mathrm{Q}CC,\ast (F ) + 1, as desired.

Note that since the quantum communication complexity of F with shared entanglement is
smaller than or equal to the randomized communication complexity of F with shared randomness,
the measure \mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2(F ) also lower bounds \mathrm{R}CC(F ). Additionally, since \~\gamma 2,\epsilon (F ) = \gamma 2(A) for some A

which \epsilon -approximates F , and since \gamma 2(A) \leq \| A\| \infty 
\sqrt{} 

\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) \leq 
\sqrt{} 
\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(A) \leq 

\sqrt{} 
\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon (F ), we have

\mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2,\epsilon (F ) \leq 
1

2
\mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon (F ).

Interestingly, there is also a relationship in the other direction, as shown by [LS09a].

Theorem 9.19. For all (possibly partial) communication functions F with \mathrm{D}\mathrm{o}\mathrm{m}(F ) \subseteq \scrX \times \scrY and
all \epsilon \in (0, 1/2), we have

\mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon (F ) = O(\mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2,\epsilon (F ) + \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}(| \scrX | | \scrY | ) + \mathrm{l}\mathrm{o}\mathrm{g}(1/\epsilon ) + \mathrm{l}\mathrm{o}\mathrm{g}(1/(1 - 2\epsilon ))).

In particular, when \epsilon is constant, we have

\mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(F ) = O(\mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2(F ) + \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}(| \scrX | | \scrY | )).

Proof. Let A be a matrix which \epsilon -approximates F in the \{ +1, - 1\} representation (that is, | A| \leq 1
and A[x, y] is within 2\epsilon of F [x, y] when F [x, y] \not = \ast ) and has \gamma 2(A) = \~\gamma 2,\epsilon (F ). We wish to construct
a matrix B which pointwise approximates A and which has low rank. We first note that since
\mu (A) \leq 4KG\gamma 2(A), we can write A as a linear combination of rectangles, A =

\sum 
R wRR, with\sum 

R | wR| \leq T , where T = 4KG\~\gamma 2,\epsilon (F ). Consider the probability distribution \alpha over rectangles
defined by giving R probability | wR| /T . Observe that \BbbE R\sim \alpha [T \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(wR)R] =

\sum 
R wRR = A; hence

the expectation of \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(wR)R with R sampled from \alpha is entry-wise equal to A/T .
Consider a random matrix Bk formed by sampling k rectangles independently from \alpha , adding

up \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(wR)R for these rectangles, and then multiplying the result by T/k. Note that \BbbE [Bk] = A for
each value of k. For each entry (x, y), the expectation of Bk[x, y] is A[x, y], and we now bound the
probability that Bk[x, y] is too far from its expectation. We can write Bk[x, y] as T/k multiplied by
a sum of k random variables, one for each \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(wR)R[x, y] for a rectangle R sampled from \alpha . In fact,
for each (x, y), the value of \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(wR)R[x, y] is always in \{  - 1, 0, 1\} ; grouping together these events,
we see that Bk[x, y] is T/k times a sum of k independently sampled random variables Z1, Z2, . . . , Zk,
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where Zi has probability p of being 1, probability q of being  - 1, and probability 1 - p - q of being
0, with p+ q \leq 1.

Hoeffding’s inequality then says

\mathrm{P}\mathrm{r}[| Bk[x, y] - A[x, y]| > Tt/k] \leq 2e
 - kt2

2 .

Hence for any t > 0, the probability that Bk[x, y] is not within Tt/k of A[x, y] is at most 2e
 - kt2

2 . By
the union bound, the probability that for any (x, y) we have that Bk[x, y] is not within Tt/k of A[x, y]

is at most 2nme
 - kt2

2 , where m and n are the dimensions of A. If we pick k = \lfloor 2 \mathrm{l}\mathrm{n}(2nm)/t2\rfloor + 1,
then this probability is strictly smaller than 1, and hence there exists some choice of Bk which is
within Tt/k of A at each entry. Note that assuming nm \geq 2 and t \leq 1, we have k \leq 6 \mathrm{l}\mathrm{n}(nm)/t2

and k \geq \mathrm{l}\mathrm{n}(nm)/t2. Hence for any t, there is a matrix B which is within Tt3/ \mathrm{l}\mathrm{n}(nm) of A entrywise
and which is a sum of at most 6 \mathrm{l}\mathrm{n}(nm)/t2 rectangles, and hence has rank at most 6 \mathrm{l}\mathrm{n}(nm)/t2. Pick
t so that Tt3/ \mathrm{l}\mathrm{n}(nm) = \delta , i.e. t = (\delta \mathrm{l}\mathrm{n}(nm)/T )1/3. Then there is a matrix B which is entrywise
within \delta of A and has rank at most 6 \mathrm{l}\mathrm{n}(nm)1/3T 2/3/\delta 2/3. Dividing B by 1+\delta gets it to have entries
of absolute value at most 1; the maximum distance between an entry of B and an entry of A after
this scaling is 1 - (1 - \delta )/(1 + \delta ) =\leq 2\delta .

This lets us conclude that

\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon +2\delta (F ) \leq \~\gamma 2,\epsilon (F )
2/3 \cdot 6 \mathrm{l}\mathrm{n}(nm)1/3/\delta 2/3,

so

\mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon +2\delta (F ) \leq (2/3) \mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2,\epsilon (F ) + (1/3) \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}(nm) + (2/3) \mathrm{l}\mathrm{o}\mathrm{g}(1/\delta ) + 4.

We now pick \delta = \mathrm{m}\mathrm{i}\mathrm{n}\{ \epsilon , 1 - 2\epsilon \} /4. Doing so allows us to amplify log rank with error \epsilon + 2\delta to log
rank with error \epsilon with only a constant factor overhead (plus an additive constant). This gives

\mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\epsilon (F ) = O(\mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2,\epsilon (F ) + \mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}(| \scrX | | \scrY | ) + \mathrm{l}\mathrm{o}\mathrm{g}(1/\epsilon ) + \mathrm{l}\mathrm{o}\mathrm{g}(1/(1 - 2\epsilon ))).

This theorem is somewhat reminiscent of the result \mathrm{R}CC,priv(F ) = O(\mathrm{R}CC(F )+\mathrm{l}\mathrm{o}\mathrm{g} \mathrm{l}\mathrm{o}\mathrm{g}(| \scrX | | \scrY | ))
that we showed last week. In fact, since we know that \mathrm{l}\mathrm{o}\mathrm{g}\widetilde \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(F ) lower bounds \mathrm{R}CC,priv(F )
and the no-entanglement measure \mathrm{Q}CC(F ), and since \mathrm{l}\mathrm{o}\mathrm{g} \~\gamma 2(F ) lower bounds \mathrm{R}CC(F ) and the
entanglement-assisted \mathrm{Q}CC,\ast (F ), it is reasonable to interpret the log-approximate-gamma-2-norm
measure as the “shared randomness/entanglement” version of approximate logrank, or alternatively
we might say that approximate logrank is the private-coin version of the approximate log gamma 2
norm.

9.5.1 Duality for the approximate gamma 2 norm

We’ve seen that \gamma 2(F ) can be written as a semidefinite program. We can similarly write \~\gamma 2(F ) as
a semidefinite program, so that we can take its dual and get a maximization program (useful for
lower bounds). However, it will be even simpler to write \~\mu (F ) as a linear program and take its dual
instead. Here by \~\mu (F ), we mean the minimum value of \mu (A) for a matrix A which \epsilon -approximates
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F (where by default \epsilon = 1/3). This can be written

\~\mu \epsilon (F ) = min \eta 
s.t.

\sum 
R zR \leq \eta 
wR \leq zR \forall R

 - wR \leq zR \forall R\sum 
R wRR[x, y] = A[x, y] \forall (x, y) \in \scrX \times \scrY 

A[x, y] \leq 1 \forall (x, y) \in \scrX \times \scrY 
 - A[x, y] \leq 1 \forall (x, y) \in \scrX \times \scrY 

F [x, y]A[x, y] \geq 1 - 2\epsilon \forall (x, y) \in \mathrm{D}\mathrm{o}\mathrm{m}(F ).

The dual of this can be written

\~\mu \epsilon (F ) = max (1 - 2\epsilon )\langle J,D\rangle  - \langle J,C1\rangle  - \langle J,C - 1\rangle 
s.t. a1[R] + a - 1[R] \leq 1 \forall R

\langle R,B\rangle + a1[R] - a - 1[R] = 0 \forall R
C1  - C - 1  - B + F \circ D = 0

D[x, y] = 0 \forall (x, y) /\in \mathrm{D}\mathrm{o}\mathrm{m}(F )
C1, C - 1, D, a1, a - 1 \geq 0.

If C1[x, y] > 0 and C - 1[x, y] ever occurs for the same (x, y), we could decrease both and improve
the objective value; hence we can assume C1 \circ C - 1 = 0, and replace both variables with the single
unconstrained matrix C = C1  - C - 1. Similarly, if a1[R] > 0 and a - 1[R] > 0, we can decrease both
without changing anything, so we can assume that a1 \circ a - 1 = 0 and set a = a1  - a - 1. This gives

\~\mu \epsilon (F ) = max (1 - 2\epsilon )\langle J,D\rangle  - \langle J, | C| \rangle 
s.t. | a[R]| \leq 1 \forall R

\langle R,B\rangle + a[R] = 0 \forall R
C  - B + F \circ D = 0

D[x, y] = 0 \forall (x, y) /\in \mathrm{D}\mathrm{o}\mathrm{m}(F )
D \geq 0.

It is easy to see that the first two constraints are equivalent to | \langle R,B\rangle | \leq 1 for all R, which is the
constraint \| B\| C \leq 1. Moreover, the third constraint is simply B = C + F \circ D, so the first three
together are equivalent to \| C + F \circ D\| C \leq 1.

\~\mu \epsilon (F ) = max (1 - 2\epsilon )\langle J,D\rangle  - \langle J, | C| \rangle 
s.t. \| C + F \circ D\| C \leq 1

D[x, y] = 0 \forall (x, y) /\in \mathrm{D}\mathrm{o}\mathrm{m}(F )
D \geq 0.

Finally, note that moving C[x, y] closer to 0 while moving (F \circ D)[x, y] in the opposite direction
increases the objective value. This possible unless either C[x, y] = 0 or else D[x, y] = 0 and (either
F [x, y] = \ast or F [x, y]C[x, y] < 0). Split C = H +D\prime \circ F where D\prime is 0 outside \mathrm{D}\mathrm{o}\mathrm{m}(F ) and H is 0
inside \mathrm{D}\mathrm{o}\mathrm{m}(F ). Then H is unconstrained. The matrix in the constraint is H +D\prime \circ F +D \circ F , and
if we write E = (D\prime +D) \circ F , then D constitutes the positive entries of E \circ F while D\prime constitutes
the negative entries of E \circ F . Thus the constraint becomes \| E +H\| C \leq 1, and the objective value
becomes \langle J, (1 - 2\epsilon )D  - | C| \rangle = \langle J,D  - 2\epsilon D  - | C| \rangle = \langle F,E\rangle  - \langle J, | H| \rangle  - 2\epsilon \langle J,D\rangle , so we are trying
to maximize

\langle F,E\rangle  - \langle J, | H| \rangle  - 2\epsilon \langle J,D\rangle 
\| E +H\| C

.



We can scale E + H so that the absolute values of its entries sum to 1, and then interpret it as
\mu \circ G, where G is a sign matrix and \mu is a probability distribution. Let p be the probability under
\mu that F and G disagree, let q be the probability mass of \mu outside \mathrm{D}\mathrm{o}\mathrm{m}(F ), and let 1 - p - q be
the probability F and G agree. The we are trying to maximize

1 - 2p - 2q  - 2\epsilon (1 - p - q)

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}\mu (G)
=

(1 - \epsilon )(1 - 2p - 2q) - \epsilon 

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}\mu (G)

=
\mathrm{P}\mathrm{r}(x,y)\sim \mu [F [x, y] = G[x, y]] - \mathrm{P}\mathrm{r}(x,y)\sim \mu [F [x, y] \not = G[x, y]] - \epsilon 

\mathrm{D}\mathrm{i}\mathrm{s}\mathrm{c}\mu (G)
.

This lower bound technique, which is tight for \~\gamma 2(F ), says that we can lower bound the latter
by finding a modified function G and a probability distribution \mu over the inputs such that G has
low discrepancy with respect to \mu , and such that G has good correlation with F against \mu . This
is “generalized discrepancy”, an analogue of which we’ve also seen in query complexity. To show
that F is hard, we just need to show that under some distribution \mu , F has constant correlation
with a function G which has low discrepancy (i.e. low \sansP \sansP complexity), where both the correlation
and the discrepancy are computed against the same distribution \mu . The quantum communication
complexity of F (even with shared entanglement) will be at least the logarithm of this bound.
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