
Week 3

The Adversary Method

3.1 Primal form

The adversary method, first introduced by Ambainis [Amb03], can be viewed as a generalization of
the hybrid method. Recall that the quantum hybrid method says that a T -query quantum Q which
distinguishes x from y to error \epsilon must satisfy\sum

i\in [n]:xi \not =yi

mi \geq
(1 - 2\epsilon)2

4T

where mi is a measure of many times the quantum algorithm queried bit i when run on x. Let
us denote this by mi(x) instead of just mi, to highlight the dependence on the input string (the
algorithm may query in different places depending on the input, with the exception of the first
query). Then one version of the (positive) adversary argument gives the following generalization:

\sum
i\in [n]:xi \not =yi

\sqrt{}
mi(x)mi(y) \geq

(1 - 2\epsilon)2

4
(3.1)

for all pairs (x, y) that are distinguished by Q to error \epsilon . In particular, applying Cauchy-Schwartz
and using

\sum
imi(y) \leq T , we can rederive the quantum hybrid method from (3.1) except with a

worse upfront constant and a worse dependent on \epsilon (neither of which matters if we do not care
about constant factors and set \epsilon = 1/3).

The (positive) adversary method is usually introduced in terms of a query complexity measure,
analogous to fractional certificate complexity. We define it as follows.

Definition 3.1 (Positive quantum adversary, primal version). Let f be a (possibly partial) Boolean
function. We define the positive quantum adversary complexity of f , denoted \mathrm{A}\mathrm{d}\mathrm{v}(f) or \mathrm{A}\mathrm{d}\mathrm{v}+(f),
as minimum solution of the following optimization problem. For each x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) and i \in [n], we
have a weight wx,i \geq 0. The constraint is that for all x, y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) with f(x) \not = f(y), we have\sum

i\in [n]:xi \not =yi

\surd
wx,iwy,i \geq 1.

The objective function we wish to minimize is the maximum, over x \in \mathrm{D}\mathrm{o}\mathrm{m}(f), of
\sum

i\in [n]wx,i.

We note that the positive quantum adversary is similar in spirit to fractional certificate com-
plexity. For the latter, we assign a fractional certificate to each input x; if we denote its weights by

1

2 WEEK 3. THE ADVERSARY METHOD

wx,i, then we would require wx,i \geq 0 and \mathrm{F}\mathrm{C}(f) would be the minimum of \mathrm{m}\mathrm{a}\mathrm{x}x\in \mathrm{D}\mathrm{o}\mathrm{m}(f)

\sum
i\in [n]wx,i.

So far this is exactly the same as \mathrm{A}\mathrm{d}\mathrm{v}(f). Where they differ is in the constraint placed on the
weights: fractional certificate complexity required

\sum
i\in [n]:xi \not =yi

wx,i \geq 1 for all x, y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) with
f(x) \not = f(y), while the positive adversary bound replaced the summand wx,i with

\surd
wx,iwy,i. We

have the following theorem.

Theorem 3.2. Let f be a (possibly partial) Boolean function. Then

\mathrm{Q}\epsilon (f) \geq
(1 - 2\epsilon)2

4
\mathrm{A}\mathrm{d}\mathrm{v}+(f).

Proof. Let Q be a quantum algorithm solving f to error \epsilon using T = \mathrm{Q}\epsilon (f) queries. To prove this
theorem, we only need to come up with a feasible set of weights wx,i such that

\sum
iwx,i \leq 4T/(1 - 2\epsilon)2

for all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f). We will pick wx,i = 4mi(x)/(1 - 2\epsilon)2, where mi(x) is defined as in the hybrid
argument (representing the expected number of queries Q makes to bit i when run on x). Then\sum

iwx,i = 4/(1 - 2\epsilon)2 \cdot
\sum

imi(x) = 4T/(1 - 2\epsilon)2, and wx,i \geq 0. We also have\sum
i:xi \not =yi

\surd
wx,iwy,i =

4

(1 - 2\epsilon)2

\sum
i:xi \not =yi

\sqrt{}
mi(x)mi(y),

which means that to complete the proof, we only need to prove (3.1).
Proving this will proceed along similar lines to the hybrid argument. The main difference is that

we will split up
\bigm\| \bigm\| | \psi x

T+1\rangle - | \psi y
T+1\rangle

\bigm\| \bigm\| 2 into a telescoping sum instead of splitting up
\bigm\| \bigm\| | \psi x

T+1\rangle - | \psi y
T+1\rangle

\bigm\| \bigm\|
into such a sum. Recall from the hybrid argument that\bigm\| \bigm\| | \psi x

T+1\rangle - | \psi y
T+1\rangle

\bigm\| \bigm\| 2 \geq 2 - 4
\sqrt{}
\epsilon (1 - \epsilon).

We write

2 - 4
\sqrt{}
\epsilon (1 - \epsilon) \leq

\bigm\| \bigm\| | \psi x
T+1\rangle - | \psi y

T+1\rangle
\bigm\| \bigm\| 2

=
T\sum
t=1

\bigm\| \bigm\| | \psi x
t+1\rangle - | \psi y

t+1\rangle
\bigm\| \bigm\| 2 - \| | \psi x

t \rangle - | \psi y
t \rangle \|

2

=
T\sum
t=1

2\Re (\langle \psi x
t | \psi

y
t \rangle) - 2\Re

\bigl(
\langle \psi x

t+1| \psi
y
t+1\rangle

\bigr)
= 2\Re

\Biggl(
T\sum
t=1

\langle \psi x
t | \psi

y
t \rangle - \langle \psi x

t+1| (Ux)\dagger U \dagger
t UtU

y| \psi y
t+1\rangle

\Biggr)

= 2\Re

\Biggl(
T\sum
t=1

\langle \psi x
t | I - (Ux)\dagger Uy| \psi y

t \rangle

\Biggr)
.

Here we used \| | \psi x
0 \rangle - | \psi y

0\rangle \|
2
= 0 in the second line. The third line followed from the identity

\| | \psi x
t \rangle - | \psi y

t \rangle \|
2
= 2 - 2\Re (\langle \psi x

t | \psi
y
t \rangle)

which we showed in the proof of the hybrid argument. The fourth line uses the definition | \psi x
t+1\rangle =

UtU
x | \psi x

t \rangle , and the last line followed using the fact that Ut is unitary so U \dagger
t Ut = I.

Next, just as in the hybrid argument, we break up the analysis by the query register | i\rangle . That
is, let \Pi i be the projector onto the query register being | i\rangle , as in the proof of the hybrid argument.

3.1. PRIMAL FORM 3

Then we have | \psi x
t \rangle =

\sum
i\in [n]\Pi i | \psi x

t \rangle . Moreover, the projection matrix \Pi i satisfies \Pi
\dagger
i = \Pi i, \Pi 2

i = \Pi i,
and \Pi iU

x = Ux\Pi i (which follows from the fact that Ux does not change the query register). Also
note that (Ux)\dagger Uy\Pi i = \Pi i when xi = yi, since when the query register is i, the matrices Ux and Uy

have the same action, so (Ux)\dagger Uy behaves as identity. This also means that \Pi i(I - (Ux)\dagger Uy) = 0.
Finally, another property is that \Pi i\Pi j = 0 when i \not = j. Putting this together, we get

\langle \psi x
t | I - (Ux)\dagger Uy| \psi y

t \rangle = \langle \psi x
t |
\sum
i

\Pi i(I - (Ux)\dagger Uy)
\sum
j

\Pi j | \psi y
t \rangle =

\sum
i

\sum
j

\langle \psi x
t | \Pi i\Pi j(I - (Ux)\dagger Uy)| \psi y

t \rangle

=
\sum

i:xi \not =yi

\langle \psi x
t | \Pi i(I - (Ux)\dagger Uy)| \psi y

t \rangle .

This means that by continuing the chain from above, we actually have

\bigm\| \bigm\| | \psi x
T+1\rangle - | \psi y

T+1\rangle
\bigm\| \bigm\| 2 = 2\Re

\left(T\sum
t=1

\sum
i:xi \not =yi

\langle \psi x
t | \Pi i(I - (Ux)\dagger Uy)| \psi y

t \rangle

\right)
= 2

\sum
i:xi \not =yi

T\sum
t=1

\Re (\langle \psi x
t | \Pi i(I - (Ux)\dagger Uy)| \psi y

t \rangle)

\leq 2
\sum

i:xi \not =yi

T\sum
t=1

| \langle \psi x
t | \Pi i(I - (Ux)\dagger Uy)| \psi y

t \rangle |

\leq 2
\sum

i:xi \not =yi

T\sum
t=1

| \langle \Pi i\psi
x
t | \Pi i\psi

y
t \rangle | + | \langle Ux\Pi i\psi

x
t | Uy\Pi i\psi

y
t \rangle |

\leq 2
\sum

i:xi \not =yi

T\sum
t=1

\| | \Pi i\psi
x
t \rangle \| \cdot \| | \Pi i\psi

y
t \rangle \| + \| | Ux\Pi i\psi

x
t \rangle \| \cdot \| | Uy\Pi i\psi

y
t \rangle \|

= 4
\sum

i:xi \not =yi

T\sum
t=1

\| | \Pi i\psi
x
t \rangle \| \cdot \| | \Pi i\psi

y
t \rangle \|

= 4
\sum

i:xi \not =yi

T\sum
t=1

\sqrt{}
mt

i(x)m
t
i(y)

\leq 4
\sum

i:xi \not =yi

\sqrt{}
mi(x)mi(y).

Here the second line follows from rearranging the sums, the third from replacing the real part of a
complex number with the magnitude of the complex number, the fourth from triangle inequality,
the fifth from Cauchy-Schwartz, the sixth using the fact that the unitaries Ux and Uy preserve
the norm of vectors, the seventh from the definition of mt

i(x), and the last using Cauchy-Schwartz
again. We therefore conclude that

\sum
i:xi \not =yi

\sqrt{}
mi(x)mi(y) \geq

1 - 2
\sqrt{}
\epsilon (1 - \epsilon)

2
.

Finally, the desired result follows from 1 - 2
\sqrt{}
\epsilon (1 - \epsilon) \geq (1 - 2\epsilon)2/2, which we showed in the proof

of the hybrid argument.

4 WEEK 3. THE ADVERSARY METHOD

The lower bound on
\sum

i:xi \not =yi

\sqrt{}
mi(x)mi(y) is remarkable. For one thing, it gives (by Cauchy-

Schwartz) the weaker statement\sqrt{} \sum
i:xi \not =yi

mi(x)
\sum

i:xi \not =yi

mi(y) \geq
(1 - 2\epsilon)2

4
.

This weaker statement is already quite significant: recall that in the hybrid argument we could
only lower bound

\sum
i:xi \not =yi

mi(x) by \Omega (1/T) rather than \Omega (1), and this is actually tight (by Grover
search). However, the adversary method says that although

\sum
i:xi \not =yi

mi(x) might be as small as 1/T
for a quantum algorithm distinguishing x from y, and although

\sum
i:xi \not =yi

mi(y)might also be as small
as 1/T , they cannot both be small at one—their product is \Omega (1)! In particular, if

\sum
i:xi \not =yi

mi(x) is
O(1/T), then not only must

\sum
i:xi \not =yi

mi(y) be \Omega (1), but in fact it must be \Omega (T).
To put it another way: suppose a quantum algorithm Q distinguishes x from y, and let B \subseteq [n]

be the set of bits i with xi \not = yi. Then if Q queries inside B with only small probability mass when
run on x, then it must query inside B with very large probability mass (greater than 1) when run
on y, corresponding to making repeated, “redundant” queries inside B. In particular, Grover search
distinguishes the all-zero input 0n from the input 10n - 1 which has a 1. It does so in O(

\surd
n) total

queries, placing probability mass only O(1/
\surd
n) on each i \in [n] when run on 0n. However, when

Grover search runs on 10n - 1, it must place probability mass \Omega (
\surd
n) on the first bit i = 1, effectively

querying it again and again. This is very strange behavior! It has to do with the fact that quantum
algorithms don’t query the input in the normal way (in which exactly one bit is revealed and can
be remembered forever after), but rather query in superposition.

3.2 Dual form

How do we use the quantum adversary method to prove lower bounds? Well, recall what we
did for fractional certificate complexity: we took its dual, fractional block sensitivity, which is a
maximization problem rather than a minimization problem. We could then show lower bounds on
fractional certificate complexity (and hence on \mathrm{Q}(f) after taking a square root) by giving feasible
solutions to the maximization problem.

We do a similar thing for the quantum adversary method. Unfortunately, the quantum adversary
bound is not a linear program: the constraints involve terms \surd

wx,iwy,i, which is a square root of
product of variables, rather than a linear combination of variables. However, rather miraculously,
it turns out that the adversary bound can be converted into what’s called a semidefinite program.
Semidefinite programs have variables that are placed inside a symmetric matrix X, and can have
constraints that are linear in the entries of X, plus the additional special constraint X \succeq 0 (which
says that X is a positive semidefinite matrix).

It turns out that we can define duality for semidefinite programs as well, so that for each
minimization problem we can define an analogous maximization problem whose objective value
lower bounds that of the original program. While strong duality (guaranteeing that the optimal
solutions of a program and its dual are exactly the same) does not always hold for semidefinite
programs, it “usually” holds: one only needs to show that the program has some nice properties in
order to conclude that strong duality will be satisfied.

We are clearly skipping a lot of details here (see [ŠS06], which makes things explicit), but the
upshot is that we can convert the adversary bound to a semidefinite program (SDP), take the dual
to get a maximization SDP, show that strong duality holds, and then convert this dual SDP into a
more readable form. Once we do all this, we get an alternative definition for the quantum adversary,
which is called the spectral version.

3.2. DUAL FORM 5

Definition 3.3 (Positive quantum adversary, spectral version). Let f be a (possibly partial) Boolean
function. Then \mathrm{A}\mathrm{d}\mathrm{v}+(f) can also be defined as

\mathrm{m}\mathrm{a}\mathrm{x}
\Gamma \geq 0

\mathrm{m}\mathrm{i}\mathrm{n}
i\in [n]

\| \Gamma \|
\| \Gamma \circ Di\|

,

where \Gamma ranges over non-negative real symmetric matrices with rows and columns indexed by \mathrm{D}\mathrm{o}\mathrm{m}(f)
which satisfy \Gamma [x, y] = 0 whenever f(x) = f(y). Here Di is the \{ 0, 1\} -matrix with Di[x, y] = 1 if and
only if xi \not = yi, the notation \circ denotes the Hadamard (entrywise) product, and the norm \| \cdot \| is the
spectral norm (i.e. \| A\| is the maximum value of uTAv over vectors u and v with \| u\| 2 = \| v\| 2 = 1).

As noted, this definition of the adversary bound exactly equals the previous (primal) definition,
although we do not prove this fact (see [ŠS06] for a proof).

This spectral version has many nice properties, but unfortunately, it is still too cumbersome to
give easy lower bounds on quantum query complexity. After all, to use it we would not only have
to give a matrix \Gamma for the function f , we would also have to lower bound the spectral norm \| \Gamma \|
and upper bound the spectral norms \| \Gamma \circ Di\| for all i.

Luckily, there is yet another equivalent version of the quantum adversary bound.

Definition 3.4 (Positive quantum adversary, weighted form). Let f be a (possibly partial) Boolean
function. Then \mathrm{A}\mathrm{d}\mathrm{v}+(f) can also be defined as the maximum of the following optimization prob-
lem. The variables are weights w(x, y) \geq 0 and w\prime (x, y, i) \geq 0 for all x, y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) with
f(x) \not = f(y) and for all i \in [n] such that xi \not = yi. They must satisfy w(x, y) = w(y, x) and
w\prime (x, y, i)w\prime (y, x, i) \geq w(x, y)2 for all such x, y, and i. Define wt(x) :=

\sum
y:f(y)\not =f(x)w(x, y) and

wt\prime (x, i) :=
\sum

y:f(y)\not =f(x),yi \not =xi
w\prime (x, y, i). The objective function is

\mathrm{m}\mathrm{i}\mathrm{n}
x,y,i:w(x,y)>0,xi \not =yi

\sqrt{}
wt(x)wt(y)

wt\prime (x, i)wt\prime (y, i)
.

Once again, we omit the proof that this equals the other definitions of the positive adversary
bound (see [ŠS06] for the proof).

To use this definition, we will almost always actually pick w\prime (x, y, i) = w(x, y) for all x, y, and
i. Note that doing so is always allowed. This substantially simplifies the bound; at this point,
the weights w(x, y) can be interpreted as weights on the edges of a complete bipartite graph, the
vertex sets corresponding to 0-inputs and 1-inputs of f (if the outputs of f are not Boolean, we
this generalizes nicely to a k-partite graph). Then wt(x) is the total weight of the edges adjacent
to x (essentially the degree of x is this weighted graph). Further, wt\prime (x, i) is the total weight of
the edges adjacent to x that connect x to an input y with xi \not = yi. This can be interpreted as the
degree of x in the subgraph where we’ve deleted all edges \{ x, y\} that have xi = yi.

In other words, feasible solutions to the weighted version of the positive adversary take the form
of a weighted bipartite graph G; if we denote by \mathrm{d}\mathrm{e}\mathrm{g}(x,G) the (weighted) degree of x in G, and if
we denote by Gi the subgraph of G where we only keep edges \{ x, y\} if xi \not = yi, then the weighted
adversary has the form

\mathrm{m}\mathrm{a}\mathrm{x}
G

\mathrm{m}\mathrm{i}\mathrm{n}
x,y,i:w(x,y)>0,xi \not =yi

\sqrt{}
\mathrm{d}\mathrm{e}\mathrm{g}(x,G) \mathrm{d}\mathrm{e}\mathrm{g}(y,G)

\mathrm{d}\mathrm{e}\mathrm{g}(x,Gi) \mathrm{d}\mathrm{e}\mathrm{g}(y,Gi)
.

Of course, this is not the full weighted adversary; for that, we would need to reintroduce the
weights w\prime (x, y, i), which function as reweighting of the edge \{ x, y\} inside the subgraph Gi. Instead

6 WEEK 3. THE ADVERSARY METHOD

of assigning this edge the weight w(x, y) in the subgraph Gi (the same weight as in G), we can
instead pick two directional weights, one from the x node and another from the y node, such that
the geometric mean of these two weights is at least w(x, y). When determining the degree of x in
Gi, we only add up its directional weights w\prime (x, y, i), which can be smaller than w(x, y) (at the
cost of making the directional weight for y, the weight w\prime (y, x, i), larger than w(x, y)). While this
complication is necessary to ensure that this definition of the adversary bound equals the previous
ones, in practice we rarely use it and just set w\prime (x, y, i) = w(x, y).

Finally, we can weaken the adversary bound even further, making it even simpler to use. Instead
of minimizing over all triples (x, y, i), we can simply let M be the minimum non-zero degree of a
0-input in G, let M \prime be the minimum non-zero degree of a 1-input in G, and let Li and L\prime

i be the
maximum degrees of 0-inputs and 1-inputs (repectively) in the subgraph Gi. Then we can lower
bound the adversary bound by

\mathrm{m}\mathrm{a}\mathrm{x}
G

\mathrm{m}\mathrm{i}\mathrm{n}
i

\sqrt{}
MM \prime

LL\prime .

In fact, we will often pick the weights in G to be \{ 0, 1\} weights. Then G is just any (unweighted)
bipartite graph. Moreover, we can discard all the vertices with degree 0, as they don’t affect
anything. So the goal is just to pick two sets X \subseteq f - 1(0) and Y \subseteq f - 1(1), as well as a bipartite
graph on (X,Y), such that

1. every 0-input in X is connected to at least M 1-inputs,

2. every 1-input in Y is connected to at least M \prime 0-inputs,

3. for each i, every 0-input in X is connected to at most L 1-inputs that disagree with it on bit
i,

4. for each i, every 1-input in Y is connected to at most L 0-inputs that disagree with it on bit
i.

Once we’ve picked such a graph, we will have \mathrm{A}\mathrm{d}\mathrm{v}+(f) \geq
\sqrt{}
MM \prime /LL\prime .

3.3 Applications

The adversary bound is one of the most useful quantum lower bound techniques. If you only learn
one technique from this course, it should be this one.

3.3.1 Reproving previous results

Let’s first use it to reprove the lower bound on ORn. To do so, we first pick the sets X and Y
mentioned above. We will set X = \{ 0n\} , and set Y to be the set of all strings in \{ 0, 1\} n of Hamming
weight 1. Note that we deliberately picked X and Y to be as “close” to each other as possible. We
then connect 0n to every input in Y by an edge in our bipartite graph. Now, we will have M = n,
since the only 0-input we’ve included has degree n. We will have M \prime = 1, since every 1-input
we’ve included has degree 1. Further, for each index i \in [n], it is clear that there is exactly one
input in Y that disagrees with 0n on i, and for each y \in Y there is at most 1 input in X that
disagrees with y on i. Hence L = L\prime = 1. This means that \mathrm{A}\mathrm{d}\mathrm{v}+(f) \geq

\sqrt{}
n \cdot 1/1 \cdot 1 =

\surd
n, so

\mathrm{Q}\epsilon (ORn) \geq (1 - 2\epsilon)2/4 \cdot
\surd
n.

Since we only used the Hamming weight 0 and Hamming weight 1 strings for this lower bound,
it also works to lower bound \mathrm{Q}(PromiseORn), giving the same bound. This also shows that

3.3. APPLICATIONS 7

\mathrm{A}\mathrm{d}\mathrm{v}+(PromiseORn) \geq
\surd
n, which by the reduction shown in the first week implies that \mathrm{A}\mathrm{d}\mathrm{v}+(f) \geq \sqrt{}

\mathrm{b}\mathrm{s}(f) for all f .
Next, we will show that the adversary bound is at least

\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(f), the lower bound we established

last week. To do this, we recall that \mathrm{f}\mathrm{b}\mathrm{s}(f) is the maximum over z of \mathrm{f}\mathrm{b}\mathrm{s}(f, z), so pick z maximizing
the latter. Then there is a weight scheme over the sensitive blocks of z, \alpha B \geq 0, such that

\sum
B \alpha B =

\mathrm{f}\mathrm{b}\mathrm{s}(f) and for each i \in [n],
\sum

B:i\in B \alpha B \leq 1. We now pick the adversary weight scheme w(x, y).
We set w(x, y) = 0 if x \not = z and y \not = z. Otherwise, if y is such that f(y) \not = f(z), we set w(z, y) =
w(y, z) = \alpha B where B = \{ i \in [n] : yi \not = zi\} . Then wt(z) =

\sum
y w(z, y) =

\sum
B \alpha B = \mathrm{f}\mathrm{b}\mathrm{s}(f) and for all

y such that f(y) \not = f(z), wt(y) = w(z, y). Moreover, for all i we set w\prime (x, y, i) = w\prime (y, x, i) = w(x, y);
then wt\prime (z, i) =

\sum
y:yi \not =zi

w(z, y) =
\sum

B:i\in B \alpha B \leq 1 and for all y with f(y) \not = f(z), we have
wt\prime (y, i) = 0 if yi = zi and wt\prime (y, i) = w(z, y) if yi \not = zi. The objective value of this solution is

\mathrm{m}\mathrm{i}\mathrm{n}
x,y,i:w(x,y)>0,xi \not =yi

\sqrt{}
wt(x)wt(y)

wt\prime (x)wt\prime (y)
\geq \mathrm{m}\mathrm{i}\mathrm{n}

y,i:w(z,y)>0,yi \not =zi

\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(f) \cdot w(x, y)

1 \cdot w(x, y)
=
\sqrt{}

\mathrm{f}\mathrm{b}\mathrm{s}(f),

as desired.

3.3.2 New applications

Example 1. Consider the function ANDn \circ ORn, which is defined as the composition of AND
and OR; this is a function on strings of length n2, where the input string is interpreted as n strings
x1, x2, . . . , xn of length n each, and the function evaluates to ANDn(ORn(x

1),ORn(x
2), . . . ,ORn(x

n)).
If we arranged the input bits in a matrix with the columns being xj , this function would ask whether
there is a 1 in every column (it would output 1 if yes, and 0 if there is an all-0 column). What is
the quantum query complexity of ANDn \circ ORn?

Note that the certificate complexity of ANDn \circ ORn is n, because we can prove an input is a
0-input by showing an all-0 column and we can prove it is a 1-input by showing a 1 in every column.
So \mathrm{C}(ANDn \circ ORn) \leq n, and hence \mathrm{f}\mathrm{b}\mathrm{s}(ANDn \circ ORn) \leq n and \mathrm{b}\mathrm{s}(ANDn \circ ORn) \leq n. On the
other hand, the sensitivity of ANDn \circ ORn is at least n, so we conclude that all these measures
are n for ANDn \circ ORn. In terms of quantum lower bounds, this means we can achieve \Omega

\surd
n using

block sensitivity or fractional block sensitivity, but no better.
Now let’s try using the adversary bound. We pick the hard set of 1-inputs Y to be the inputs

that have exactly one 1 in each column. We pick the hard set of 0 inputs X to be the inputs
that have exactly one all-0 column, and exactly one 1 in each other column. We put an edge
between x \in X and y \in Y in our bipartite graph if x and y disagree on exactly one bit. Now, for
each 0-input x, flipping any bit in the all-1 column gives a 1-input to which it is adjacent; hence
M = n. Similarly, for each 1-input y, flipping any of its 1s gives a 0-input to which it is adjacent,
so M \prime = n. On the other hand, for each bit i, any x \in X is adjacent to at most one y \in Y for
which xi \not = yi, and vice versa, so L = L\prime = 1. This means \mathrm{A}\mathrm{d}\mathrm{v}+(ANDn \circ ORn) \geq

\sqrt{}
n \cdot n/1 \cdot 1 = n,

so \mathrm{Q}(ANDn \circ ORn) = \Omega (n). This lower bound is tight (Grover search can be modified to compute
ANDn \circ ORn in O(n) queries).

Example 2. What is the quantum query complexity of Parityn, the parity function on n bits?
It is not hard to see that \mathrm{s}(Parityn) = n, and hence the block sensitivity and fractional block
sensitivity are also n. However, this only gives a \Omega (

\surd
n) quantum lower bound. In fact, the

sensitivity measures (including fractional block sensitivity) can only every give lower bounds of
\Omega (

\surd
n) or less. Can we show that the quantum query complexity of parity is \Omega (n)?
We use the adversary method. Let X be the set of all 0-inputs, let Y be the set of all 1-inputs,

and place edges on pairs \{ x, y\} which have Hamming distance 1 from each other. Then each input

8 WEEK 3. THE ADVERSARY METHOD

has degree n in this graph. On the other hand, if we restrict to a single bit i, then each x only
has a single neighbor that disagrees with it on i (since all its neighbors disagree on exactly one bit,
which means the only one that disagrees on i is xi). Hence we have M =M \prime = n and L = L\prime = 1,
so \mathrm{A}\mathrm{d}\mathrm{v}+(Parity) \geq

\sqrt{}
n \cdot n/(1 \cdot 1) = n. This gives the \Omega (n) lower bound on quantum query

complexity.

Example 3. We define the “permutation inversion” function f as follows. f will take inputs that
are strings of length n over an alphabet of length n; that is, \mathrm{D}\mathrm{o}\mathrm{m}(f) \subseteq [n]n. It will be a partial
function, with the promise that the input is a permutation. That is, each x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) will have the
symbols 1, 2, . . . , n occurring exactly once each. The task is to find the 1 symbol. Actually, to make
it a decision problem, we will just set f(x) = 0 if the index i such that xi = 1 satisfies i \leq n/2, and
set f(x) = 1 if i > n/2. What is the quantum query complexity of f?

Intuitively, solving f requires finding the 1 symbol, which is essentially an unstructured search
problem. The best algorithm for this should be Grover search, which uses around

\surd
n queries.

However, proving that there is no better quantum algorithm is tricky. The certificate complexity
of f is 1, because to prove the value of f(x) we just need to reveal the position xi with xi = 1.
Even certifying that an input is not in the promise of f is easy: every string not in \mathrm{D}\mathrm{o}\mathrm{m}(f) has
some symbol j \in [n] occurring at least twice, so revealing xi1 = xi2 = j certifies that x /\in \mathrm{D}\mathrm{o}\mathrm{m}(f).
This means that \mathrm{C}(f) = O(1) even if we were to change the definition of \mathrm{C}(f) to count the cost of
certifying that a string is not in the domain.

As before, this means that \mathrm{b}\mathrm{s}(f) and \mathrm{f}\mathrm{b}\mathrm{s}(f) are too small to give a good lower bound (in this
case, they are O(1)). Instead, we will use the adversary method. We will let the set of hard 0-
instances X be the set of all 0-inputs, and similarly Y will be the set of all 1-inputs. We will connect
x \in X and y \in Y by an edge if they differ on exactly two bits. Note that since f(x) = 1 = 0 and
f(y) = 1, this means that the bits i and j where they differ must satisfy xi = 1 and yj = 1 and
i \leq n/2 < j, with xj = yi (since both strings are permutations).

Note that a string x \in X is connected to around n/2 1-inputs, because to get a 1-input from x
we could swap its 1 with any position j > n/2. similarly, every string y \in Y is connected to around
n/2 0-inputs (we ignore the off-by-one issues due to rounding). Hence M = M \prime = n/2. On the
other hand, consider the subgraph in which we keep only edges \{ x, y\} in which xi \not = yi. Assume
without loss of generality that i \leq n/2. Then for any y \in Y , its degree in this subgraph is only
1, because if j is the position with yj = 1, the only 0-input that y is connected to which disagrees
with y at i is the string x which is y with yi and yj swapped. Since there is only one such string, we
have L\prime = 1 and L \leq n/2 for this subgraph. In the case i > n/2, we would get L = 1 and L\prime \leq n/2
instead. Hence in all subgraphs, we have LL\prime \leq n/2, and we conclude that

\mathrm{A}\mathrm{d}\mathrm{v}+(f) = \Omega

\Biggl(\sqrt{}
n/2 \cdot n/2
1 \cdot n/2

\Biggr)
= \Omega (

\surd
n).

This is tight due to Grover search.

References

[Amb03] Andris Ambainis. “Polynomial degree vs. quantum query complexity”. In: Proceedings
of the 44th IEEE Symposium on Foundations of Computer Science (FOCS 2003). 2003
(p. 1).

[ŠS06] Robert Špalek and Mario Szegedy. “All Quantum Adversary Methods are Equivalent”.
In: Theory of Computing 2.1 (2006). doi: 10.4086/toc.2006.v002a001. url: http:
//www.theoryofcomputing.org/articles/v002a001 (pp. 4, 5).

9

https://doi.org/10.4086/toc.2006.v002a001
http://www.theoryofcomputing.org/articles/v002a001
http://www.theoryofcomputing.org/articles/v002a001

	Query Complexity Basics
	Course overview
	Classical query complexity
	Quantum query complexity
	Dirac notation
	Defining quantum query complexity

	Partial functions and examples
	Separations for partial functions

	Relationships for total functions

	Quantum Certificates and the Hybrid Method
	The hybrid method
	Linear programming duality
	Fractional certificates
	Some examples
	Randomized and quantum certificates

	The Adversary Method
	Primal form
	Dual form
	Applications
	Reproving previous results
	New applications

	Weighted Adversaries
	Polynomials, Part 1: Symmetrization
	Polynomials, Part 2: Dual polynomials
	Other Methods
	Lower Bounds by Upper Bounds
	The Multiplicative Adversary Method
	Zhandry's Quantum Lower Bounds
	Polynomial characterization of quantum query complexity

	Communication Complexity Basics
	Approximate Gamma 2 Norm
	Quantum Information Cost
	References

