Week 4

The Negative-weight Adversary

4.1 Limitations of the positive adversary method

The adversary method we saw last week is arguably the most commonly used lower bound technique
for quantum query complexity. However, despite being relatively easy to use, there are specific
scenarios in which it is known to fail. Two such barriers are the property testing barrier, and the
certificate barrier.

4.1.1 Property testing barrier

Suppose a function f is a promise problem with the property that all 0-inputs are far from all
l-inputs. More specifically, suppose that f acts on n bits, and every pair z,y € Dom(f) with
f(z) # f(y) satisfies |z — y| > d, where |z — y| denotes the Hamming distance between x and y (the
number of bits where they differ).

Using this property of f, we can immediately come up with a feasible solution to the primal
version of the positive adversary bound. Recall that this only requires coming up with a set of
weights wg; > 0 such that }°, /Wy Wy; > 1 for all z and y with f(z) # f(y). Since for our
function f the distance between = and y with f(x) # f(y) is always at least d, we can set w,; = 1/d
for all z and 4, and this will clearly be feasible. The objective value of this feasible solution is the
maximum over z € Dom(f) of }_;c(,) We,, Which is n/d. Hence we immediately conclude that
Adv(f) < n/d.

Theorem 4.1. Let f be a partial function on n bits such that for x,y,€ Dom(f), we have f(x) #
fy) = |z —y| > d. Then Adv(f) < n/d.

In particular, if d = Q(n), the property testing barrier says that Adv(f) = O(1). That is,
whenever all the O-inputs are very far from all the l-inputs (so that they differ on a constant
fraction of the indices), the adversary method cannot prove any lower bound better than constant.

However, there exist functions with large gaps between 0- and 1-inputs that do not have fast
quantum algorithms. In fact, any “property testing” problem is of this form. A property testing
problem is a special type of query problem in which we care about testing whether the input is in
some set S C {0,1}". Generally speaking, the setting we care about in property testing is that the
input z will either be from S, or else will be very far from being in S (it will differ on a constant
fraction of the indices from every string in S). The goal is to distinguish between these two extreme
cases (being in S or being very far from everything in S). What we have just seen is that the
positive adversary method can never give super-constant lower bounds on the query complexity of
property testing problems.
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Other problems of interest also have their 0- and 1-inputs be very far from each other. A famous
example is the collision problem. In this problem, the input string is a subset of [m]"™, where m > n
is the size of the alphabet. The promise is that the input string will either have n distinct alphabet
symbols, or else will have n/2 distinct alphabet symbols occurring twice each (we assume n is a
multiple of 2). The task is to distinguish between these (for example, output 0 in the first case and
1 in the second case). It is not hard to see that every O-input and every 1-input have distance at
least n/2 (they disagree on at least n/2 indices). This means the positive adversary method once
again cannot prove a lower bound better than constant.

4.1.2 The certificate barrier

While the property testing barrier says that the adversary method won’t work well on certain types
of partial functions, the certificate barrier says that it also does not work well on certain types of
total functions. In particular, the adversary bound is always at most the certificate complexity of
I

To see this, we again construct a feasible solution to the primal formulation of the positive
adversary bound. For each input = of a total Boolean function f, pick a certificate ¢, consistent
with x of size at most C(f,z). Then set w,; = 1 if ¢ is a non-* index of the certificate c,, and
set wy; = 0 otherwise. Now, recall that each O-certificate and each 1-certificate of a total Boolean
function must contradict each other; that is, there must be some index ¢ on which their disagree
(and both are not * on this bit). Therefore, if = is a O-input and y is a l-input of f, then their
certificates ¢, and ¢, overlap (and disagree) on some bit 7, which means z; # y; and w,; = wy,i = 1.
It follows that Zi:m#yi VWz,iWy; > 1, which means this weight scheme is feasible. Moreover, the
objective value of it is the maximum over x of Zie[n] Wy, = |cz| = C(f, ), which is C(f).

We can actually improve this upper bound, which will show that the adversary bound is even
weaker. First, consider dividing all the weights w,; for x € f~1(0) by some positive constant A
and multiplying the weights w,; for y € f~!(1) by A. This does not change any of the products
Wy Wy, and hence does not change the feasibility of the solution. However, the objective value
becomes the maximum of Cy(f)/A and C;(f)- A, where recall that Cy(f) is the maximum of C(f, x)
over O-inputs x and C;(f) is the maximum over 1-inputs. By picking A = 1/Co(f)/ C1(f), we get
that Adv(f) < /Co(f)Ci(f).

We can strengthen this further by replacing certificate complexity with fractional certificate
complexity, which is smaller. To do so, pick an optional solution w(z,?) for fractional certificate
complexity, so that Y w(z,i) = FC(f, ) for all  and Zi:y#xi w(x,i) > 1 for all z,y such that
f(x) # f(y). We claim that w(x,4) is also feasible for the adversary bound. To show this, we need
to lower bound -, . +/w(z,i)w(y,i) when f(z) # f(y). To analyze this, we consider a new
string z defined as follows: for ¢ such that x; = y;, set z; = z;; for ¢ such that x; # y;, set z; = x; if
w(x,1) > w(y,i), and set z; = y; otherwise. Now, since f is a total function, the string z is a valid
input to f, and since f(z) # f(y), we have either f(z) # f(z) or f(2) # f(y).

Without loss of generality, assume f(z) # f(z). Then by the feasibility of the fractional cer-
tificate of x, we have Ei:z#xi w(x,i) > 1. Note that for ¢ in this sum, we have z; = y;, so
w(z,1) < w(y,i) by the definition of z. Hence /w(x,i)w(y,i) > w(x,i) for such i. This means
that Zizz#xi Vw(x,i)w(y,i) > 1. Expanding the sum so that it sums over all ¢ such that y; # x;
only makes it larger. This shows that >, . /w(z,i)w(y,i) > 1, so that w(z,i) is a feasible
weight scheme for the adversary bound. Its objective value is FC(f) = fbs(f), so Adv(f) < fbs(f).
Moreover, by doing the rebalancing trick (scaling the weights of 0-inputs by A and of 1-inputs by

1/A), we can also get Adv(f) < \/fbso(f) fbs1(f). This holds for all total Boolean functions f.
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Theorem 4.2. Let f be a total Boolean function. Then Adv(f) < +/fbso(f) fbsi(f).

We can also get a certificate barrier for partial functions, although it is not as strong of a
barrier. To do so, we will set w(z,) to be w'(z,i)> when = is a O-input, where w'(x,i) is the
weights of the optimal fractional certificate for x; however, we will set w(y,i) = 1 for all i« when
y is a l-input. Then >, . vw(@, )w(y,i) = 3., 2, W' (2,4) > 1, so this is feasible for the
adversary bound. The objective value is n when maximizing over O-inputs; for 1-inputs, we have
Sw(z,i) = S w'(z,i)? < 3w (x,i) = FC(f,z), since w'(x,i) < 1 for the optimal fractional
certificate (there is no reason to ever use weights above 1). This means the maximum cost of a
O-input is fbsy(f), and the maximum cost of a 1-input is n. We can rebalance these as before, by
scaling the O-input and 1-input weights in opposite directions. This gives Adv(f) < /fbso(f)n.
We could also have done this with 1-inputs, getting Adv(f) < y/fbs1(f)n. This is weaker than the
bound +/fbso(f) fbsi(f), but works for partial functions.

Theorem 4.3. Let f be a (possibly partial) Boolean function. Then Adv(f) < +/fbsmin(f) -7,
where thsmin(f) denotes the minimum of tbsy(f) and tbsi(f).

The certificate barrier mostly comes up for total functions. An example of a total function
for which we might like to prove a large quantum lower bound, but are blocked by the certificate
barrier, is the element distinctness function. This function has alphabet [m] with m > n, and the
goal is to determine whether all the symbols in the input string x are distinct, or whether there is
at least one pair (4, j) with ¢ # j such that x; = x;. In the former case, we need to output 0, and in
the latter case we output 1. This is a total function, although its alphabet is not Boolean; we can
convert to a Boolean alphabet if we wish by using O(logm) bits to represent each alphabet symbol.
This will change the quantum query complexity of the function by at most a factor of O(logm).
We will generally take m to be only slightly larger than n, say m = n or m = 2n, so this is only a
logarithmic factor in the input size (which we usually ignore).

The certificate complexity of element distinctness on the 1-input side is Ci(f) = 2 (using the
alphabet size m formulation; it would be O(logm) if we convert to Boolean alphabet). Hence the
certificate barrier says that Adv(f) = O(y/n) for the element distinctness problem. However, it
turns out that the true quantum query complexity of element distinctness is n2/3, so the positive
adversary method is not good enough here.

4.2 The negative adversary

The negative-weight adversary is a generalization of the positive adversary method, originally in-
troduced in [HLS07|. We will start by writing down the primal formulation of it. In the primal
formulation, instead of requiring

S Vele dulyd) > 1,

X Y,

(as in the positive adversary), we require exact equality: that the sum on the left is precisely 1 for
all x and y with f(z) # f(y). Actually, such a requirement cannot always be achieved. Instead, we
allow a generalization of the weights w(z,4). Instead of being non-negative real numbers, they are
now allowed to be vectors of real numbers. We will denote these vectors by v, ;. The vector v, ;
will actually be a generalization of \/w(z,4), so \/w(x, i) would be a one-dimensional version of the
vector vy ;.
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These vectors will be real-valued, and for each 7 they will all have the same dimension d;;
however, we place no bound on the dimension of the vectors. The constraint will then be that for
all x and y with f(z) # f(y), we have

Z (Vayis vyi) = 1.

LT FY;

The objective value, which we wish to minimize, is the maximum over x € Dom(f) of

> a3

i€[n]

Definition 4.4. The negative-weight adversary bound of a (possibly partial) function f, denoted
Advi(f), is the objective value of the optimal solution to the above minimization problem.

Note that if we were to relax this from equalling 1 to being at least 1, we would get exactly the
positive-weight adversary. Why? To convert from a feasible solution w(z, i) to v, ;, we will set v, ;
to be a 1-dimensional vector which equals \/w(z,%). To convert from a feasible solution v, ; for the
vector formulation to the weights w(x, 1), we set w(x,i) = ||vz /|3, and Cauchy-Schwartz would give
us \/w(z,)w(y, i) > (Vg, vy,). Both conversions preserve feasibility and the objective value, which
means that relaxing the = 1 to a > 1 in the negative-weight adversary formulation gives exactly
the positive-weight adversary.

Why is this the terminology about “negative weights” and “positive weights” when the only
difference is the equality or inequality in the constraint? The terminology comes from the dual
formulation. An inequality constraint in the primal corresponds to a positive variable in the dual,
and an equality constraint in the primal corresponds to an unconstrained (possibly negative) variable
in the dual. Hence, in the dual, we really will have positive and negative weights. In the primal, we
just have equality or inequality with 1.

4.2.1 SDP formulation

Before we go further, let’s rephrase the negative-weight adversary bound as a semidefinite program.
For each i € [n], we will have a symmetric real matrix X; with rows and columns indexed by
Dom(f). The entries of this matrix will correspond to the inner products of the vectors v, ;; that
is, Xj[z,y] will correspond to (vs;,vy;). Because X; is made of such inner products, it will be
positive semidefinite, so we will write X; > 0. The constraints are that for each =,y € Dom(f) with

f(x) # f(y), we have
Z Xilz,y] = 1.

12 #Yi
The objective value is the maximum over z € Dom(f) of > ;cp, x> Which is the maximum
diagonal entry of >, X;. We introduce a new variable T" to represent this maximum. We can then

write this as

min T

X; =0  Vie[n].

It should be clear that a feasible solution {v,;} can be converted to a feasible solution {X;}
simply by taking X;[x,y] = (s, vy,); forming matrices via inner products like this always gives
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rise to positive semidefinite matrices. We can also convert in the other direction. A positive
semidefinite matrix X; can always be decomposed into X; = MMT for some real matrix M of
the same dimensions as X;. The rows of M then give vectors v, ; such that X;[z,y] = (vy,vy,),
and these vectors have the desired properties. This means the above semidefinite program exactly
captures Advi( f). We can also get a program which capture Adv(f) by relaxing the = 1 constraint
to a > 1 constraint.

In particular, the dimensions d; of the vectors v, ; can always be taken to be at most | Dom(f)|;
while larger dimensions are allowed, they are never necessary. This semidefinite program formulation
also makes it clear that the optimal value can actually be attained; from the original definition of
AdvE(f), it might sound like we need to define Adv®(f) as an infimum rather than a minimum,
because it is not clear why the optimal value is attained (the set we are optimizing over did not
look compact, since the dimension of the vectors was not bounded). With the semidefinite program
formulation, we can see that this minimization problem is over a compact convex set, and the
minimum is attained.

4.3 An error-dependent version

Before we see why the negative-weight adversary lower bounds quantum query complexity, we will
introduce a variant of this adversary bound that allows for errors. We will define AdvE(f) to be
similar to Adv®(f), except that there is an extra set of vector vz nt1 for each € Dom(f). This
extra vector will correspond to querying f(z) directly. That is, suppose that when computing f(x)
on input x, you are allowed to “cheat” and directly see the answer. Let’s say we place the answer
f(x) in position n + 1 of the vector . Moreover, while querying normal indices of = costs 1 each,
querying position n + 1 is free. However, there is a limit on the probability with which you can
cheat and query n + 1.

Then Advf( f) effectively allows you to cheat with probability mass e. Motivated by this, we
will set AdvE(f) to be the minimum of

n

max > flog3
z€Dom(f) =1

such that for all z,y € Dom(f) with f(x) # f(y), we have
Z <'U$,z'>vy,i> =1,
i€[n+1):z;#y;
and also, for each = € Dom(f),
[vent1]13 < e

We now claim that AdvE(f) can be exactly characterized in terms of Adv™(f).

Theorem 4.5. Let f be a (possibly partial) function, and let e € [0,1). Then
AdvE(f) = (1 — ) Adv™(f).

Proof. Tn one direction, if we have a feasible solution {v,;} to Adv*(f), we can multiply all the
vectors v, ; by /1 —e€ and add new one-dimensional vectors vy ,4+1 = /€. This gives a feasible
solution for Adv(f) with objective value (1 — €) AdvE(f).

In the other direction, fix a solution {v,;} for AdvI(f). Further, let v, ; be any solution for
AdvE(f). Then define uy; = v,; (v ; ® Vg 1) for z € Dom(f) and i € [n]. Here @ refers to
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appending two vectors together, and ® refers to the Kronecker (tensor) product, meaning v;7i®vx,n+1
is a vector with one entry for each pair of entry in v‘,’m and entry in v 41, where this entry equals
the product of the two. In other words, if the dimension of v, ; is d for all ¢ and the dimension of
U:/m' is ' for all 4, then the dimension of uy; is d + dd’ for all 4, and the first d entries of u,; are just
the entries of v, ; while the rest of the entries of u,; are the products between entries of v, ;41 and
entries of vgm-.

We claim that wu,; is feasible for AdvE(f): for each x, y with f(z) # f(y), we have

Z (Uayis Uy,i) = Z (Vai, Vy,i) + (Vant1, Vynt1) Z <U/r,i’vg,;,i>

1 A Y; LT FY; 0T FY;

- Z <v$7z7vy72> + <U$,7‘L+17vy7’ﬂ+1> - 1'
0T FY;

The objective value of this solution is the maximum over € Dom(f) of
D luaild =D lvas
i i

where 7' is the objective value of {v; ;}. Hence we have

‘% + Z Hvx,n-&-IH%Hv/% ZH% < Advf(f) e T,
A

AdvE(f) < AdvE(f) + e AdvE(f),
or AdvE(f) < AdvE(f)/(1 —e). O

An astute reader might notice that the above proof assumes the existence of some feasible
solution for Advi( f). That is, the above proof does not eliminate the possibility that Advi( f)=o
because the minimization problem has no feasible solution, even though Advei( f) is finite. To truly
show that Adv®(f) = (1—¢€) AdvE(f) in all cases, we must show that Adv™(f) always has a feasible
solution, which we do in the following lemma.

Lemma 4.6. Let f be a (possibly partial) function on n bits. Then Adv:(f) < n.

Proof. It suffices to find a feasible set of vectors v, ; with objective value n. For each i € [n], let .S;
be the set partial assignments which could occur in the first ¢ positions of an input 2 € Dom(f). For
example, if the input alphabet is m, then S; will consist of strings in [m]? with n — i stars appended
at the end (to form a partial assignment specifying the first ¢ positions in a string of length n). The
set S will be {*"}.

Then let v, ; be a vector of dimension |S;_;| such that v, ;[p] = 1 if p is the partial assignment
consisting of the first i — 1 bits of , and vz, i[p] = 0 for all other partial assignments. This means
|vgi][3 =1 for all x and 4, so Y, ||vs.i||3 = n for all z € Dom(f).

We claim that this solution is feasible. To see this, let x,y € Dom(f) be such that f(z) # f(v),
and consider the smallest ¢ € [n] such that z; # y; (such a position ¢ must exist since f(z) # f(y) =
x # y). Then x and y agree on their first ¢ — 1 bits, which means that v, ; and v, ; have a 1 in the
same position and (vg;,vy;) = 1. On the other hand, consider any position j such that j > ¢ and
xj # y;. Then x and y disagree on their first j — 1 positions, which means that the vectors v, ; and
vy ; have a 1 in different coordinates and (v j, vy ;) = 0. It follows that

Z <'Um,iavy,i> = 17
X AYs

so this solution is feasible, as desired. O
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4.4 Negative-weight adversary vs. quantum query complexity

We next prove that the negative-weight adversary bound really lower bounds quantum query com-
plexity.

Theorem 4.7. For all (possibly partial) Boolean functions f, we have

— 2¢)2

Proof. The second inequality follows from 1 — 24/e(1 —€) > (1 — 2¢)?/4, which we’ve shown pre-
viously in the context of the adversary and hybrid lower bounds. To prove the first inequality, let
Q@ be a T-query quantum algorithm achieving worst-case error €, where T' = Q.(f). Use the same
notation as in the hybrid and positive adversary proofs. Recall from the positive adversary proof
that we saw

T
Hef ) = [ ) 1P =2 ) D R(WFILUI — (U)TTU)[e})).
LAy t=1

Also recall that
| |¢%+1> - |7/"77Jﬂ+1> H2 = (WJE“H - ¢gﬂ+1’¢%+1 - 1/}%“) =2- 25}3((¢%+1|psi%+1>)

=2 - 2R((¢gl¢0)) — 2R((4161)),

where ¢ is the component of 97 ; in which the output register is 0 (that is, the algorithm outputs
0) and ¢f is the component of 9% ; in which the output register is 1. Hence we can write

T
1=R((g5166) + R(STI6D) + > D ROWFILI — (U TUY)[0)).
i Fy; t=1
Note that we are assuming, for now, that both the input alphabet is Boolean and that the outputs
of f are Boolean. The Boolean inputs assumption means that (U”* )TU Y maps the query-index and
query-output registers from |i) [b) to |i) [b @ y; ® ;) = i) [1 —=b). Let N = I ® (|0)}0|5 — [0X1]5)
be the matrix which acts as identity except on the query-output register, and on the latter maps
|0) — |0)—|1) and |1) — 0. Observe that for i such that z; # y;, we have IT;(I—(U*)TUY) = I; NTN.
To see this, note that IT; commutes with both (I — (U*)TUY) and NTN. Also, we have

NN = 1® ((J0)0] — [1X0] ) (10X0l 5 — [0)1]5)) = I @ (10)XO] 5 + [L){L] s — [0X1| 5 — [1)O] ),
and I — (U")TUY maps [i);]0) 5 — |i); (10)p — [1)5) and maps )7 [1) 5 = [3); (|11) 5 — |0) p), so the
action restricted to query register ¢ is the same. Hence we have

T
L= R((6Fl08) + R((oTlo1)) + > > RUNTLENTLYY)).
i Fy; t=1

This motivates the following choice of vectors {v,;}. For a constant ¢ to be determined later,

let ¢, be 1/cif f(x) =0, and let ¢; = cif f(x) = 1. Then set

vrnt1 = (¢o [R(¢5)) @ [R(idp))) © ((1/cz) [R(67)) © [R(ig1)))-
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This way, when f(z) # f(y), we have c,e, = 1, and (v i1, Uyni1) = RUGEIGH)+R((6F]6Y)). Note
that we’ve separated out the real and imaginary components of ¢f and ¢{ into different coordinates,
so that the vectors v, 41 are real-valued. Further, set

T
vei = @D IRINTLYE)) @ [RENTLY))
t=1
so that (vg4,vy,) = Y1 R(NTLYF|NTL4Y)). This way, feasibility is immediately assured. The
objective value is the maximum over x of

T
D lvwall® =D NG| < INIPT.

i€[n] t=1

This is because [¢f) is a unit vector, and the spectral norm ||| is the largest factor by which
N can increase the 2-norm of a vector it is applied to. It is not hard to see that |N|| = v/2, so

e 1vwill* < 2T
Finally, the error parameter of this feasible solution is the maximum over x of

lami1l? = Ellg5lI? + (1/eD)llo1l* = (1/c*) Pr[Q(z) = f(x)] + * Pr[Q(z) = 1 — f(x)]
=1/ + (2 -1/ Pr[Q(x) =1 — f(z)] <1/ + (2 = 1/P)e

(when ¢ > 1). Optimizing over ¢ > 1, we pick ¢ = (1 — €)1/*/e!/4 which gives ||vzni1]? <
2\/€(1 —¢€), as desired. O

Although we did not prove it here, the negative-weight adversary method also works to lower
bound Q(f) when the input and output alphabets of f are not Boolean.

4.5 Duality and tightness

So far, we have seen the primal form of the negative-weight adversary, which takes the form of a
minimization program. To prove lower bounds, however, it is more useful to look at the dual, which
will be a maximization problem; this way, a lower bound on Q(f) can be shown by giving a feasible
solution to the dual program.

Definition 4.8. The dual form of the negative-weight adversary for a function f can be defined as

max min &

' ieln] HF o Dz” ’
where T' ranges over real symmetric matrices with rows and columns indexed by Dom(f) which
satisfy [z, y] = 0 whenever f(x) = f(y). Here D; is the {0,1}-matriz with D;[z,y] = 1 if and
only if x; # y;, the notation o denotes the Hadamard (entrywise) product, and the norm || - || is the
spectral norm (i.e. ||A|| is the mazimum value of u” Av over vectors u and v with |jul|z = ||v]|2 = 1).

The above definition precisely equals Advi( f); proving this requires taking the dual of the
semidefinite program for Adv®(f), arguing that strong duality holds (so that the dual has the same
optimal value as the primal), and then converting the dual formulation into the above form. We
will not go over the proof here.

The negative-weight adversary does not suffer from the property testing and certificate barriers.
Indeed, it turns out that Advi( f) exactly captures bounded-error quantum query complexity (up
to constant factors).
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Theorem 4.9 ([Reill; LMR+11]). For all (possibly partial) functions f, we have

Q(f) = O(Adv(f)).

More explicitly, for any e € (0,1/2), there are constants ce and Ce such that for all (possibly partial)
query functions f, we have

ce AdvE(f) < Q.(f) < Ce AdvE().

This remarkable theorem says that bounded-error quantum query complexity is precisely cap-
tured by a reasonably simple semidefinite program, up to a constant factor that depends on the
error parameter. Note that this property is unique to bounded-error quantum query complexity;
zero-error quantum query complexity does not have this property!

We’ve already seen one direction of the proof, showing that Advi( f) is a lower bound on Q(f)
(we’ve seen this only for Boolean functions, but the non-Boolean case is not much harder). We will
not cover the other direction, which can be found in [LMR+11].

4.6 Composition

For Boolean functions f : {0,1}" — {0,1} and ¢ : {0,1}" — {0,1}, we denote their block-
composition by f o g; this is the function defined by f o g(z'z?...2") = f(g(z')g(z?)...g(z")),
which takes in n separate inputs to g, evaluates g on all of them, and feeds the resulting n-bit string
into f.

If f and g are partial functions, we can still define f o g, though we need to be a little careful.
The domain of f o g will only contain strings z'z?...2" € {0,1}"™ if each 2° is in Dom(g), and if
in addition, the string g(z!')g(2?) ... g(2") is in Dom(f). That is, we will simply promise that each
string we encounter along the way will be in the domain of the function it feeds into.

Composition is a common way of constructing Boolean functions, and the query complexity of
composed functions is a problem that comes up frequently. It turns out that D(f o g) = D(f)D(g),
which means that at least for deterministic query complexity, the complexity of composed functions
is well understood.

For randomized algorithms, things get a little more complicated: in the upper bound direction,
we have R(fog) = O(R(f)R(g)logR(f)). The log factor comes from the need to amplify. The idea
is that to compute fog, we can run an algorithm for f, and whenever it makes a query to a bit of f,
we can run the algorithm for g as a subroutine. The issue is that the algorithm for ¢ won’t return
the right answer with certainty: it will only do so with bounded error. To ensure that the error
is small enough that the outer algorithm for f still works, we will need to amplify the algorithm
for g so that its error is small, roughly O(1/R(f)). This requires O(log R(f)) repetitions of the
algorithm for ¢ to achieve, and hence R(fog) = O(R(f) R(g)log R(f)). A similar argument means
that Q(fog) = O(Q(f) Q(g) log Q(f)). Actually, this is a little subtle, since the quantum algorithm
for f will need to call the algorithm for g in superposition; but it turns out that everything works
fine and this is not a problem.

What about the other direction: does R(f og) = Q(R(f)R(g))? This is certainly true for some
f and g, and it is even known that the extra log factor is sometimes (but not always) necessary.
However, showing this for all f and g remains open. Recently, it has been shown that this is false
when f and g can be partial functions: R(f o g) can be asymptotically smaller than R(f) R(g).

As you can see, characterizing composition behavior of query measures can often be tricky; even
randomized query complexity is not well-understood in this regard. However, it turns out that the
adversary bounds compose perfectly.
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Theorem 4.10. Let f and g be (possibly partial) Boolean functions. Then
Adv(f o g) = Adv(f) Adv(g),
AdvE(f o g) = AdvE(f) AdvE(g).

For a proof of the negative-weight composition, see [HL§$07 ; Kim12|. The proof of the compo-
sition of the positive-weight adversary follows along similar lines, but is easier. Note that in both
cases, it’s important that f and g are Boolean functions, or at least that the outputs of g and
inputs of f are Boolean. This is because in the non-Boolean setting, composition theorems are
generally false: one can pick a function g with three possible outputs, say 1,2, 3, such that it’s hard
to determine if g(x) is 1 or 2 but always easy to determine if g(x) = 3. One can also pick a function
f with input alphabet 1,2,3 which treats input symbols 1 and 2 identically, and cares only about
where the 3s are. Composing f and g will then give a function which is much easier to compute
than the product of the cost of computing f and the cost of computing g. Composition theorems
are therefore only plausible in the Boolean alphabet/output setting.

Note that the above theorem, combined with Q(f) = ©(Adv*(f)), implies that Q(f o g) =
O(Q(f)Q(g)). In particular, this means the log factor from amplification is never necessary! It
turns out that quantum algorithms have a magical ability to work with “noisy” queries without
suffering the cost of noise reduction, so long as the noise is “coherent” (it can be reversed) and as
long as the output at the end is allowed to make bounded error.

This remarkable property of quantum query complexity allows us to easily determine the query
complexity of some highly-composed functions. For instance, consider the recursive AND-OR tree,
which is ORg 0 ANDg o ORg 0---0 ANDs. Up to negations, this function is also equal to NANDS
where NAND is the negation of the AND function, and the exponent k means we compose NAND
with itself & times (so the input size is 2¥). What is the quantum query complexity of this function?
Well, we know that Adv™ composes perfectly (without even a constant factor), so Q(NANDY) =
O(Adv* (NAND,)¥). We just need to compute AdvE(NANDy). It is not hard to see that Adv™ stays
the same if a function is negated or if its inputs are negated, so Adv®(NANDy) = Adv*(AND,) =
Adv*(ORy). As for the adversary bound of ORy, we know that

AdvF(ORy)* = Adv*(ORE) = AdvT(ORgr) = O(Q(ORg)) = O(V2F).

Hence for all k, Adv*(OR3) = ©(v/2F)V/* which necessarily means that Adv*(ORg) = v/2. Indeed,
a similar argument shows that for all n, Adv*(OR,,) must be exactly \/n. From this we conclude
that the quantum query complexity of NANDIQ€ is ©(2%/2), and more generally, for any AND-OR
tree of any form, its adversary bound is always the square root of its input size, and its quantum
query complexity is within a constant factor of that.

Another example. Let f = MAJ3, the majority function on 3 bits. What is the query complexity
of f*, the function on inputs of size 3* consisting of a depth-k tree of majorities on 3 bits each?
Well, we know that Q(f*) = ©(AdvT(f*)) = ©(Adv*(f)¥), so all we need to do is to compute
AdvE(MAJ3). Tt turns out to be 2, so Q(f¥) = O(2F) = O(n'e:2) ~ n%631 where n = 3* is the
input size. In contrast, the randomized query complexity R(f*) is actually open!

Directly using the negative-weight adversary (rather than merely its composition properties) is
generally difficult. Pretty much the only example where this has been done is [BSIB].
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