Week 6

Polynomials, Part 2: Dual polynomials

Last week, we saw that a quantum algorithm computing a Boolean function gives rise to an ap-
proximating polynomial for that function, and that the degree of this polynomial is (up to constant
factors) at most the number of queries used by the algorithm. We also saw that the degree of a
polynomial approximating a Boolean function can be lower bounded using symmetrization: this
is a technique for converting a polynomial in many variables into a polynomial in one (or few)
variables with the same degree, which computes something related to the original problem. We can
then use some tools from approximation theory to put constraints on what bounded single-variate
polynomials of degree d can do. -

We will now look more generally at the task of lower bounding deg(f), the approximate degree
of a Boolean function f.

6.1 Duality for polynomials

We have defined (/1\(%6(f) as the minimum degree of a polynomial p which approximates f to error e.
Consider the flip side of this question: the task of minimizing the error € to which a polynomial p of
fixed degree d can approximate f. This flipped question is closely related to the original one; if we
knew, for each d, the smallest error €¢; to which polynomials of degree at most d may approximate
f, we could simply define deg,(f) = min{d € {0,1,...,n} : ¢4 < €}.

It turns out that this flipped question can be viewed as a linear program. This is perhaps most
cleanly expressed when f (and the polynomial approximating it) have {+1, —1} outputs, in which
case we want to approximate f to error 2¢. Indeed, it is the linear program

min €
st. (@)D en,m(@)em > 1—2¢ Vo € Dom(f)
> men,M(@)em <1 Vo e {+1,-1}"

Y men,M(@)em > —1 Vo e {+1,-1}"

In the above program, the variables are ¢ and ¢,, for all m € My, where M, is the set of all
monomials which have degree at most d. The variable ¢, represent the coefficients of a polynomial
of degree d, so that the polynomial itself is p(z) = >_,, s, cmm(z). For the purpose of the linear
program, we treat the terms m(z) as constants and the terms ¢, as variables, where recall that we
are working in the {41, —1}-basis so that each m(z) has value either +1 or —1 (depending on m
and on x). The first constraint then says that we must have f(z)p(z) > 1 — 2¢ for all x € Dom(f),
which means that p(x) must have the same sign as f(z) and must have absolute value at least 1—2e.
The second and third constraints together say that |p(x)| < 1 for all z € {+1,—1}" (this can be

1

2 WEEK 6. POLYNOMIALS, PART 2: DUAL POLYNOMIALS

directly generalized to non-Boolean alphabets, as long as we are careful to define the monomials
m € M, appropriately).

Now that we have written down a linear program for (the flipped version of) approximate degree,
let’s take the dual and see what we get. In the dual, we have one variable for each constraint; this
gives us a variable pu, for each x € Dom(f), as well as variables v and v for each z € {+1, —1}".
The dual becomes

max (1/2)inux_2xya—ci__2xljaj
st S omx)(f(@)ps/2 —vi+vy) =0 VYme My
dDophe =1
pz >0 Ve Dom(f)
vi,vy >0 Voe{+1,-1}"

r T xT

We can simplify this. First, we can substitute)y, = 1 in the objective function, since this is
a constraint. Next, observe that if for any = € {+1,—1}" it holds that ;7 > 0 and v, > 0, we can
decrease both by the same amount, until one of them becomes 0; this only increases the objective
value, and does not break any constraints. Hence we can assume that for each x, either v;- = 0 or

vy, =0. We can set v, = v, if v >0 and v, = —v, if v, > 0. This way, we will get

max 1/2 —[vlh
st. >, m(x)(f(@)ps/2—vy) =0 VYme My

pe >0 Ve Dom(f).

Note that we can always achieve objective value at least 0 by taking v, = f(z)u,/2. Now, note
that for any z, if f(x)u,/2 and v, are both positive in the optimal solution, we can decrease them
both by the same amount (say §/2), preserving the first constraint; we can then scale p and v up by
the same factor of 1/(1 — §), which restores the second constraint. This new solution has objective
value 1/2 — (||v]]1 — 6/2)/(1 — §), which is at least 1/2 — ||v||; when the latter is at least 0. Hence
we can assume that either f(x)u,/2 or v, is not positive in the optimal solution. Similarly, if they
are both negative, we can add 6/2 weight and the same calculation goes through; hence they are
not both negative. Finally, if one is negative and the other is positive, we can add §/2 to one and
subtract §/2 from the other, and once again scale v and p by 1/(1 — §). This lets us conclude that
either p; =0 or vy =0 for all z € {+1,—1}".

Let v, = f(2)py/2 — vp. Then we now know that [|v|l1 = ||u/2]1 + ||¥]1 = 1/2 + ||v|l1. We
also have Y v, f(z) =Y, f(@)*ua/2 =Y, f(@)ve =1/2 =", f(@)vy > 1/2 — ||v|1, and for each
m € Mg, > . m(x)v, = 0. It is also not hard to get back p and v if someone gives us v satisfying
these conditions. Letting v = |[v[|1, the program can be written

max 1/2 —~

st. Y. ,m(x)v, =0 VYm € My
Do f(@)ve 21/2 -7
lollh =1/2+7.

Finally, let 6 =1/2 —~, and let w = v/(1/2+4+). Then |ju|; =1, and) f(z)us > 6/(1 —6). The
program is then
max)
st. Y ,m(x)u, =0 Vm € My
2p f(@)ue = 0/(1-9)

lully = 1.

6.2. SIGN DEGREE AND DISCREPANCY 3

How shall we interpret this? Well, since ||u|[; = 1, we can split it up into a probability distribution u
with g, = |ug| and a function f': {+1,—1}" — {41, —1} specifying the sign, so that u, = f'(x)ps
(note that we reused the variable u,, which has a different meaning now than in the first linear
program). In terms of p and f’, the constraints are

E [m(z)f'(z)] =0 Vm € My

T

E [f(2)f'(2)] = /(1 -9).

T

In other words, we have the following conclusion.

Theorem 6.1. To show that there is no bounded polynomial of degree d which approximates f to
error €, it suffices to show that there is a total function f' and a distribution p over the hypercube
such that

1. f" has correlation greater than €/(1 — €) with f when measured against distribution p (i.e.

Epnlf(2)f'(x)] > €/(1 — €) in the {+1,—1} basis, where we set f(x) =0 if x ¢ Dom(f)),

2. f" has zero correlation with all monomials m of degree at most d when measured against p
(i.e. Exoplf (x)m(x)] =0 for all such monomials m in the {+1,—1} basis).

Moreover, this technique is tight: if there is no bounded polynomial of degree d approximating f to
error €, then such f' and p must exist.

6.2 Sign degree and discrepancy

Before we continue with the study of polynomial lower bounds, let’s pause to say a few things about
smaller query measures. One important measure is the threshold degree or sign degree of a Boolean
function.

Definition 6.2. The threshold degree or sign degree of a (possibly partial) Boolean function f,
denoted deg (f), is the minimum degree of a polynomial p which approzimates f to some error less
than 1/2; in other words, in the {+1,—1} basis, it is the minimum degree of a polynomial p such

that p(x) f(z) > 0 for all x € Dom(f).

Note that unlike in the definition of (/i—(\ag(f), we did not require p to be bounded. It turns out
that a polynomial which only approximates f in sign (i.e. to arbitrarily small bias) can always be
assumed to be bounded: we can scale down p by the maximum value of |p(z)| over z € {+1,—1}",
ensuring that [p(x)| < 1 for all after the scaling, and this does not affect the property that
p(z) f(x) > 0 (though it may make the bias even smaller, meaning it may make the error even closer
to 1/2).

The sign degree of a function is similar to the complexity class PP, the class corresponding to a
model of computation where you are allowed to use randomness and yet are only required to succeed
with any non-zero bias (rather than with bounded error, as in BPP). For reasons we’ll see later, the
sign degree is usually considered to correspond to the class UPP, because a different query measure
more closely corresponds to PP.

Although we defined the sign degree of a Boolean function in terms of polynomials, it turns out
that one gets an equivalent definition if one tries to make an analogous definition for randomized
or quantum algorithms.

4 WEEK 6. POLYNOMIALS, PART 2: DUAL POLYNOMIALS

Lemma 6.3. Let f be a (possibly partial) Boolean function. Let R (f) denote the minimum number
of worst-case queries that one needs to make in order to compute f to an error less than 1/2; that

is, Re(f) = inf{Rc(f) : e < 1/2}. Similarly, define Q. (f) = inf{Q.(f) : e < 1/2}. Then
Ri(f) = deg.(f)

and 1
5degj[(f) < Q4(f) < degy(f)-

Proof. Note that Ry (f) > Qu(f) > (1/2)deg,(f); the first inequality follows from the fact that
quantum algorithms can simulate classical ones, and the second from the fact that a quantum
algorithm gives rise to an approximating polynomial. To complete the proof, all we need to show
is that deg,(f) > R4(f). To this end, consider a polynomial p of degree deg,(f) satisfying
p(x)f(xz) > 0 for all x € Dom(f). Let {¢;, }m be the set of coefficients of the monomials of p. Divide
p by > |cml|, so that the sum of absolute values of the coefficients of p becomes 1; this does not
affect the property that p(x)f(x) > 0, nor does this change the degree of p.

Define a randomized algorithm R which picks a monomial m of degree d with probability |c;,|
(recall that the absolute coefficients |c,,| now sum to 1, making them a probability distribution
over the monomials). The algorithm R then queries all the indices z; of the input that occur in
the monomial m it sampled; this is at most d queries. Next, R computes m(x) using those queries,
and outputs the result (i.e. it outputs 1 if m(x) = 1 and —1 if m(x) = —1). Note that since
p(z) f(x) > 0, more than half of the monomials m of p agree with f in sign, when weighted by |cy,|.
This means that the probability that R(z) = f(z) is more than 1/2, so this algorithm makes error
strictly less than 1/2. We conclude that Ry (f) = deg,(f), as desired. O

This lemma shows that all the different query versions of UPP collapse together; they are equal
up to constant factors. However, as mentioned previously, there is a different notion of PP in query
complexity, which is not equal to sign degree. To distinguish between these, the sign degree is
usually referred to as UPP rather than PP.

The difference has to do with just how small the bias of a PP algorithm should be allowed
to be. In the definitions we’ve seen so far, the bias was allowed to be arbitrarily small (in other
words, the error was allowed to be arbitrarily close to 1/2). However, intuitively, if an algorithm
uses only 7" amount of resources (in our case, queries), one may wish to also only let it flip O(T)
coins, or maybe O(poly (7)) coins, when making its random choices. Putting such a restriction on
the randomness would mean that the probabilities of the algorithm are discretized at around size
2-0(T) " and in particular, if the algorithm achieves non-zero bias, then it will achieve bias at least
270 However, sign degree has no such guarantees.

There are several different query versions of PP which add some restriction on the number of
coins, or on the bias achieved. These measures are not all exactly identical to one another, but they
generally differ only by a factor of O(logn), where n is the input size. This is in contrast to the
sign degree measure (which we will consider from now on to be a query version of UPP), which can
be exponentially smaller than the query versions of PP.

We will define one particular query version of PP, which has reasonably nice properties.

Definition 6.4. Let f be a (possibly partial) Boolean function. For any algorithm R which computes
f to some non-zero bias, let |R| denote the worst-case number of queries R makes, and let bias(R)
denote the minimum value of Pr[R(x) = f(x)] — Pr[R(x) # f(z)] over x € Dom(f). Then define

Rpp(f) == min{T : 3R s.t. |R| < T and bias(R) >n"T}.

6.2. SIGN DEGREE AND DISCREPANCY 5

Define Qpp(f) and degpp(f) similarly (for polynomials, the bias is the minimum value of p(x) f(x)
over x € Dom(f) in the {41, —1} basis, and we minimize only over polynomials p that are bounded
on the Boolean hypercube).

It turns out that these PP measures can be exponentially larger than the sign degree. An
example of a function which gives an exponential separation is a function called ODD-MAX-BIT.
This function is defined on n bits, and on input z, it looks at the largest i € [n] such that z; = 1
(set @ = 0 if there is no such ¢ € [n]). The function then returns 1 if this largest i is odd, and 0 if
the largest ¢ is even.

Let us construct a deg, polynomial for ODD-MAX-BIT. This is easiest to do when the input
alphabet is {0,1} but the outputs of the function are {41, —1}. In this case, we simply set p(z) =
1+ Y,_;n(—2)%z;. This is a polynomial of degree 1. However, note that the absolute coefficients
of this polynomials are 1,2,4,8,..., and that they alternate in sign; this means that the sign of
p(z) is the sign of the largest (—2)° when z; is non-zero, which is the parity of the largest i such
that x; = 1. Hence p agrees with ODD-MAX-BIT in sign. If we scale p to be bounded in [—1, 1] (by
dividing it by something like 2"*1), the bias achieved by p would only be 270(") even though the
degree of p is 1; hence p does not give us an upper bound on degpp(ODD-MAX-BIT) that is better
than n/logn. N

It turns out that degpp(ODD-MAX-BIT) = O(n!/3), though this is somewhat tricky to prove.
The first lower bound was provided by [Bei94]. Hence ODD-MAX-BIT shows that degpp and deg
can be vastly different, or in other words, that PP and UPP are not the same in query complexity.

Next, we will show that all the PP measures are approximately equal to each other.

Lemma 6.5. Let f be a (possibly partial) Boolean function on n bits. Then
Rep(f) = Qpp(f) = (1/2) degpp(f) = (1/3) Rpp(f).

Proof. Since quantum algorithms can simulate quantum ones and since they give rise to polynomials,
we get Rpp(f) > Qpp(f) > (1/2) degpp(f). We now show how to convert a PP polynomial p into
a randomized algorithm. Let T' = degpp(f), and suppose p is a multilinear bounded polynomial
with deg(p) < T and p(z)f(x) > n~T for all z € Dom(f).

The polynomial p is bounded, meaning it lies in [—1,1] on {+1, —1}". In Lemma 6.6, we will see
that if p is bounded in this way, then the sum of absolute values of its coefficients is at most ndes(®)/2,
Let p/ == p/nd®8®)/2 Then we have deg(p’) = deg(p) < T, bias(p') = bias(p)/nde®)/2 > 5=37/2
and the sum of absolute values of coefficients of p’ is at most 1. We can now construct a randomized
algorithm R for f which samples a monomial m of p’ in proportion to the probabilities |c,,|, queries
the positions z; of the input that occur in the monomial m, and then outputs m(z). The expected
output of this algorithm, when run on z, is p'(z), so the algorithm achieves bias at least bias(p’)
for computing f. It also makes at most deg(p’) queries. Hence |R| < T and bias(R) > n=37/2, so

Rpp(f) < (3/2) degpp(f). -

The proof of this lemma relied on the following bound for the sum of absolute values of coefficients
of a bounded multilinear polynomial.

Lemma 6.6. Let p be a bounded multilinear polynomial in n variables in the {+1,—1} basis. Then
the sum of absolute coefficients of p is at most

and also at most ndes®)/2

6 WEEK 6. POLYNOMIALS, PART 2: DUAL POLYNOMIALS

Proof. For a multilinear polynomial ¢ in n variables, let E[g| denote the expectation of g(x) over the
uniform distribution over z € {+1, —1}". Note that E[m] = 0 for any non-constant monomial m,
because each non-constant monomial is a parity function on some subset of the bits, and parity is
equally likely to be +1 and —1 over the Boolean hypercube. Now, consider E[p?]. Note that we know
p*(z) <1 for all z € {+1,—1}", since p(z) € [~1,1] on the Boolean hypercube; hence E[p?] < 1.
On the other hand, if we expand out p(z)? = (3, cmm(x))?, we get a sum of ¢pepm(z)m/ ().
The product m(x)m/'(x) may simplify (since recall that 7 = 1 over x € {+1,—1}"), but it will be

non-constant unless m = m’. Now, E[p?] is the sum of ¢,,c,y E[mm/], and we have E[mm/] = 0
unless m = m/, in which case E[mm/] = E[1] = 1. We conclude that E[p?] = > ¢2, and hence

Finally, we use Cauchy-Schwartz. We have

Z|cm|=;\cm|.1g\/;\cm|2;1g\/;1.

m

Hence we’ve bounded the sum of absolute coefficients of p by the square root of the number of
monomials of p. Now, the total number of multilinear monomials on n variables that exist of degree
iis ("}). Since p has degree deg(p), the number of monomials in p is at most Z?i%(p) ("), from which
the desired result follows.

As for the upper bound of n9°8(®) it is not hard to show that Z?:o (TZL) < n¥ unless k = 1, in
which case Z%:o (’Z) =n+ 1. We can deal with degree-1 polynomials separately: they have the
form p(x) = co + c121 + cowa + . .. cpzy. By plugging in the correct z € {41, —1}", we can ensure
the signs of all the terms ¢, 121, caxa, . .., cpx, match; since |p(x)| < 1 for such z, we therefore
have |co| + |e1] 4+ -+ + |cp| < 1 < ndes®)/2, O

So far, we have seen that the three measures deg,, Ry, and Q. are equivalent up to constant
factors; these are usually referred to by the name “sign degree” or “threshold degree’, or sometimes
by the notation UPP (the “U” stands for “unbounded”; so this is unbounded PP).

We also saw that the three measures degpp, Rpp, and Qpp are equivalent up to constant
factors. These measures (or variants of them) are often called “discrepancy”, and they correspond
more closely to the class PP. We also noted that discrepancy can be much larger than sign degree
for some functions.

6.2.1 Duality for the discrepancy and sign degree

We have introduced two types of small-bias measures: deg; and degpp. It will be useful to look
at the dual objects of these measures, which end up being simpler than the dual of approximate
degree in Theorem 6.1. First, we have the following for deg, .

Lemma 6.7. Let f be a (possibly partial) Boolean function. To show that deg, (f) > T, it suffices
to show that there exists a distribution p on Dom(f) such that for every multilinear monomial m
of degree at most T', we have Ey,[m(x)f(x)] = 0.

Moreover, this technique is tight: if deg, (f) > T, such a distribution p always exists.

Note that this lemma is simpler than Theorem 6.1, since it makes no reference to a modified
function f’; to prove a sign degree lower bound, all you need to provide is a hard distribution for
the original function f.

Proof. First, if such a distribution pu exists, then E,.,[m(z)f(x)] = 0 for all m of degree at most
T'; since each polynomial of degree at most T is a linear combination of such monomials, we also

6.2. SIGN DEGREE AND DISCREPANCY 7

have E,~,[p(x)f(x)] = 0 for all polynomials of degree at most 7. In this case, there clearly cannot
be a polynomial of degree T with p(x)f(x) > 0 for all z, so deg, (f) > T.

To show tightness, we can directly use Theorem 6.1 in the limiting case of ¢ — 1/2. If
deg, (f) > T, then for all e < 1/2, there is no polynomial of degree T approximating f to er-
ror €; by Theorem 6.1, we get dual objects f/, . for all such € < 1/2. Let’s take a sequence of these
objects (f1,p1), (f5, p2), ... which corresponds to a sequence of errors e that approaches 1/2. Some
Boolean function f’ must occur infinitely often in this sequence; restrict to the subsequence where
all the f! are the function f’. The sequence of corresponding p; are vectors which lie in a closed
and bounded subset of R", which means they have a limit point: some subsequence of the p; must
converge to a distribution . It is not hard to check that the correlation between f and f’ against
this distribution x4 must be at least 1—¢ for all §, so it must equal 1. This means we can take f' = f,
since f’ agrees with f on the support of p. It is also not hard to verify that E,.,[f(z)m(z)] =0
must hold for all monomials m of degree at most T, as desired. O

The measure degpp also has a dual object which is simply a probability distribution, with no
need for a modified function f’.

Lemma 6.8. Let f be a (possibly partial) Boolean function. To show that degpp(f) > T, it suffices
to show that there exists a distribution p on Dom(f) such that every multilinear monomial m of
degree at most T satisfies | Epp[m(z) f(z)]| < n=3772.

Moreover, this technique is tight up to constant factors: if degpp(f) > T, then a distribution
certifying a lower bound of > T /4 always exists.

Proof. Let p be a bounded multilinear polynomial of degree at most 7. Recall that the sum of
absolute coefficients of p is at most nZ/2. Now,

E [p(x)f(2)] = em E [m(z)f(z)] <n'/ 032 = nT.

T T

This means there must be some z for which p(z)f(x) < n~7T, so bias(p) < n~ and hence deg(p) +
log(1/ bias(p))/logn > T. Since this applies to all polynomials p of degree at least T', we conclude
that degpp(f) > T.

In the other direction, we use Theorem 6.1. If degpp(f) > T', we know that all polynomials of
degree at most 7'/4 must have bias less than n~3T/4 which means they must make error at least
(1 — n=3T/%)/2; Theorem 6.1 then gives us a modified function f’ and a distribution y such that f
and f’ have correlation greater than (1 —n=37/4)/(1 +n=37/4) > 1 — 2n3T/4 against y, and such
that E,,[f'(x)m(z)] = 0 for all monomials m of degree at most 7'/4. Now, we know that y places
probability mass less than 2n=37/4 on x € {+1, —1}" where f(z) # f'(z) (where we define f(z) =0
if x ¢ Dom(f)). Then for any monomial m of degree at most 7'/3, we have

| E f@m(@)) = | E [(f() = F@)m@)] + B [f'@m()] <2077,
Now, if T' < 4, then the only monomial of degree at most 7'/4 is the constant monomial, and then
if the function is not constant we can put equal weight on +1 and —1 inputs to get a correlation
of 0 with this monomial; hence we can restrict to the case T > 4. In this case, we also have
n > 4, so on=3T/4 < pl/2-3T/4 < pT/8=3T/4 — p=5T/8 < n=(/IT/4 Hence u certifies that
degpp(f) > T'/4. O

Discrepancy lower bounds sometimes prove an even stronger statement: they show that for
some distribution p on Dom(f), it holds that | E,,[f(z)m(z)]| < n~*T) for all monomials m (not

8 WEEK 6. POLYNOMIALS, PART 2: DUAL POLYNOMIALS

merely for the monomials of degree at most 7"). This is of course sufficient to prove an Q(7T") lower
bound, but it is not necessary.

The technique of showing a distribution against which f poorly correlates with all monomials
is what is traditionally referred to as “discrepancy”. Note that if you manage to provide such a
distribution, it gives not only a lower bound on Q(f), but even on the small-bias measure Qpp(f).

6.3 Back to bounded-error polynomials

We can relax the conditions in Theorem 6.1 slightly, making it a little easier to show polynomial
lower bounds using this method.

Theorem 6.9. Let f be a (possibly partial) Boolean function on n bits. Suppose we had a total
Boolean function f' and a distribution p on the Boolean hypercube satisfying the following properties:

1. f' has correlation at least 2/3 with f against u

2. For any monomial m of degree at most d, the correlation of f' with m against u is at most
—d
n=%.

Then deg(f) = Q(d).

Note that this theorem is very similar to Theorem 6.1; the main difference is that we are now
allowing f’ to have a small n=% correlation with the degree-d monomials rather than having zero
correlation with them.

The constant 2/3 above can be replaced by any other constant in (1/2,1), and the statement of
the theorem will still hold.

Proof. Consider any bounded polynomial p of degree at most d. Then for any x € Dom(f), we have
p(z)m(x) > bias(p), as bias(p) is defined as the minimum of p(z)m(x) over z € Dom(f).

Consider where p places its weight. Suppose it puts weight a on x ¢ Dom(f) and weight b on
x € Dom(f) with f(z) # f'(x), with weight 1 —a — b on & € Dom(f) with f(z) = f’(z). Then
Epmulf(z)f' ()] =1—a—2b<2/3,50a+2b>1/3.

Since p places weight 1 —a on Dom(f), we have E,,[f(2)p(z)] > (1 — a)bias(p). On the other
hand,

E [f(@)p()] = E [(f(z) = f'()p@)]+ E [f'(z)p(z)]

< a+2b+Zcm E [f'(z)m(z)] < a+2b—|—n_d2|cm| <a+2b+n"%2

T
Hence we have a + 2b +n~%? > (1 — a)bias(p), or bias(p) < (a + 2b+ n~%?)/(1 — a). Using
a > 1/3 — 2b, we get bias(p) < (1/3 +n~%42)/(2b+ 2/3) < (1 4+ 3n~%?)/2. Hence p must make
error at least (1 — bias(p))/2 > (1 — 3n~%?)/4 when estimating f. Note that if d is constant, an
Q(d) lower bound on the degree always holds (since the degree is at least 1 for all non-constant
functions). When d is larger than some constant, say 10, we must also have n > 10, and then the
error of p when computing f becomes strictly greater than 1/5. Since p was arbitrary, we get a
lower bound on 3%1/5(]’).

However, it turns out that approximate degree can be amplified: if there is a polynomial approx-
imating f to error 1/3, we can turn it into a polynomial estimating f to error 1/5 while increasing
its degree by at most a constant factor. Combined with amplification, we get an (d) lower bound
for H@fg(f) with any constant error level. O

The lower bound technique in Theorem 6.9 is called generalized discrepancy. The idea in discrep-
ancy is to show that f has low correlation with every monomial when measured against some hard
distribution p. In generalized discrepancy, we show that a modified function f’ has low correlation
with every monomial against u, and also that f correlates reasonably well with f/ when measured
against the same distribution p. In other words, we are trying to show that f is not too far from a
very hard function f’, but the distance between f and f’ must be measured according to the hard
distribution for f’.

6.4 Applications

This lower bound technique (called either dual polynomials or generalized discrepancy) is not easy
to use in practice, but we review some applications.

6.4.1 Composition theorems

Recall that if f and g are (possibly partial) Boolean functions defined on n and m bits respectively,
then fog is a (possibly partial) Boolean function on nm bits. We can get a polynomial for fog by
composing a polynomial ps for f with n copies of a polynomial p, for g. However, there is a problem
if py only approximates g: in this case, there is no guarantee that ps(pg, py, - . .,py) approximates
f o g, because p¢ is only known to approximates f on the Boolean hypercube (not when fed in
noisy input bits). It is possible to overcome this issue by amplifying the polynomial p, before com-
posing, increasing its degree by a factor of O(log a\eé(f)) and decreasing its approximation error to
1/ poly(&?s?g(f)). This gives a polynomial approximating f o g of degree O(aé—é(f) &é(g) log a;é(f))

It turns out that the extra log factor is not necessary when composing polynomials, just as it
was not necessary for quantum algorithms. This was shown by Sherstov [Shel2b]. This means that
agé(f 0g) = O(agé(f) agé(g)) On the other hand, the other direction is still open.

Conjecture 6.10. For all Boolean functions f and g, (/iég(f 0g) = Q(agg/;(f) aéé(g))

While the conjecture is still open, some partial results are known. Sherstov [Shel2a| showed the
following using the dual characterization of approximate degree.

Theorem 6.11. Let f act on n bits and let g act on m bits. Then

= deg(f)? deg(g
deg(f o g) = O <(n) .
In particular, this theorem gives a tight composition theorem when gl:eé(f) = Q(n), but it gets
weaker the smaller deg(f) gets.
Other partial progress towards a composition theorem includes work on composition with AND

and OR.

6.4.2 Explicit lower bounds

Apart from composition theorems, generalized discrepancy or dual polynomials can be explicitly
constructed to give lower bounds on approximate degree. One example of a paper doing so is
[BKT18], in which dual polynomials are combined with the symmetrization technique for functions

10 REFERENCES

with large input alphabets to give several new lower bounds on quantum query complexity, including
for functions like k-DISTINCTNESS and IMAGE-SIZE-TESTING.

References

|Bei94] Richard Beigel. “Perceptrons, PP, and the polynomial hierarchy”. In: Computational
complexity 4.4 (1994) (p. 5).

[BKT18| Mark Bun, Robin Kothari, and Justin Thaler. “The polynomial method strikes back:
Tight quantum query bounds via dual polynomials”. In: Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing. 2018 (p. 9).

[Shel2a] Alexander A Sherstov. “Strong direct product theorems for quantum communication
and query complexity”. In: STAM Journal on Computing 41.5 (2012) (p. 9).

[Shel2b] Alexander A. Sherstov. “Making Polynomials Robust to Noise”. In: Proceedings of the
44th Symposium on Theory of Computing. 2012. DOI:

(p. 9).

https://doi.org/10.1145/2213977.2214044

	Query Complexity Basics
	Course overview
	Classical query complexity
	Quantum query complexity
	Dirac notation
	Defining quantum query complexity

	Partial functions and examples
	Separations for partial functions

	Relationships for total functions

	Quantum Certificates and the Hybrid Method
	The hybrid method
	Linear programming duality
	Fractional certificates
	Some examples
	Randomized and quantum certificates

	The Adversary Method
	Primal form
	Dual form
	Applications
	Reproving previous results
	New applications

	The Negative-weight Adversary
	Limitations of the positive adversary method
	Property testing barrier
	The certificate barrier

	The negative adversary
	SDP formulation

	An error-dependent version
	Negative-weight adversary vs. quantum query complexity
	Duality and tightness
	Composition

	Polynomials, Part 1: Symmetrization
	Representing functions by polynomials
	Approximating polynomials
	Symmetrization
	Larger alphabets

	Polynomials, Part 2: Dual polynomials
	Duality for polynomials
	Sign degree and discrepancy
	Duality for the discrepancy and sign degree

	Back to bounded-error polynomials
	Applications
	Composition theorems
	Explicit lower bounds

	Other Methods
	Lower Bounds by Upper Bounds
	The Multiplicative Adversary Method
	Zhandry's Quantum Lower Bounds
	Polynomial characterization of quantum query complexity

	Communication Complexity Basics
	Approximate Gamma 2 Norm
	Quantum Information Cost
	References

