
Week 5

Polynomials, Part 1: Symmetrization

5.1 Representing functions by polynomials

So far, we have seen the positive adversary method (easy to use but doesn’t always work) and the
negative adversary method (always works but very hard to use). This week we will introduce a
different type of lower bound technique, called the polynomial method. Its power is incomparable
to the positive adversary (so it can sometimes be stronger), and using it is usually harder than the
positive adversary but easier than the negative adversary.

To start, we will define the polynomial degree of a Boolean function. We start with the following
observation.

Lemma 5.1. Let f : \{ 0, 1\} n \rightarrow \BbbR be any function from the Boolean hypercube to the reals. Then
f can be uniquely represented as a multivariate polynomial p(x1, x2, . . . , xn) with real coefficients,
such that p(x) = f(x) for all x \in \{ 0, 1\} n. The polynomial p will be multilinear, which means that
each variable xi only occurs with degree 0 or 1 in each monomial.

Proof. First, note that for xi \in \{ 0, 1\} , we have x2i = xi, so terms like x2i or x3i don’t help – they are
equivalent to xi. With this in mind, there are 2n different subsets of the set [n], and for each subset
S \subseteq [n] there is one potential monomial mS =

\prod 
i\in S xi. Any polynomial p over \{ 0, 1\} n is therefore

a linear combination of these 2n monomials mS for different subsets S.
Consider the monomials mS as functions; that is, for each S let mS(x) denote the product\prod 

i\in S xi, so that mS : \{ 0, 1\} n \rightarrow \{ 0, 1\} is a Boolean function. Further, associate with this function
mS a long vector vS representing the truth table of mS with one entry for each x \in \{ 0, 1\} n, i.e.
the vector with vS [x] = mS(x). We claim that the 2n vectors vS for S \subseteq [n] are all linearly
independent. To see this, consider a linear combination of them that equals the all-zero vector.
This linear combination is some polynomial q in the variables x1, x2, . . . , xn such that q(x) = 0 for
all x \in \{ 0, 1\} n. Let mS be a monomial of q that has non-zero coefficient and such that | S| is as
small as possible. Consider the string x with xi = 1 for i \in S and xi = 0 otherwise, and consider
the value of q(x). Each monomial of q other than mS must use some variable outside of S, by
the minimality of the choice of S; hence each monomial of p other than mS evaluates to 0 on x.
However, mS(x) = 1, and since mS has a non-zero coefficient in p, we have p(x) \not = 0. This is a
contradiction, which means that the monomials are linearly independent, as desired.

Finally, consider the arbitrary function f : \{ 0, 1\} n \rightarrow \BbbR . The truth table of this function is a
vector in \BbbR 2n with one entry for each x \in \{ 0, 1\} n. Since \BbbR 2n has dimension 2n, and since the vectors
vS are 2n independent vectors, they are a basis. This means the truth table of f can be uniquely
written as a linear combination of the vectors vS , which means f can be uniquely represented as a
real polynomial p.
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Polynomials of this form, in which each variable occurs with degree 0 or 1, are called multilinear.
We now define the degree of a Boolean function, as follows.

Definition 5.2. For a function f : \{ 0, 1\} n \rightarrow \BbbR , define its degree \mathrm{d}\mathrm{e}\mathrm{g}(f) to be the degree of its
corresponding real polynomial. That is, the maximum value of | S| for monomials mS that have a
non-zero coefficient in the real polynomial p computing f .

Note that the degree of a function on n bits is always at most n. Also note that although we
allowed f to output real numbers, this definition also works perfectly well for Boolean functions
that have outputs in \{ 0, 1\} . The input and output alphabets should be Boolean for the degree to
make sense, at least as we’ve currently defined it.

We can also extend this definition to partial functions. There are actually two ways of doing so.

Definition 5.3. Let f be a possibly partial Boolean function on n bits. Then \mathrm{d}\mathrm{e}\mathrm{g}(f) is the minimum
degree of a real polynomial p satisfying p(x) = f(x) for x \in \mathrm{D}\mathrm{o}\mathrm{m}(f).

An alternative definition is to take the minimum degree of p only over polynomials p satisfying
both p(x) = f(x) for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f), and also p(x) \in [0, 1] for all x \in \{ 0, 1\} n.

So far we have taken polynomial degree where the inputs and outputs are \{ 0, 1\} -valued. It is
often useful to consider polynomials that take inputs in \{ +1, - 1\} n and give outputs in \{ +1, - 1\} 
instead. As it turns out, the degree of a function when represented over \{ +1, - 1\} is the same as
when it is represented over \{ 0, 1\} . We will associate +1 with 0 and  - 1 with 1, so that we can
convert from \{ 0, 1\} to \{ +1, - 1\} by taking ( - 1)b or 1 - 2b, and by taking (1 - b)/2 to convert back
from \{ +1, - 1\} to \{ 0, 1\} .

We refer these as different bases: the \{ 0, 1\} basis and the \{ +1, - 1\} basis. The word “basis” comes
from the fact that, as we’ve seen, the monomialsmS form a basis when considered as vectors over \BbbR 2n

(with these vectors representing the truth table of the function mS , i.e. the vectors vS [x] = mS(x)).
It turns out that monomials mS over \{ +1, - 1\} variables also form a basis for \BbbR 2n . Note that these
are different functions now: the function mS(x) =

\prod 
i\in S xi is an AND function when x is a \{ 0, 1\} n

vector, but it is a Parity function when x is a \{ +1, - 1\} n vector.

Lemma 5.4. A polynomial p in the \{ 0, 1\} basis can be converted into a polynomial q in the \{ +1, - 1\} 
basis, and vice versa. These conversions preserve the behavior of the polynomials as functions, and
also the degree of the polynomials.

Proof. If p expects \{ 0, 1\} inputs, we can make it take \{ +1, - 1\} inputs instead by plugging in
(1 - xi)/2 into each variable xi of p. Since (1 - xi)/2 converts \{ +1, - 1\} into \{ 0, 1\} , this preserves
the behavior of p. When we expand and simplify, it’s not hard to see that the degree of p cannot
increase, since we are plugging in degree-1 terms into p. We can also change the output of p from
\{ 0, 1\} to \{ +1, - 1\} by applying 1 - 2p to the polynomial, which does not affect its degree.

To convert back, we similarly plug in (1  - 2xi) into xi in q, and apply (1  - q)/2 on the out-
side. Once again, this transformation can only decrease the degree. However, since applying both
transformations gets us back to exactly the same function (and hence exactly the same polynomial,
since each function has a unique polynomial), we conclude that neither transformation can actually
decrease the degree, and both must preserve it.

Note that polynomials taking in \{ +1, - 1\} variables can still be assumed to be multilinear, since
now x2i = 1, x3i = xi, etc., and there is still no need for xi to have degrees other than 0 or 1.
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5.2 Approximating polynomials

Having defined the degree of a Boolean function, we now define a related notion called the approx-
imate degree.

Definition 5.5 (Approximating polynomial). We say that a polynomial p approximates a (possibly
partial) Boolean function f to error \epsilon if | p(x)  - f(x)| \leq \epsilon for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f). This is for \{ 0, 1\} 
outputs; for \{ +1, - 1\} outputs, the values get stretched by a factor of 2, so we require instead that
| p(x) - f(x)| \leq 2\epsilon .

Definition 5.6 (Bounded polynomial). We say that a real polynomial p in n variables is bounded if
p(x) \in [0, 1] for all x \in \{ 0, 1\} n. This is when dealing with \{ 0, 1\} outputs; in the context of \{ +1, - 1\} 
outputs, we will say p is bounded if | p(x)| \leq 1 for all x in the Boolean hypercube.

With these definitions in hand, we can define the approximate degree of a Boolean function.

Definition 5.7. Let f be a (possibly partial) Boolean function on n bits. The approximate degree of
f to error \epsilon , denoted \widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (f), is the minimum degree of a bounded polynomial p which approximates
f to error \epsilon . When \epsilon = 1/3, we omit it and write \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f).

It turns out that approximate polynomial degree lower bounds quantum query complexity. Be-
fore we see this, let’s see why it lower bounds deterministic and randomized query complexities.

Theorem 5.8. Let f be a (possibly partial) Boolean function. Then \mathrm{D}(f) \geq \mathrm{d}\mathrm{e}\mathrm{g}(f).

Proof. We will show that each decision tree D has a corresponding polynomial pD which computes
the same function as D and that has degree at most the height of D. We proceed by induction over
the height of D. If the height of D is 0, meaning D is a constant, we can represent it by a constant
polynomial (either the constant 0 or the constant 1). These polynomials have degree 0, completing
the base case.

Suppose all decision trees of height at most k can be represented by polynomials in this fashion,
and let D be a decision tree of height k + 1. Then D starts by querying some position xi of the
input x, and if xi = 0 it goes to the root of subtree D0, while if xi = 1 it goes to the root of subtree
D1. These subtrees have height at most k, so they are represented by polynomials pD0 and pD1

of degree at most k. We claim that p = (1  - xi)pD0 + xipD1 is a polynomial computing the same
function as D. To see this, note that if xi = 0, p outputs the same as pD0 , which is the same as the
output of D0; on the other hand, if x1 = 1, p outputs the same as pD1 , which is the same as the
output of D1. In both cases, p(x) = D(x). Moreover, the degree of p is at most k + 1, since pD0

and pD1 have degree at most k. This completes the induction argument.
Finally, recall that \mathrm{D}(f) is the minimum height of a decision tree computing f . This minimum

decision tree converts into a polynomial computing f , and this polynomial has degree at most \mathrm{D}(f),
so \mathrm{D}(f) \geq \mathrm{d}\mathrm{e}\mathrm{g}(f).

While the exact degree of a Boolean function lower bounds \mathrm{D}(f), to lower bound \mathrm{R}(f) we will
need the approximate degree.

Theorem 5.9. Let f be a (possibly partial) Boolean function. Then \mathrm{R}\epsilon (f) \geq \widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (f).
Proof. Recall that a randomized query algorithm is a probability distribution over decision trees.
Let R be the one that minimizes \mathrm{R}\epsilon (f), so that each decision tree in the support of R has height at
most \mathrm{R}\epsilon (f). Let p =

\sum 
D \mathrm{P}\mathrm{r}[D] \cdot pD, where the sum ranges over decision trees D in the support of

R, \mathrm{P}\mathrm{r}[D] denotes the probability of D in R, and pD is the polynomial computing the same function
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as the decision tree D. Then pD has degree at most \mathrm{R}\epsilon (f) for all D, and p is a linear combination
of such polynomials, so it has degree at most \mathrm{R}\epsilon (f).

Moreover, for each x \in \mathrm{D}\mathrm{o}\mathrm{m}(f), we have \mathrm{P}\mathrm{r}[R(x) \not = f(x)] \leq \epsilon , which means \mathrm{P}\mathrm{r}D
\sum 

R[pD(x) \not =
f(x)] \leq \epsilon . It is not hard to see that \mathrm{P}\mathrm{r}D

\sum 
R[pD(x) \not = f(x)] = | p(x)  - f(x)| when f(x) is \{ 0, 1\} -

valued, so we have | p(x) - f(x)| \leq \epsilon for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f). Finally, it is clear that p(x) \in [0, 1] for all
x \in \{ 0, 1\} n, because each pD(x) is in \{ 0, 1\} and p(x) is a convex combination of pD(x) terms.

As it turns out, the approximate degree also lower bounds quantum query complexity, not just
randomized query complexity.

Theorem 5.10. Let f be a (possibly partial) Boolean function. Then \mathrm{Q}\epsilon (f) \geq \widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (f)/2.
Proof. Let Q be a T -query quantum algorithm computing f to error \epsilon , where T = \mathrm{Q}\epsilon (f). Then
Q is a sequence of unitaries U0, U1, . . . , UT , and the output of Q(x) is the result of querying the
output register of

UTU
xUT - 1U

x . . . UxU1U
xU0 | \psi \rangle 

for some initial state | \psi \rangle . Using our usual notation, let | \psi x
t \rangle be the state of the algorithm right

before query number t, so | \psi x
t \rangle = Ut - 1U

xUt - 2U
x . . . UxU0 | \psi \rangle .

Consider the amplitudes of | \psi x
t \rangle , that is, the entries of the vector. When t = 1, no queries have

been made yet, and so these entries have no dependence on x; they are constants relative to x.
When a query is made, that is, when Ux applied, we map | i\rangle I | b\rangle B \rightarrow | i\rangle I | b\oplus xi\rangle B, which is the
same as mapping

| i\rangle I | b\rangle B \rightarrow xi | i\rangle I | 1 - b\rangle B + (1 - xi) | i\rangle I | b\rangle B .

If the amplitudes of | \psi x
t \rangle where \{ \alpha \} , the amplitudes of Ux | \psi x

t \rangle are combinations of xi\alpha and (1 - xi)\alpha 
for different values of i and \alpha . That is, applying Ux multiplies some of the amplitudes by xi or
1  - xi, and potentially recombines the resulting complex numbers in a linear combination. The
unitary Ut applies a linear map to the amplitudes that does not depend on x. Hence, going from
| \psi x

t \rangle to | \psi x
t+1\rangle , the amplitudes got multiplied by xi or (1  - xi), and then rearranged in a linear

combination.
Since the amplitudes of | \psi x

1 \rangle are constants, we conclude that the amplitudes of | \psi x
t \rangle are all

polynomials over the variables x1, x2, . . . , xn with degree at most t  - 1. The final state, | \psi x
T+1\rangle ,

has amplitudes that are polynomials of degree at most T . Although they have potentially complex
coefficients, these can be separated into a real polynomial coefficient plus i times another real
polynomial coefficient. When the output register is measured, these real polynomials get squared
and added together to form the acceptance probability. Squaring polynomials can double their
degree, so the final acceptance probability of Q(x) is a polynomial p in the variables x1, x2, . . . , xn
of degree at most 2T .

Since p computes an acceptance probability, we have p(x) \in [0, 1] for all x \in \{ 0, 1\} n, even
when x is not in \mathrm{D}\mathrm{o}\mathrm{m}(f) (since in all cases the quantum algorithm does something and has some
probability of accepting). Moreover, since Q computes f to error \epsilon , we have | p(x) - f(x)| \leq \epsilon , which
means that p approximates f to error \epsilon . This shows that \widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (f) \leq 2T , as desired.

5.3 Symmetrization

Now that we’ve seen that \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f) lower bounds \mathrm{Q}(f), it remains to get a handle on determining the
approximate degree of Boolean functions. This is often tricky to do, but it becomes much easier if
the function is symmetric, due to a trick called symmetrization.
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Theorem 5.11. Let p be an n-variate multilinear polynomial. Then there is a single-variate poly-
nomial q such that for all t \in \{ 0, 1, 2, . . . , n\} , q(t) evaluates to the average of p(x) over all strings
x \in \{ 0, 1\} n of Hamming weight t. Further, the degree of q is at most the degree of p.

Proof. The trick is to “symmetrize” the polynomial p by averaging over all permutations of the
variables. That is, for each permutation \sigma \in Sn, let p\sigma be the polynomial p\sigma (x) = p(x\sigma ), where x\sigma 
is the string (x\sigma )i = x\sigma (i). That is, p\sigma is the polynomial we get if we permute the input string x
according to \sigma before we applying p to the result. Then let

psym(x) =
1

n!

\sum 
\sigma \in Sn

p\sigma (x).

Note that each p\sigma has the same degree as p, so the degree of psym is at most the degree of p (it
might be lower due to cancellations). Moreover, the degree psym is symmetric in its variables; that
is, psym(x\sigma ) = psym(x) for all \sigma .

It turns out that symmetric multilinear polynomials can always be written as a linear combi-
nation of the elementary symmetric polynomials. The first elementary symmetric polynomial is
J0 = 1, the second is J1 =

\sum 
i xi, the third is J2 =

\sum 
i<j xixj , and so on. Note that the degree of

Jt is t. Since psym is symmetric, we can write

psym =

\mathrm{d}\mathrm{e}\mathrm{g}(p)\sum 
t=0

ctJt

for some real coefficients ct. Next, note that J2
1 = J2 +

\sum 
i x

2
i = J2 + J1, since x2i = xi. Hence

J2 = J2
1  - J1. We similarly have J3 = J2J1  - 2J2 = J3

1  - 3J2
1 + 2J1. More generally, each Jt can

be written as a degree-t polynomial in J1. Hence psym can be written as q(J1) with q being the
polynomial q(t) =

\sum \mathrm{d}\mathrm{e}\mathrm{g}(p)
j=0 djt

j for some real coefficients dj . We conclude that q(t) computes the
average of p(x) over strings of Hamming weight t, as desired.

This theorem is primarily useful when analyzing the approximate degree of symmetric functions.
For example, let’s use it to lower bound the approximate degree of Parity.

Lemma 5.12. \widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (Parity) = n for all \epsilon < 1/2.

Proof. Suppose p approximates Parity, and consider its outputs in \{ +1, - 1\} form. Let q be
the single-variate symmetrization of p, so that q(t) is the average of p(x) over x \in \{ 0, 1\} n with
Hamming weight t. Note that for x with Hamming weight t, p(x) must approximate ( - 1)t, so
p(x)( - 1)t \in [1  - 2\epsilon , 1]. Hence the average of p(x) over x of Hamming weight t still has this
property, so q(t)( - 1)t \geq [1 - 2\epsilon ] for all t = 0, 1, . . . n. In particular, q(t) must be positive when t is
even and negative when t is odd. This means that in the range [0, n], q(t) must cross the x-axis at
least n times. It follows that q(t) must have degree at least n, and since its degree is at most that
of p, p must also have degree at least n. Hence \widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (Parity) = n.

Note that this lemma implies that \mathrm{Q}\epsilon (Parity) \geq n/2 for all \epsilon < 1/2; that is, a quantum
algorithm cannot even achieve a small bias towards computing the parity of a string in fewer than
n/2 queries (it turns out that n/2 can be achieved by an exact quantum algorithm when n is even,
so this is tight).

Next, we consider the approximate degree of PromiseOR. Recall that PromiseOR is the
function which outputs 0 when the Hamming weight of the string is 0, outputs 1 when the Ham-
ming weight of the string is 1, and is undefined elsewhere. A polynomial p which approximates
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PromiseOR, and which is bounded, turns into a single-variate polynomial q(t) with q(0) \leq \epsilon ,
q(1) \geq 1  - \epsilon , and q(t) \in [0, 1] for all t = 0, 1, 2, . . . , n. This polynomial q moves quickly between
q(0) and q(1) (going up by 1 - 2\epsilon in the y-axis for a shift of 1 in x-axis, meaning its derivative was
at least 1 - 2\epsilon at some point). However, this polynomial is also stuck inside [0, 1] on all the points
\{ 0, 1, 2, . . . , n\} .

The following property of single-variate real polynomials will come in handy.

Theorem 5.13 (Markov Brothers’ inequality). Let p : \BbbR \rightarrow \BbbR be a real polynomial of degree d. If
p(x) \in [b, b\prime ] for all x \in [a, a\prime ], then | p\prime (x)| \leq b\prime  - b

a\prime  - ad
2 for all x \in [a, a\prime ].

This theorem says that if a polynomial is stuck in a rectangular box, which is a\prime  - a and b\prime  - b
high, then it cannot have a high derivative unless it has high degree. In particular, if the width of
the box is n and the height is 1, then the derivative of the polynomial in the box must be at most
d2/n, which means that if the polynomial moves sharply—getting derivative \Omega (1)—then it must
have degree at least \Omega (

\surd 
n).

Markov brothers’ inequality was proven in the 1800s, though its proof is too technical to include
here. Instead, we will see how it can be used to imply a lower bound on the approximate degree
of PromiseOR. First, we will need the following corrolary, first shown by [EZ64; RC66]. This
corollary gives a lower bound on the degree of a polynomial even if it is only known to stay in the
box on integer points, rather than on all points.

Corollary 5.14. Let p : \BbbR \rightarrow \BbbR be a real polynomial. Let n \in \BbbN be a positive integer, and suppose
p(x) \in [0, 1] for all x \in \{ 0, 1, 2, . . . n\} . Then \mathrm{d}\mathrm{e}\mathrm{g}(p) \geq 

\sqrt{} 
nc/(1 + c), where c is the maximum value

of | p\prime (x)| for x \in [0, n].

Proof. Let c be the maximum value of | p\prime (x)| for x \in [0, n]. Note that if p(x) is ever outside of [0, 1]
by more than \delta for some x \in [0, n], then x has distance at most 1/2 to some i \in \{ 0, 1, 2, . . . , n\} ,
which means that p changed by at least \delta from p(i) to p(x) (with an x-axis change of at most 1/2).
By the mean value theorem, we have | p\prime (y)| \geq 2\delta for some y between x and i, so y \in [0, n]. This
means that c \geq 2\delta , or \delta \leq c/2. In other words, we must have p(x) \in [ - c/2, 1+c/2] for all x \in [0, n].

We now have bounds on p(x), so we use Markov brothers’ inequality. This tells us that | p\prime (x)| \leq 
(1+c) \mathrm{d}\mathrm{e}\mathrm{g}(p)2/n for x \in [0, n], so c \leq (1+c) \mathrm{d}\mathrm{e}\mathrm{g}(p)2/n. Rearranging, we get \mathrm{d}\mathrm{e}\mathrm{g}(p) \geq 

\sqrt{} 
nc/(1 + c),

as desired.

With this tool in hand, we can prove a lower bound on \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(PromiseOR).

Theorem 5.15. For all \epsilon \in [0, 1/2) and all n \in \BbbN , we have

\widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (PromiseORn) \geq 

\sqrt{} 
1 - 2\epsilon 

2(1 - \epsilon )
n.

In particular, \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(PromiseORn) \geq 
\surd 
n/2.

Proof. Let p be a bounded polynomial approximating PromiseOR to error \epsilon , and let q be the
single-variate symmetrization polynomial with degree at most that of p. Then q(t) \in [0, 1] for
t \in \{ 0, 1, 2, . . . , n\} . Let d be the degree of q, so d \leq \widetilde \mathrm{d}\mathrm{e}\mathrm{g}\epsilon (PromiseOR). By the above corollary,
we have d \geq 

\sqrt{} 
nc/(1 + c), where c is the maximum value of q\prime (t) for t \in [0, n]. Note that q(0) \leq \epsilon 

and q(1) \geq 1  - \epsilon , so by the mean value theorem, q\prime (t) \geq 1  - 2\epsilon for some t \in [0, 1], from which the
desired result follows.
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Recall from the first week that if a measureM satisfies some simple properties, then for all f we
have M(f) \geq M(PromiseOR\mathrm{b}\mathrm{s}(f)). Because of this, we get the following corollary, first observed
by Beals, Buhrman, Cleve, Mosca, and de Wolf [BBC+01].

Corollary 5.16. Let f be a (possibly partial) Boolean function. Then \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f) \geq \sqrt{} \mathrm{b}\mathrm{s}(f)/2.

We also have a corollary for quantum algorithms, which has a better dependence on \epsilon when \epsilon is
close to 1/2.

Corollary 5.17. Let f be a (possibly partial) Boolean function. Then

\mathrm{Q}\epsilon (f) \geq 

\sqrt{} 
1 - 2\epsilon 

8(1 - \epsilon )
\mathrm{b}\mathrm{s}(f) \geq 

\sqrt{} 
(1 - 2\epsilon ) \mathrm{b}\mathrm{s}(f)/8.

Next, let’s lower bound the approximate degree of majority. We can already prove \mathrm{Q}(MAJn) =

\Omega (n) using the positive adversary method, but this doesn’t directly imply that\widetilde \mathrm{d}\mathrm{e}\mathrm{g}(MAJn) = \Omega (n),
and the latter can be considered as a question of independent interest. We have \mathrm{b}\mathrm{s}(MAJn) =

(n + 1)/2 (where we assume n is odd), so we know that \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(MAJn) = \Omega (
\surd 
n). Can we improve

this?
If we start with a polynomial p approximating MAJn and symmetrize it, we get a polynomial q in

one variable with q(t) \in [0, \epsilon ] for t \in \{ 0, 1, . . . , (n - 1)/2\} and q(t) \in [1 - \epsilon , 1] for t \in \{ (n+1)/2, . . . , n\} .
Using Corollary 5.14 on this polynomial will only give an \Omega (

\surd 
n) lower bound on the degree of q.

To improve this, we will use yet another old theorem from approximation theory.

Theorem 5.18. Let p : \BbbR \rightarrow \BbbR be a real polynomial of degree d. If p(x) \in [b, b\prime ] for all x \in [a, a\prime ],
then for all x \in [a, a\prime ], we have

| p\prime (x)| \leq b\prime  - b

2
\sqrt{} 
(x - a)(a\prime  - x)

d.

As before, we need a version of this theorem in which the polynomial is only known to be
bounded on integer points. This was shown by Paturi [Pat92] (the proof is quite tricky).

Theorem 5.19 (Paturi). Let p : \BbbR \rightarrow \BbbR be a real polynomial. Let n \in \BbbN be a positive integer, and
suppose p(x) \in [0, 1] for all x \in \{ 0, 1, 2, . . . , n\} . Then for all x \in [0, n], we have

\mathrm{d}\mathrm{e}\mathrm{g}(p) \geq | p\prime (x)| 
C(1 + | p\prime (x)| )

\sqrt{} 
x(n - x)

where C is some universal constant.

Note that Paturi’s theorem improves on Corollary 5.14 when x is near n/2; if | p\prime (x)| is at least
a constant for such x, then Paturi gives \mathrm{d}\mathrm{e}\mathrm{g}(p) = \Omega (n) instead of \Omega (

\surd 
n). In other words, we knew

from before that if a polynomial stays bounded in a box of width n and height 1, and if at some
point it has constant derivative, then it must have degree at least \Omega (

\surd 
n); we now know that unless

the constant derivative only happens near the left/right edges of the box, the polynomial must in
fact have degree at least \Omega (n). Further, this holds even when the polynomial only stays in the box
on integer points.

Using Paturi’s theorem, we can prove an approximate degree lower bound for majority.

Theorem 5.20. \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(MAJn) = \Omega (n).

Proof. Let p be a polynomial approximating MAJn to error \epsilon , and let q be the symmetrization
of p. Then q(t) \in [0, 1] for all t \in \{ 0, 1, 2, . . . , n\} . Now, we know that q((n  - 1)/2) \leq \epsilon and
q((n+1)/2) \geq 1 - \epsilon , so by the mean value theorem, some point t in between them has q\prime (t) \geq 1 - 2\epsilon .
Paturi’s theorem then gives \mathrm{d}\mathrm{e}\mathrm{g}(q) = \Omega ((1 - 2\epsilon )n), which is \Omega (n) when \epsilon = 1/3.
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5.4 Larger alphabets

The polynomial degree measures we’ve defined so far are specific to functions that have Boolean
inputs and outputs. We can generalize this to a notion of polynomials that can handle larger input
and output alphabets.

To handle larger output alphabets, we will use a collection of polynomials \{ pc\} for each symbol
c in the output alphabet. The polynomial pc(x) will represent the probability that a quantum
algorithm outputs the symbol c when run on x. Such a collection will be required to have

\sum 
c pc(x) =

1 for all x \in \{ 0, 1\} n. It will also be required to have pc(x) \geq 1 - \epsilon if f(x) = c. Its degree will be the
maximum degree of pc for any c.

More interesting is the question of how to handle larger input alphabets. It turns out that the
natural way to do so is as follows. Instead of defining a polynomial in n variables x1, x2, . . . , xn
where x \in \{ 0, 1\} n is the input string, we will instead define a polynomial in nm variables, where m
is the size of the input alphabet. The variable yij for i \in [n] and j \in [m] will be in indicator variable
for whether xi = j, where x \in [m]n is the input. That is, p(y) will be a polynomial in nm variables,
and applying p to x works by evaluating p(yx), where yx is the string with (yx)ij = 1 if xi = j and
(yx)ij = 0 otherwise. As before, we require that | p(yx) - f(x)| \leq \epsilon for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) (assuming f
has Boolean outputs; see above if not). For boundedness, we will require that p(yx) \in [0, 1] for all
x \in [m]n, but not necessarily for all y \in \{ 0, 1\} nm.

Actually, when dealing with large input alphabets, it is often convenient to consider an extra
symbol \bot which is promised never to occur. When \bot does occur in an input, a quantum algorithm
accepting that input may output anything. We will replace the above boundedness requirement
with the stronger requirement that p(yx) \in [0, 1] for all x \in ([m] \cup \{ \bot \} )n, where (yx)ij = 0 for all j
when xi =\bot .

The above generalizations allow us to write \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f) for functions f with non-Boolean inputs
and/or outputs. We will primarily care about the case of non-Boolean inputs, so we will often
assume f has Boolean outputs for simplicity. It turns out that \mathrm{Q}(f) \geq \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f)/2 still holds for these
generalized notions of approximate degree, so we can still use polynomials to lower bound quantum
algorithms in this setting.

One thing that will come in handy is a notion of symmetrization for polynomials with non-
Boolean input alphabets.

Theorem 5.21. Let p be a polynomial in the variables yij for i \in [n], j \in [m]. Then there is a
polynomial q(z) in m variables such that \mathrm{d}\mathrm{e}\mathrm{g}(q) \leq \mathrm{d}\mathrm{e}\mathrm{g}(p) and for all z \in [n]m with

\sum m
j=1 zj \leq n,

the value of q(z) equals the average of p(yx) over all strings x \in ([m] \cup \{ \bot \} )n such that zj is the
number of times the symbol j occurs in x.

This theorem statement is a little confusing. Think of it as follows: instead of having a single
new variable t corresponding to the Hamming weight, and have a new polynomial q(t) act only in t,
we now have m different “Hamming weights”, each for a different alphabet symbol. These Hamming
weights are z1, z2, . . . , zm, and must sum to at most n, since there are n total symbols in a string of
length n (they need not sum to exactly n due to the possibility of the symbol \bot showing up). The
new polynomial q will act in the m variables z1, z2, . . . , zm, and will evaluate to the average of p(yx)
over all strings x that are of type z (i.e. all strings x for which z correctly specifies the number of
times each alphabet symbol in [m] occurs). It turns out that q is still a low-degree polynomial in
the variables zj (with degree at most that of p), though it does not need to be multilinear.

Proof. Start with a polynomial p, and consider any monomial m = yi1j1yi2j2 . . . yidjd of p. We will
convert the monomial m into a polynomial qm in the variables z of degree at most d. We will make
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sure qm has the property that the average, over strings in x \in [m]n matching the alphabet multi-
plicities specified by z, of the value m(yx) is precisely qm(z). Then since p is a linear combination
of its monomials, we can simply define q to be the corresponding linear combination of qm. Hence
we need only worry about the single monomial m.

Note that we can assume all i\ell for \ell \leq d are distinct. This is because y2ij = yij , and yijyik = 0
whenever j \not = k, at least when the values of y come from a real underlying string x \in [m]n (this is
because yij = 0 unless xi = j, and we cannot have both xi = j and xi = k if j \not = k).

For each z \in [n]m, let Az be the set of strings in [m]n with multiplicities matching z (i.e. Az is
the set of all x \in ([m] \cup \{ \bot \} )n such that each j \in [m] occurs exactly zj times in x). Let ez be the
average of m(yx) over x \in Az. Note that we can sample randomly from Az by fixing a single x \in Az,
sampling a random permutation \sigma \in Sn, and then taking x\sigma (the string x shuffled according to \sigma ).
Hence

ez = \BbbE 
\sigma \sim Sn

[m(yx\sigma )] = \mathrm{P}\mathrm{r}
\sigma \sim Sn

[x\sigma (i\ell ) = j\ell \forall \ell = 1, 2, . . . , d] =
d\prod 

\ell =1

\mathrm{P}\mathrm{r}[x\sigma (i\ell ) = j\ell | x\sigma (ik) = jk \forall k < \ell ]

where x is any fixed string in Az.
Let s\ell be the number of different k \in \{ 1, 2, . . . , \ell  - 1\} such that jk = j\ell . Then we have

\mathrm{P}\mathrm{r}[x\sigma (i\ell ) = j\ell | x\sigma (ik) = jk \forall k < \ell ] =
zj\ell  - s\ell 
n - \ell + 1

,

because there are originally zj\ell indices i with xi = j\ell , s\ell of them have already been used, and the
denominator is n - \ell + 1 as that is the number of indices still unassigned. Hence we get

ez =
d\prod 

\ell =1

zj\ell  - s\ell 
n - \ell + 1

.

Note that s\ell depends on the monomial m (because it depends on j1, j2, . . . , jd), but not on z or x
or anything else. Hence it is a constant with respect to z. It follows that taking qm(z) = ez makes
qm be a degree-d polynomial in the variables z with the desired properties.

This symmetrization, first provided by Ambainis [Amb05], comes in very useful when analyzing
the approximate degree of symmetric functions with large input alphabets. However, as you can
see, this symmetrization still leaves us with a polynomial in m variables rather than in 1 variable,
so usually additional tricks will be needed to get a handle on the degree.

As an example of such a trick, let us prove a lower bound for the collision problem.

Theorem 5.22. Let f be the Collision problem on n bits; that is, pick n \in \BbbN to be even, and
define f on inputs in [n]n such that f(x) = 0 if x is a permutation (i.e. each alphabet symbol in [n]
occurs exactly once in x), and f(x) = 1 if x is 2-to-1 (i.e. there are n/2 alphabet symbols in [n] that
each occur exactly twice in x). All other strings in [n]n are not in the domain of f .

Then \widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f) = \Omega (n1/3), and hence \mathrm{Q}(f) = \Omega (n1/3).

The proof of the collision lower bound was first given by Aaronson and Shi [AS04], though we
will go through a simplified version by Kutin [Kut05].

Proof. Let p be a polynomial in variables \{ yij\} which computes f to error \epsilon . Let q be the sym-
metrized polynomial in variables \{ zj\} . Then we have \mathrm{d}\mathrm{e}\mathrm{g}(q) \leq \mathrm{d}\mathrm{e}\mathrm{g}(p), q(z) \in [0, 1] for all z \in [n]n

with
\sum 

j zj \leq n, q(1n) \leq \epsilon , and for any z that has half its coordinates equal to 0 and the other half
equal to 2, we have q(z) \geq 1 - \epsilon .
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We wish to lower bound the degree of such a polynomial q. To do so, we introduce a further
symmetrization. We say a string z \in [n]n has type (A, a,B, b) if there is a set of A/a coordinates
i \in [n] on which zi = a, as well as a disjoint set of B/b coordinates j \in [n] on which zj = b, and
also that z\ell = 0 for \ell outside of those sets. Note that only certain tuples (A, a,B, b) have strings z
associated with them; we call a tuple valid if A+B \leq n and a,A/a, b, B/b are all positive integers.
Note that the strings z corresponding to a valid tuple (A, a,B, b) represent strings x \in [n]n that are
a-to-1 on some subset of coordinates (of size A), are b-to-1 on a disjoint subset of coordinates (of
size B), and are \bot on the rest of the coordinates.

Next, define the function P (A, a,B, b) for valid tuples (A, a,B, b) to be the average of q(z)
over strings z of type matching the tuple. We claim this function is a polynomial in the variables
A, a,B, b, and that \mathrm{d}\mathrm{e}\mathrm{g}(P ) \leq \mathrm{d}\mathrm{e}\mathrm{g}(q). To see this, it suffices to take one monomial m = zj1zj2 . . . zjd
of q, and show that the average of m(z) over strings z of type (A, a,B, b) is a polynomial in A, a,B, b
of degree at most d; then since q is a linear combination of such monomials, we can get P by taking
the matching linear combination of the corresponding polynomials.

Let S \subseteq [n] be the unique indices in the variables of m, so | S| \leq d. If z is such that zj = 0 for
some j \in S, then m(z) = 0. Otherwise, let S = SA \sqcup SB be a partition of S into two disjoint sets
with | SA| \leq A/a and | SB| \leq B/b. The probability that a randomly chosen z of type (A, a,B, b)
will have zj = a for a \in SA and zj = b for b \in SB is

A/a

n
\cdot A/a - 1

n - 1
. . .

A/a - | SA| + 1

n - | SA| + 1
\cdot B/b

n - | SA| 
\cdot B/b - 1

n - | SA|  - 1
. . .

B/b - | SB| + 1

n - | SA|  - | SB| + 1

and the value of m(z) for such z is a\alpha b\beta , where \alpha is the total degree in m of the variables in SA
and \beta is the total degree in m of the variables in SB; in particular, \alpha \geq | SA| and \beta \geq | SB| . The
contribution of the z that have a in SA and b in SB towards the expectation \BbbE [m(z)] over z of
type (A, a,B, b) is the product of a\alpha b\beta and the above probability; since \alpha \geq | SA| and \beta \geq | SB| ,
the number of ratios A/a in this product will be less than \alpha , so they cancel with the a\alpha term, and
similarly for B/b. We conclude that the contribution of the (SA, SB) partition towards \BbbE (z) is a
polynomial in A, b,B, b, so long as we treat | SA| and | SB| as constants. Moreover, the degree of
this polynomial will be exactly \alpha + \beta = d. Finally, since \BbbE [m(z)] is a sum of such contributions, it
is also a polynomial in A, a,B, b of degree at most d, which means P (A, a,B, b) is a polynomial of
degree at most \mathrm{d}\mathrm{e}\mathrm{g}(q), as desired.

We have now symmetrized down to a polynomial of four variables. We know that P (A, 1, B, 1) \leq 
\epsilon whenever A+B = n, that P (A, 2, B, 2) \geq 1 - \epsilon whenever A+B = n, and that P (A, a,B, b) \in [0, 1]
whenever a| A, b| B, A+B \leq n, and a, b, A,B \in \BbbN \geq 1.

In particular, note that P (n/2, 1, n/2, 1) \leq \epsilon , P (n/2, 2, n/2, 2) \geq 1  - \epsilon , and P (n/2, 1, n/2, 2) \in 
[0, 1]. We split into two cases: either P (n/2, 1, n/2, 2) \leq 1/2, or not.

In the former case, P behaves differently on P (n/2, 1, n/2, 2) and P (n/2, 2, n/2, 2). In this case,
we consider P (n/2, x, n/2, 2) as a function of x, and look at how long this function stays reasonably
bounded near [0, 1] (we want to use the fact that if a polynomial moves quickly from 1 to 2 but then
stays bounded for a long time, it must have high degree). Specifically, let r be the smallest integer
such that P (n/2, r, n/2, 2) /\in [ - 1, 2]. Then by Corollary 5.14, we have \mathrm{d}\mathrm{e}\mathrm{g}(P ) = \Omega (

\surd 
r) by looking

at the single-variate polynomial P (n/2, x, n/2, 2) on the range x \in [1, r  - 1], where it is bounded
on integer points. This gives a good lower bound on \mathrm{d}\mathrm{e}\mathrm{g}(P ) if r is large.

What if r is small? In this case, we look at the polynomial P (2rx, r, n  - 2rx, 2). Since n
is even, we have n  - 2rx be even whenever x is an integer, so the tuple (2rx, r, n  - 2rx, 2) is
valid for all positive integers x < n/2r; hence P (2rx, r, n  - 2rx, 2) \in [0, 1] for all positive integers
x \in \{ 1, 2, . . . , \lceil n/2r\rceil  - 1\} . However, we know that when x = n/4r, the above function lies outside



the range [ - 1, 2], which means it goes out of [0, 1] by at least 1. This means it must have derivative at
least 1 at a point near n/4r. Paturi’s theorem therefore tells us that \mathrm{d}\mathrm{e}\mathrm{g}(P ) = \Omega (n/r). Combining
with the previous bound on \mathrm{d}\mathrm{e}\mathrm{g}(P ), we get \mathrm{d}\mathrm{e}\mathrm{g}(P ) = \Omega (

\surd 
r+ n/r). This is minimized at r = n2/3,

so regardless of the value of r we must have \mathrm{d}\mathrm{e}\mathrm{g}(P ) = \Omega (n1/3).
The case where P (n/2, 1, n/2, 2) > 1/2 is similar, except that we define r as the smallest

integer such that P (n/2, 1, n/2, r) /\in [ - 1, 2], and then examine the degree of P (n/2, 1, n/2, x) and
of P (n - rx, 1, rx, r). This gives the same \Omega (n1/3) lower bound.

Note that the collision lower bound cannot be shown using the positive adversary method, due
to the property testing barrier. There is a known proof of the collision lower bound using the
negative-weight adversary method [BR13].

Finally, let’s consider the element distinctness problem ED. This function takes inputs strings
in [m]n (with m \geq n), outputs 0 if the characters of the input string are all distinct, and outputs 1
otherwise. The certificate complexity barrier says that the positive-weight adversary cannot prove
a lower bound better than \Omega (

\surd 
n). We will now show that \mathrm{Q}(EDn) = \Omega (n2/3), at least when m is

large enough.

Theorem 5.23. \mathrm{Q}(EDn) = \Omega (n2/3).

Proof. Suppose there was a fast quantum algorithm for computing EDn. Consider the following
algorithm for computing collision on strings of lengthm = n2/100: first, sample n random positions;
second, run the algorithm for element distinction on those n bits. Note that if the input to collision
contains m/2 alphabet symbols appearing twice each, then with high probability (probability at
least 0.9) the n random positions will not all be distinct, by the same calculation as the birthday
paradox. Hence, with probability bounded away from 1/2, the ED algorithm applied to those
n random bits will give the correct output to the collision problem on n2/100 bits. Since the
latter requires \Omega ((n2)1/3) quantum queries, it must be the case that ED requires \Omega (n2/3) quantum
queries.

The above reduction from collision to element distinctness also works for polynomials: we have\widetilde \mathrm{d}\mathrm{e}\mathrm{g}(EDn) = \Omega (n2/3). The trick is similar, except that instead of taking a random subset of n
elements out of n2/100, we take an average over all such subsets (i.e. we construct a polynomial pS
which checks whether the elements in positions indexed by S \subseteq [m] are distinct, and then average
pS over all sets S of size n).

Finally, while the above arguments only showed the element distinctness lower bound when the
alphabet sizem is at least n2/100, it turns out that the lower bound still holds whenm = n. Indeed,
Ambainis [Amb05] showed the following general theorem.

Theorem 5.24. Let f be a (possibly partial) function with \mathrm{D}\mathrm{o}\mathrm{m}(f) \subseteq [m]n and with Boolean
outputs, where m \geq n. Suppose that f is symmetric under both permuting the characters of the
input string (an Sn symmetry) and also under permuting the names of the alphabet symbols (an
Sm symmetry). Let f \prime be the restriction of f to the promise P = \{ x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) : x \in [n]n\} . Then\widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f) =\widetilde \mathrm{d}\mathrm{e}\mathrm{g}(f \prime ).

Since element distinctness is symmetric under both permuting the input string and also renaming
the alphabet, it follows that the approximate degree of ED with alphabet of size m = n2/100 is the
same as the approximate degree of ED with alphabet of size n, so both are at least \Omega (n2/3). Finally,
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we remark that this is tight, as there is a quantum algorithm using O(n2/3) queries which computes
element distinctness (and hence also a quantum algorithm using O(n1/3) queries for collision).
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