
Week 2

Quantum Certificates and the Hybrid
Method

2.1 The hybrid method

Recall that last week, we saw that \mathrm{Q}(f) = \Omega (
\sqrt{}
\mathrm{b}\mathrm{s}(f)) follows from \mathrm{Q}(PromiseORn) = \Omega (

\surd
n),

but we did not prove the latter. Let’s now attempt to do so.
The approach we’ll use was first used by [BBB+97], and is called the hybrid method. For an

algorithm Q and a fixed input x \in \{ 0, 1\} n, the hybrid method lets us roughly talk about “where
the algorithm queried” when Q was run on x. It lets us do this even though a quantum algorithm
queries the in superposition, so there is no true answer about where the algorithm queried; still, we
will be able to say something about the relative query weights that were placed on each bit of the
input x.

Before we tackle the hybrid method, let’s look at a classical analogue of it, which can be used to
lower bound randomized query complexity. This analogue takes the form of the following theorem.

Theorem 2.1. Let R be a randomized query algorithm on n bits, and let x \in \{ 0, 1\} n. Let mt
i be the

probability that, when R is run on x, it queries bit i during query number t. Further, let mi =
\sum

tm
t
i

be the expected number of times R queries bit i of x before terminating. Suppose B \subseteq [n] is a
block such that R distinguishes between x and xB to error \epsilon (that is, \mathrm{P}\mathrm{r}[R(x) = 1] \geq 1 - \epsilon and
\mathrm{P}\mathrm{r}[R(xB) = 0] \geq 1 - \epsilon or vice versa). Then\sum

i\in B
mi \geq 1 - 2\epsilon .

Before we prove this theorem, let’s see why it’s useful. Note that
\sum

i\in [n]mi is the expected
number of queries R makes on x, so it is at most the worst-case number of queries of R. If R
computes f to error 1/3 using \mathrm{R}(f) queries, then we have

\sum
i\in [n]mi \leq \mathrm{R}(f). Also, for each

sensitive block B of x, we have
\sum

i\in Bmi \geq 1/3. If there are \mathrm{b}\mathrm{s}(f, x) different disjoint sensitive
blocks for x, then the sum of the mi within each block is at least 1/3, so the sum of the mi in
all the blocks is at least \mathrm{b}\mathrm{s}(f, x)/3. Picking x to be the input with largest block sensitivity, this
shows that \mathrm{R}(f) \geq \mathrm{b}\mathrm{s}(f)/3. In fact, if we use \mathrm{R}\epsilon (f) to denote the worst-case randomized query
complexity of f to error \epsilon (instead of to error 1/3), then this argument (using Theorem 2.1) shows
that \mathrm{R}\epsilon (f) \geq (1 - 2\epsilon) \mathrm{b}\mathrm{s}(f). In other words, this argument analyzing “where the algorithm looked”
for a single block in a single input is enough to prove the block sensitivity lower bound.

OK, let’s prove Theorem 2.1.

1

2 WEEK 2. QUANTUM CERTIFICATES AND THE HYBRID METHOD

Proof. Recall that a randomized query algorithm R is a probability distribution over deterministic
decision trees. The sum

\sum
iinBmi is the expected number of times a decision tree D \sim R queries

some i \in B when it is run on the input x. This expectation is at least the probability p that a tree
D \sim R queries some i \in B at least once when run on x. We now lower bound p.

Now, the key observation is that any decision tree which does not query any i \in B must behave
identically on x and xB, and in particular, must output the same answer. That is to say, with
probability 1 - p the algorithm R does not query in B when run on x, so with probability 1 - p
it must also not query in B when run on xB. Further, if q is the conditional probability that R
outputs 1 when run on x given that it did not query in B, then \mathrm{P}\mathrm{r}[R(x) = 1] is at least (1 - p)q and
\mathrm{P}\mathrm{r}[R(xB) = 1] is also at least (1 - p)q. Assume without loss of generality that q \geq 1/2 (otherwise,
consider the probability 1 - q that R outputs 0 on x conditioned on not querying in B instead of
1). Then \mathrm{P}\mathrm{r}[R(x) = 1] \geq (1 - p)/2 and \mathrm{P}\mathrm{r}[R(xB) = 1] \geq (1 - p)/2. However, one of x and xB is
a 0 input, so one of these probabilities must be at most \epsilon . Hence (1 - p)/2 \leq \epsilon , or p \geq 1 - 2\epsilon , as
desired.

Hopefully Theorem 2.1 is reasonably intuitive: it just says that if an algorithm detects the
difference between x and xB, then it must query a bit inside the set B. Next, we will state the
quantum version of this theorem.

Theorem 2.2. Let Q be a T -query quantum algorithm on n bits, and let x \in \{ 0, 1\} n. Consider
running Q on x until just before query number t, and then measuring the index register (the one
specifying the bit i \in [n] to query next). Let mt

i be the probability that the outcome of this measure-
ment is i. Let mi =

\sum
tm

t
i. Suppose B \subseteq [n] is a block such that Q distinguishes between x and xB

to error \epsilon (that is, \mathrm{P}\mathrm{r}[Q(x) = 1] \geq 1 - \epsilon and \mathrm{P}\mathrm{r}[Q(xB) = 0] \geq 1 - \epsilon or vice versa). Then

\sum
i\in B

mi \geq
(1 - 2\epsilon)2

4T
.

Note that just like in the classical case, we have
\sum

imi = T ; that is, the sum of all mi is the
total number of queries the algorithm Q makes. If we interpret mi to be the expected number of
times Q queries bit i when run on x, then this theorem is saying that to detect a difference between
x and xB, a quantum algorithm needs to query at least \Omega (1/T) total times instead of the block
B, instead of the \Omega (1) required by classical algorithms. That is, the longer the quantum algorithm
runs for, the fewer total queries it needs to make inside of B to detect whether this block B has
been flipped.

Just like in the classical case, we can use Theorem 2.2 to get a lower bound on \mathrm{Q}(f) in terms of
\mathrm{b}\mathrm{s}(f). To see this, consider the input x maximizing \mathrm{b}\mathrm{s}(f, x), which has k = \mathrm{b}\mathrm{s}(f) disjoint sensitive
blocks. Fix a T -query quantum algorithm Q computing f to error \epsilon , and define mi relative to that
Q and x. Then for each sensitive block B of those k blocks, we have

\sum
i\in Bmi \geq (1 - 2\epsilon)2/4T .

Since the blocks are disjoint, we get T =
\sum

imi \geq k(1 - 2\epsilon)2/4T , or T 2 \geq \mathrm{b}\mathrm{s}(f)(1 - 2\epsilon)2/4. Taking
square roots, this is T \geq (1 - 2\epsilon)/2 \cdot

\sqrt{}
\mathrm{b}\mathrm{s}(f), which means that \mathrm{Q}\epsilon (f) \geq (1 - 2\epsilon)/2 \cdot

\sqrt{}
\mathrm{b}\mathrm{s}(f), where

\mathrm{Q}\epsilon (f) denotes the quantum query complexity of f to worst-case error \epsilon .

Corollary 2.3. Let f be a (possibly partial) Boolean function. Then

\mathrm{Q}\epsilon (f) \geq
1 - 2\epsilon

2

\sqrt{}
\mathrm{b}\mathrm{s}(f).

Note that this corollary also gives us \mathrm{Q}(PromiseORn) = \Omega (
\surd
n), as we wanted last class. We

now prove Theorem 2.2.

2.1. THE HYBRID METHOD 3

Proof. Recall that a T -query quantum algorithm Q is a sequence of unitary matrices U0, U1, . . . , UT .
The behavior of Q on an input x is by applying

UTU
xUT - 1U

x . . . UxU0 | \psi init\rangle ,

where | \psi init\rangle = | 0\rangle O | 0\rangle W | 1\rangle I | 0\rangle B. Let | \psi x
1 \rangle := U0 | \psi init\rangle , and for each t \in \{ 1, 2, . . . , T\} define

\psi x
t+1 := UtU

x | \psi x
t \rangle . Then | \psi x

t \rangle is the state of the algorithm Q when run on x right before query t is
made, and | \psi x

T+1\rangle is the final state of the algorithm before being measured.
Let \Pi i be the projector that maps | \psi \rangle on registers O,W, I,B to its component where register I

contains | i\rangle . That is, \Pi i is the matrix IO \otimes IW \otimes | i\rangle \langle i| I \otimes IB, where IO, IW , and IB are the identity
matrices on registers O, W , and B respectively, and \otimes denotes the Kronecker (tensor) product of
the matrices. Then by definition, mt

i = \| \Pi i | \psi x
t \rangle \| 2, where \| \cdot \| denotes the 2-norm.

Note that | \psi x
t \rangle is a quantum state, and therefore a unit vector. We will examine the squared

distance between | \psi x
t \rangle and | \psi xB

t \rangle , that is, the states of the algorithm just before query t is made
when run on x vs. when run on xB. We have

\bigm\| \bigm\| \bigm\| | \psi x
t \rangle - | \psi xB

t \rangle
\bigm\| \bigm\| \bigm\| 2 = \Bigl(

\langle \psi x
t | - \langle \psi xB

t |
\Bigr) \Bigl(

| \psi x
t \rangle - | \psi xB

t \rangle
\Bigr)

= \langle \psi x
t | \psi x

t \rangle + \langle \psi xB

t | \psi xB

t \rangle - \langle \psi x
t | \psi xB

t \rangle - \langle \psi xB

t | \psi x
t \rangle

= 2 - 2\Re
\Bigl(
\langle \psi x

t | \psi xB

t \rangle
\Bigr)
,

where \Re (\cdot) denotes the real part of a complex number. This identity will come in handy.
The idea will be that this distance must be small at the beginning of the algorithm and large

at the end, and can only change when the algorithm “queries inside” the block B where x and xB

differ. In this case where t = 1, we have | \psi x
1 \rangle = | \psi xB

1 \rangle , since these both equal U0 | \psi init\rangle . Hence
the distance between them is 0. Also, in the case where t = T + 1, the vectors | \psi x

T+1\rangle and | \psi xB

T+1\rangle
are the final states of the quantum algorithm when run on x and on xB respectively. Now, write
| \psi x

T+1\rangle = | \phi x0\rangle + | \phi x1\rangle , where | \phi x0\rangle and | \phi x1\rangle are the orthogonal vectors corresponding to the output
register being 0 and 1 respectively. Note that the norm of | \phi x0\rangle and of | \phi x1\rangle sum to 1, since they are
orthogonal components of a unit vector. Then we have

\langle \psi x
T+1| \psi xB

T+1\rangle =
\bigl(
\langle \phi x0 | + \langle \phi x1 |

\bigr) \bigl(
| \phi xB

0 \rangle + | \phi xB

1 \rangle
\bigr)
= \langle \phi x0 | \phi x

B

0 \rangle + \langle \phi x1 | \phi x
B

1 \rangle ,

since all the vectors | \phi z0\rangle are orthogonal to all the vectors | \phi z1\rangle . Using Cauchy-Schwartz, we get

| \langle \psi x
T+1| \psi xB

T+1\rangle | \leq \| \phi x0\| \cdot \| \phi x
B

0 \| + \| \phi x1\| \cdot \| \phi x
B

1 \| = ab+ (1 - a)(1 - b),

where a = \| \phi x0\| and b = \| \phi xB

0 \| . Note that a2 is the probability that the quantum algorithm outputs
0 on input x, which is at most \epsilon ; on the other hand, b2 is the probability that the quantum algorithm
outputs 0 on xB, which is at least 1 - \epsilon . It is not hard to see that the maximum possible value of
ab+ (1 - a)(1 - b) under these constraints is 2

\sqrt{}
\epsilon (1 - \epsilon). This gives

\bigm\| \bigm\| \bigm\| | \psi x
T+1\rangle - | \psi xB

T+1\rangle
\bigm\| \bigm\| \bigm\| 2 \geq 2 - 4

\sqrt{}
\epsilon (1 - \epsilon).

4 WEEK 2. QUANTUM CERTIFICATES AND THE HYBRID METHOD

We now write\sqrt{}
2 - 4

\sqrt{}
\epsilon (1 - \epsilon) \leq

\bigm\| \bigm\| \bigm\| | \psi x
T+1\rangle - | \psi xB

T+1\rangle
\bigm\| \bigm\| \bigm\|

=

T\sum
t=1

\bigm\| \bigm\| \bigm\| | \psi x
t+1\rangle - | \psi xB

t+1\rangle
\bigm\| \bigm\| \bigm\| -

\bigm\| \bigm\| \bigm\| | \psi x
t \rangle - | \psi xB

t \rangle
\bigm\| \bigm\| \bigm\|

=
T\sum
t=1

\bigm\| \bigm\| \bigm\| UtU
x | \psi x

t \rangle - UtU
xB | \psi xB

t \rangle
\bigm\| \bigm\| \bigm\| -

\bigm\| \bigm\| \bigm\| | \psi x
t \rangle - | \psi xB

t \rangle
\bigm\| \bigm\| \bigm\|

=
T\sum
t=1

\bigm\| \bigm\| \bigm\| (UxB
)\dagger Ux | \psi x

t \rangle - | \psi xB

t \rangle
\bigm\| \bigm\| \bigm\| -

\bigm\| \bigm\| \bigm\| | \psi x
t \rangle - | \psi xB

t \rangle
\bigm\| \bigm\| \bigm\|

\leq
T\sum
t=1

\bigm\| \bigm\| \bigm\| (UxB
)\dagger Ux | \psi x

t \rangle - | \psi xB

t \rangle - | \psi x
t \rangle + | \psi xB

t \rangle
\bigm\| \bigm\| \bigm\|

=

T\sum
t=1

\bigm\| \bigm\| \bigl(Ux - UBx\bigr) | \psi x
t \rangle
\bigm\| \bigm\| .

Here the fourth line followed by using the fact that the unitary matrices preserve the 2-norm, and
applying (UxB

)\dagger U \dagger
t inside the norm (recall that U \dagger = U - 1 for a unitary matrix U). The fifth line

followed using triangle inequality. The last line followed by multiplying the unitary UxB inside the
norm.

Next, we note that | \psi x
t \rangle =

\sum n
i=1\Pi i | \psi x

t \rangle . Furthermore, the matrix Ux - UxB maps any vector
that has i in the index register to 0 if i /\in B; this is because for i /\in B, we Ux and UxB behave the
same on such a vector. We can therefore continue our inequality chain:

=

T\sum
t=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigl(Ux - UxB\bigr) n\sum
i=1

\Pi i | \psi x
t \rangle

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|
=

T\sum
t=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|
n\sum

i=1

\bigl(
Ux - UxB\bigr)

\Pi i | \psi x
t \rangle

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|
=

T\sum
t=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum
i\in B

\bigl(
Ux - UxB\bigr)

\Pi i | \psi x
t \rangle

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\|
=

T\sum
t=1

\sqrt{} \sum
i\in B

\bigm\| \bigm\| \bigl(Ux - UxB
\bigr)
\Pi i | \psi x

t \rangle
\bigm\| \bigm\| 2

\leq
T\sum
t=1

\sqrt{} \sum
i\in B

4mt
i

\leq

\sqrt{} T

T\sum
t=1

\sum
i\in B

4mt
i

=

\sqrt{}
4T

\sum
i\in B

mi.

Several lines here require explanation. The fourth line follows because each of the vectors
\bigl(
Ux -

UxB\bigr)
\Pi i | \psi x

t \rangle for different values of i are all orthogonal. The fifth line follows because, by triangle

2.2. LINEAR PROGRAMMING DUALITY 5

inequality,\bigm\| \bigm\| \bigm\| \bigl(Ux - UxB\bigr)
\Pi i | \psi x

t \rangle
\bigm\| \bigm\| \bigm\| \leq \| Ux\Pi i | \psi x

t \rangle \| + \| UxB
\Pi i | \psi x

t \rangle \| = 2\| \Pi i | \psi x
t \rangle \| = 2

\sqrt{}
mt

i.

The sixth line follows by Cauchy-Schwartz on the sum over t, and the last line by rearranging the
sums and by the definition of mi.

We therefore conclude \sum
i\in B

mi \geq
1 - 2

\sqrt{}
\epsilon (1 - \epsilon)

2T
.

To finish the proof, we note that

2
\sqrt{}
\epsilon (1 - \epsilon) =

\sqrt{}
1 - (1 - 2\epsilon)2 \leq 1 - (1 - 2\epsilon)2/2,

from which we get 1 - 2
\sqrt{}
\epsilon (1 - \epsilon) \geq (1 - 2\epsilon)2/2.

As mentioned, Theorem 2.1 is a classical randomized version of what is known as the quantum
hybrid method. This term “hybrid method” is historical. The phrase usually refers to taking a
sequence of progress measures W0,W1, . . . ,Wk, arguing that W0 is small and Wk is large, and then
placing a bound on the distance between consecutive terms, Wi+1 - Wi \leq \alpha , in order to conclude
that k must be large: k \geq (Wk - W0)/\alpha . That is to say, if we’ve transformed from an object W0

to another object Wk in k steps, we look at the “hybrid” object that we must have become in the
middle, and argue that if the hybrid object did not change quickly, then the number of steps was
large.

While such an argument did show up in the quantum version of the proof, this is not unique
to the so-called quantum hybrid method; other methods, such as the “adversary methods” we will
study later, also have this format. The name is therefore somewhat misleading, but it has stuck.

2.2 Linear programming duality

Before we proceed further, we will make a short detour into the theory of linear programming, which
plays an important role in both quantum and classical lower bounds. Hopefully, many students will
have already seen linear programming before; it has a rich theory, most of which we will not need
to get into. The main concept in linear programming that will be crucial is the notion of duality,
and in particular, the strong duality theorem of linear programming.

First things first: what is a linear program? The term “program” is historical, and has nothing
to do with programming (it originally meant something closer to planning or scheduling, like how
a television program uses the word “program”). In a linear program, we have some set of n real
variables, which we arrange in a vector x \in \BbbR n. We wish to minimize some linear function of these
variables, which we will denote by \langle w, x\rangle where w \in \BbbR n is a fixed, known vector of constants. This
minimization is subject to constraints which are also linear; for example, one constraint might say
that \langle a, x\rangle \geq c, where a \in \BbbR n is a fixed vector and c \in \BbbR is a fixed constant.

More generally, since we will have many constraints, we will arrange them in a matrix A; all
the constraints together will therefore be written Ax \geq b, where A \in \BbbR m\times n and b \in \BbbR m for some
m \in \BbbN . Note that constraints of the form \langle a, x\rangle \leq c (instead of greater than c) are also allowed,
but we can still store them as one row of A (and one entry of b) by negating the equation to turn it
into a greater than condition (this negates a and c). Similarly, constraints of the form \langle a, x\rangle = c are
allowed as well, but can be represented as one greater than inequality and one less than inequality.
Strict constraints such as < or > are not allowed.

6 WEEK 2. QUANTUM CERTIFICATES AND THE HYBRID METHOD

A general linear program will therefore have the form

minimize \langle w, x\rangle
subject to Ax \geq b,

where x \in \BbbR n is a vector of variables, and w \in \BbbR n, b \in \BbbR m, and A \in \BbbR m\times n are constants. The goal
is to solve for x.

When first encountering a linear program, it might be tempting to try to use multivariable
calculus to solve this task. However, most multivarable calculus techniques will have a step saying
“now check the edge cases”, and in linear programming, the optimal solution will always be an edge
case. Visually, you can imagine each constraint (each row of Ax \geq b) to be saying that the vector
x is on one side of a hyperplane; in other words, that x is in one half space. Since we have many
constraints, what they effectively say is that x must lie in an intersection of half spaces. In other
words, Ax \geq b defines a polytope: a convex area of the space \BbbR n that is cut off by linear hyperplanes.
The maximization task \langle w, x\rangle tells us to find the point inside of the polytope that is the furthest in
some specific direction (the one defined by w). That is, if we rotated the polytope a certain way,
then the optimization task would just be to find the lowest point in the polytope. It is not hard to
see that this lowest point is always a vertex of the polytope (or tied with a vertex).

What we will be primarily interested in is the notion of duality. To introduce duality, it will be
easiest to give a concrete example. Consider the following linear program.

minimize 3x1 - x2
subject to x1+ x2 \geq 0

2x1 - 2x2 \geq - 1
5x1 - x2 \geq 2

How would I convince you that the optimal solution has objective value at most 5? This is easy to
do: I would just need to give you some feasible solution, such as x1 = 2 and x2 = 1, and you could
check that this solution satisfies the constraints and has objective value 5. Therefore, proving that
the optimal value of a minimization program is at most something is easy.

What if I wanted to convince you that the optimal value is at least something? Well, note that
if we add the first two constraints together, we get 3x1 - x2 \geq - 1. Since the objective function
is 3x1 - x2, this proves the that optimal value must be at least - 1. There is actually another
lower bound we can get in this way: we can add 1/4 times the second constraint and 1/2 times
the third constraint to get 3x1 - x2 \geq 3/4, a better bound. This bound turns out to be tight. To
prove this, I just need to give you a feasible solution with objective value 3/4. Such a solution is
(x1, x2) = (5/8, 9/8).

As we saw, to prove lower bounds on the minimization problem, we can take linear combinations
of the constraints in order to construct a new constraint that effectively says “the objective function
is at least c” for some constant c. What is the best lower bound we can construct in this way?
Well, to be more precise, constructing a lower bound in this way means picking some weight yi
for each constraint, so we have y1, y2, y3 \in \BbbR . We want to multiply each constraint by its weight
and add them together; however, this only gives us a new valid constraint if the yi weights are
non-negative, since our constraints are inequalities. So we have y1, y2, y3 \geq 0. Next, we want the
resulting constraint to look exactly the same as the objective function 3x1 - x2. This means we
want the new coefficient of x1 to be 3, which means y1 + 2y2 + 5y3 = 3. It also means we want the
new coefficient of x2 to be - 1, which means y1 - 2y2 - y3 = - 1. Finally, we want to maximize the
right hand side of the new constraint, so we want to maximize - y2 + 2y3. In other words, finding

2.3. FRACTIONAL CERTIFICATES 7

the best lower bound of this form amounts to solving a new linear program!

maximize - y2 +2y3
subject to y1 +2y2 +5y3 = 3

y1 - 2y2 - y3 = - 1
y1 , y2 , y3 \geq 0

This linear program is called the dual of the previous one. More generally, if the minimization
program had the form

minimize \langle w, x\rangle
subject to Ax \geq b,

then its dual will be a maximization program of the form

maximize \langle b, y\rangle
subject to AT y = w

y \geq 0.

Note that any feasible solution to the minimization program must have objective value larger than
that of any feasible solution to the maximization program, because the maximization program was
designed to give lower bounds for the minimization program. Moreover, we can take the dual of the
dual, which turns out to equal the original (primal) linear program.

The fundamental property you need to know about linear program is the following magical
theorem.

Theorem 2.4 (Strong duality of linear programs). The optimal objective value of a linear program
equals the optimal objective value its dual.

This theorem is highly nontrivial and should be surprising; after all, why should it be that lower
bounds we can get by naively combining constraints turn out to be the best possible lower bounds?
However, it turns out to be true (though we will not prove it).

One thing to note: if the original (primal) program has contradictory constraints, then it of
course has no solution. If it is a minimization program, we say its optimal objective value is \infty ,
to denote that it has no solutions at all (any solution would be better than \infty for a minimization
program). Its dual can still be defined, and it will be a maximization program with optimal objective
value \infty ; this means it will be unbounded, with no upper limit on how good the feasible solutions
can get. Conversely, if the minimzation program is unbounded, we denote its optimal objective
value by - \infty , and its dual will be a maximization program which is infeasible. In other words,
strong duality holds even in the degenerate cases where there is no optimal solution to the linear
programs.

2.3 Fractional certificates

We will now define a new query complexity measure called fractional certificate complexity, and
show that it is a better lower bound on quantum query complexity than the block sensitivity.

Recall that the certificate complexity of an input x relative to a function f was the minimum
size of a certificate consistent with x, or in other words, the minimum number of bits of x I need to
show you to convince you of the value of f(x). Viewed another way, this is the minimum number
of bits of x that must be revealed such that each y with f(y) \not = f(x) must disagree with x on one
of those revealed bits.

8 WEEK 2. QUANTUM CERTIFICATES AND THE HYBRID METHOD

We can relax this definition to allow for fractional certificates. In a fractional certificate, each
bit is included with some non-negative weight wi. The total cost or size of a fractional certificate
is

\sum
i\in [n]wi. The condition a fractional certificate for x must satisfy is that for all inputs y with

f(y) \not = f(x), we have
\sum

i:yi \not =xi
wi \geq 1. That is, each string y that disagrees with x on f -value must

conflict with x on a set of bits whose total weight is at least 1 (under the weight scheme defined
by the fractional certificate). Note that if we restricted all the weights to be in B, then fractional
certificates would become the same as regular certificates.

We denote the minimum size of a fractional certificate for x with respect to f by \mathrm{F}\mathrm{C}(f, x). We
then define \mathrm{F}\mathrm{C}(f) to be the maximum value of \mathrm{F}\mathrm{C}(f, x) over all x \in \mathrm{D}\mathrm{o}\mathrm{m}(f). Observe the following
theorem.

Theorem 2.5. Let f be a (possibly partial) Boolean function. Then

\mathrm{R}\epsilon (f) \geq (1 - 2\epsilon) \mathrm{F}\mathrm{C}(f),

\mathrm{Q}\epsilon (f) \geq
1 - 2\epsilon

2

\sqrt{}
\mathrm{F}\mathrm{C}(f).

Proof. Let R be a randomized algorithm computing f to error \epsilon using T = \mathrm{R}\epsilon (f) queries, and let
x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) be such that \mathrm{F}\mathrm{C}(f, x) = \mathrm{F}\mathrm{C}(f). Let mi be defined with respect to R and x as in the
hybrid argument, Theorem 2.1. Then fix any y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) such that f(y) \not = f(x), and let B be the
set of bits i \in [n] such that yi \not = xi. Then y = xB, and since R distinguishes x from xB, we must
have

\sum
i\in Bmi \geq 1 - 2\epsilon . Now define wi = m/(1 - 2\epsilon). Then

\sum
i:yi \not =xi

wi \geq 1 for all y such that
f(y) \not = f(x), so the vector w is a fractional certificate for x with respect to f . Its objective value is\sum

iwi = (1 - 2\epsilon) - 1
\sum

imi = \mathrm{R}\epsilon (f)/(1 - 2\epsilon), which is an upper bound on \mathrm{F}\mathrm{C}(f, x), and therefore
on \mathrm{F}\mathrm{C}(f). The desired result for randomized algorithms follows.

The proof of the quantum claim is similar. Let Q be a quantum algorithm computing f to error \epsilon
using T = \mathrm{Q}\epsilon (f) queries, and let x \in \mathrm{D}\mathrm{o}\mathrm{m}(f) be such that \mathrm{F}\mathrm{C}(f, x) = \mathrm{F}\mathrm{C}(f). Let mi be defined as
in the quantum hybrid argument Theorem 2.2 with respect to Q and x, and let wi = 4Tmi/(1 - 2\epsilon)2.
Then for any y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) with f(y) \not = f(x), the algorithm Q must distinguish x and y to error
\epsilon , so

\sum
i:yi \not =xi

wi = (4T/(1 - 2\epsilon)2)
\sum

i:yi \not =xi
mi \geq 1, meaning the vector w is a fractional certificate

for x with respect to f . The total cost of w is
\sum

iwi = (4T/(1 - 2\epsilon)2)
\sum

imi = 4T 2/(1 - 2\epsilon)2, so
\mathrm{Q}\epsilon (f) = T \geq

\sqrt{}
\mathrm{F}\mathrm{C}(f) \cdot (1 - 2\epsilon)/2.

Note that since \mathrm{F}\mathrm{C}(f, x) is a minimization over weights, and since it has strictly less con-
straints than \mathrm{C}(f, x) (it does not have the constraints that the weights are in \{ 0, 1\}), we must have
\mathrm{F}\mathrm{C}(f, x) \leq \mathrm{C}(f, x) for all f and x. This also means that \mathrm{F}\mathrm{C}(f) \leq \mathrm{C}(f). Note that while we know
that \mathrm{F}\mathrm{C}(f) gives a lower bound for randomized and quantum algorithms, the same is not true for
\mathrm{C}(f), at least for partial functions.

To better understand \mathrm{F}\mathrm{C}(f), we note that the problem of finding a fractional certificate for
a specific input x is actually a linear program. That is, we have a vector of variables w \in \BbbR n,
which must be non-negative, meaning w \geq 0. We also have other constraints: for each y such that
f(x) \not = f(y), we have a constraint that says

\sum
i:xi \not =yi

wi \geq 1, which is linear in the variables wi.
Finally, the objective value is

\sum
iwi, which is still linear. In other words,

\mathrm{F}\mathrm{C}(f, x) = minimize
\sum

i\in [n] wi

subject to
\sum

i:yi \not =xi
wi \geq 1 \forall y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) : f(y) \not = f(x)

wi \geq 0 \forall i \in [n].

2.4. SOME EXAMPLES 9

The dual of this linear program is called the fractional block sensitivity, \mathrm{f}\mathrm{b}\mathrm{s}(f, x).

\mathrm{f}\mathrm{b}\mathrm{s}(f, x) = maximize
\sum

y:f(y) \not =f(x)uy
subject to

\sum
y:yi \not =xi

uy \leq 1 \forall i \in [n]

uy \geq 0 \forall y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) : f(y) \not = f(x).

This dual assigns a non-negative weight uy to each input y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) with f(y) \not = f(x), such that
on every bit i, the total weight assigned to inputs that disagree with x is at most 1. Another way
to look at this is to view each y as defining a sensitive block B for x, which is the set of all bits i
on which x and y disagree; that is, the set B such that xB = y. Then this dual program assigns a
weight to each sensitive block B of x such that for each bit i \in [n], the total weight of the blocks
that contain bit i is at most 1. Note that if the weights were in \{ 0, 1\} , this would force all the blocks
of non-zero weight to be disjoint, that is, the weight scheme would simply define a set of disjoint
sensitive blocks of x. The objective value is the sum of the weights, which in the \{ 0, 1\} case would
be the number of disjoint sensitive blocks.

Since we are maximizing, and since the fractional block sensitivity removes a constraint (the
constraint that the weights are in \{ 0, 1\}) relative to the definition of \mathrm{b}\mathrm{s}(f, x), we have \mathrm{f}\mathrm{b}\mathrm{s}(f, x) \geq
\mathrm{b}\mathrm{s}(f, x) for all f and x. This means we also have \mathrm{f}\mathrm{b}\mathrm{s}(f) \geq \mathrm{b}\mathrm{s}(f). By strong duality, we know that
\mathrm{f}\mathrm{b}\mathrm{s}(f, x) = \mathrm{F}\mathrm{C}(f, x), which also means that \mathrm{f}\mathrm{b}\mathrm{s}(f) = \mathrm{F}\mathrm{C}(f). This measure is usually denoted by
\mathrm{f}\mathrm{b}\mathrm{s}(f) rather than being denoted by \mathrm{F}\mathrm{C}(f).

Now, since \mathrm{f}\mathrm{b}\mathrm{s}(f) \geq \mathrm{b}\mathrm{s}(f) and since we have shown that \mathrm{f}\mathrm{b}\mathrm{s}(f) lower bounds \mathrm{R}(f) (and
\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(f)

lower bounds \mathrm{Q}(f)), we remark that this lower bound is actually an improvement over the block
sensitivity lower bound we saw earlier. That is, not only did the hybrid argument give us the block
sensitivity lower bound, it actually also gave us the fractional block sensitivity lower bound—which
is stronger.

2.4 Some examples

Example 1. Consider the following function defined on
\bigl(
n
2

\bigr)
bits. The bits of the input will

represent the edges of a graph on n vertices; if an input bit is 1, the corresponding edge is present in
the graph, and if it is 0, the edge is absent. Inputs x to the function f will therefore be undirected
graphs on n vertices. The function f will be a promise problem; the input is promised to be either
the all-0 string (the graph with no edges), or else a star. A star is a graph that has one vertex v
that is connected to all other vertices, that is, it has degree n - 1, and no other edges (that is, n - 1
total edges). We define f(x) = 0 if x is the all-zero string, and f(x) = 1 otherwise. What is \mathrm{R}(f)
and \mathrm{Q}(f)?

Note that a strategy of picking random bits and querying them has some chance of finding an
edge if the input is a star; this probability is (n - 1)/

\bigl(
n
2

\bigr)
= 2/n per query. After O(n) queries,

this strategy finds a 1 in the string with high (constant) probability if the input is a star. Hence
\mathrm{R}(f) = O(n). Using Grover search, a quantum algorithm can speed this up quadratically, to
\mathrm{Q}(f) = O(

\surd
n).

What about the lower bounds? It might be tempting to try to use block sensitivity, but it turns
out that the block sensitivity of this function is 1. That’s because if the input is a star, the only
block to flip to get a 0 input is the entire star. On the other hand, if the input is all-0, then to get
a 1-input we must flip an entire star, but any two stars overlap on some bit, and so are not disjoint
(this is because the star centered at vertex u and the star centered at vertex v overlap on the edge
between u and v).

10 WEEK 2. QUANTUM CERTIFICATES AND THE HYBRID METHOD

Instead, we use fractional block sensitivity. We pick the all-zero string, and assign a weight to
each of its sensitive blocks—that is, to each star. There are n stars (one centered on each vertex),
and we will give them each weight 1/2. Then for every bit i, this bit corresponds to an edge \{ u, v\} ,
and there are only two sensitive blocks that use this edge: the star centered on u and the star
centered on v. Hence for each bit, the weight of all blocks containing it is 1. On the other hand,
the total weight of all blocks is n/2. We therefore get \mathrm{R}(f) = \Omega (n) and \mathrm{Q}(f) = \Omega (

\surd
n), meaning

that our upper bounds were tight.

Example 2. Consider the function f on 2n bits whose promise is that the Hamming weight of
the input is 1. If the 1 occurs in the first n bits of x, we have f(x) = 0, whereas if the 1 is in the
second n bits of x, we have f(x) = 1. What are \mathrm{R}(f) and \mathrm{Q}(f)?

This function f wants you to find the position of the 1; this can be solved using O(
\surd
n) queries

quantumly, but seems to require roughly n queries classically. But how do we prove these lower
bounds?

We can look at the block sensitivity of this function. At a given input x, say with x1 = 1, to
flip the value of f(x) we must move the 1 from the left to the right; this requires flipping two bits,
x1 and another bit xm with m \in (n, 2n]. Note that all of these sensitive blocks for x overlap on the
bit x1. This means the block sensitivity of x is 1.

What about the fractional block sensitivity? It turns out that this is also 1! That’s because all
the blocks of x overlap on the same bit; since we’re only allowed to have total weight 1 on that bit,
we can only assign total weight 1 to all the sensitive blocks of x, so \mathrm{f}\mathrm{b}\mathrm{s}(f, x) = 1 for all x.

Now what? Well, it turns out that we can add another input to the domain of f to solve our
problems. Consider the string 02n, which is not in the domain of f . Intuitively, 02n is hard to
distinguish from both the 0-inputs of f and also from the 1-inputs of f ; this can imply that the
0-inputs are hard to distinguish from the 1-inputs.

The way this trick will work is to consider a quantum algorithm Q for f , and then run Q on
02n. Of course, 0n is not in the domain of f . However, it is still possible to run Q on it and see
what happens. Q will output 1 with some probability p. We know that p \in [0, 1], but since 02n is
not in the domain of f , there are no further guarantees on p: it might even be equal to 1/2. Still,
let’s look at whether p is closer to 0 or to 1. We must have either p \leq 1/2, or else p \geq 1/2. In the
former case, Q distinguishes 02n from all 1-inputs, because it accepts 1-inputs with probability at
least 2/3 but accepts 02n with probability at most 1/2; with some rebalancing and amplification,
we can get an algorithm Q\prime (which costs only a constant factor more than Q) which distinguishes
02n from all 1-inputs. Similarly, if p \geq 1/2, we can get an algorithm Q\prime which distinguishes 02n

from all 0-inputs of f .
Either way, the algorithm Q\prime solves a task that requires \Omega (

\surd
n) quantum queries to solve. This

is because this task requires distinguishing an all-zero string from n different strings of Hamming
weight 1. The block sensitivity of this task is now n, which means that \Omega (

\surd
n) quantum queries

are required. Since Q\prime solves this task using only a constant factor more queries than Q, it must be
the case that Q used \Omega (

\surd
n) queries as well, so \mathrm{Q}(f) = \Omega (

\surd
n). A similar argument can be used to

establish the randomized lower bound.

2.5 Randomized and quantum certificates

Finally, we note that there is yet another interpretation for fractional certificates. For any input
x to a function f , define a new function fx which is a restriction of f to a promise. This function

fx will have domain \{ x\} \cup \{ y \in \mathrm{D}\mathrm{o}\mathrm{m}(f) : f(y) \not = f(x)\} , and on this domain it will behave like f .
Then clearly \mathrm{D}(fx) \leq \mathrm{D}(f), \mathrm{R}(fx) \leq \mathrm{R}(f), and \mathrm{Q}(fx) \leq \mathrm{Q}(f).

Now, it is not hard to see that \mathrm{D}(fx) = \mathrm{C}(f, x). That’s because solving fx only requires
checking if the input equals x or has opposite f -value, which can be done by querying all the bits
of a certificate of x with respect to f . This gives an interesting relationship between the measures
\mathrm{D}(f) and \mathrm{C}(f).

As it turns out, we also have \mathrm{R}(fx) = \Theta (\mathrm{F}\mathrm{C}(f, x)). In one direction, if we had a fractional
certificate for x, we could query each of the bits of the input with probability equal to their assigned
weight in the fractional certificate; if we make the choice of querying or not independently for each
bit, this will cost an expected \mathrm{F}\mathrm{C}(f, x) queries, and will discover a difference from x (if it is there)
with probability at least 1/e. With amplification, this can be turned into a bounded-error algorithm
for fx of expected cost \mathrm{F}\mathrm{C}(f, x), and using the Markov cutoff trick we can turn the expected cost
into a worst-case cost. In the other direction, note that \mathrm{f}\mathrm{b}\mathrm{s}(fx, x) = \mathrm{f}\mathrm{b}\mathrm{s}(f, x), which we have already
seen is a lower bound on \mathrm{R}(fx).

What is \mathrm{Q}(fx)? Well, we know that \mathrm{Q}(fx) = \Omega (
\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(fx, x)) = \Omega (

\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(f, x)). It turns out

the upper bound also holds: using a modification of Grover search combined with the randomized
algorithm approach, we can get \mathrm{Q}(fx) = O(

\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(f, x)), so we have \mathrm{Q}(fx) = \Theta (

\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(f, x)).

For this reason, the measure \mathrm{f}\mathrm{b}\mathrm{s}(f, x) (or equivalently \mathrm{F}\mathrm{C}(f, x)) is sometimes called the ran-
domized certificate complexity of f at x, because it is a randomized analogue of \mathrm{C}(f, x). Similarly,\sqrt{}
\mathrm{f}\mathrm{b}\mathrm{s}(f, x) is sometimes called the quantum certificate complexity of f . These definitions were first

defined in [Aar08].

References

[Aar08] Scott Aaronson. “Quantum certificate complexity”. In: Journal of Computer and System
Sciences 74.3 (2008). Computational Complexity 2003. doi: 10.1016/j.jcss.2007.
06.020. eprint: 1506.04719 (p. 11).

[BBB+97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. “Strengths
and Weaknesses of Quantum Computing”. In: SIAM Journal on Computing (special
issue on quantum computing) 26 (5 1997) (p. 1).

11

https://doi.org/10.1016/j.jcss.2007.06.020
https://doi.org/10.1016/j.jcss.2007.06.020
1506.04719

	Query Complexity Basics
	Course overview
	Classical query complexity
	Quantum query complexity
	Dirac notation
	Defining quantum query complexity

	Partial functions and examples
	Separations for partial functions

	Relationships for total functions

	Quantum Certificates and the Hybrid Method
	The hybrid method
	Linear programming duality
	Fractional certificates
	Some examples
	Randomized and quantum certificates

	The Adversary Method
	Weighted Adversaries
	Polynomials, Part 1: Symmetrization
	Polynomials, Part 2: Dual polynomials
	Other Methods
	Lower Bounds by Upper Bounds
	The Multiplicative Adversary Method
	Zhandry's Quantum Lower Bounds
	Polynomial characterization of quantum query complexity

	Communication Complexity Basics
	Approximate Gamma 2 Norm
	Quantum Information Cost
	References

