
Lecture 2

Regular Expressions

2.1 Regular Languages

In the last lecture, we defined various operations on regular languages. Three of those operations
are called the regular operations. These are union, concatenation, and star. That is, if A and B are
languages, then we’ve seen that A\cup B, AB, and A\ast are also languages. These three operations are
the regular operations on languages.

A language is called regular if it can be defined using only the regular operations, starting from
only the individual characters in the alphabet \Sigma . More specifically, the regular languages over an
alphabet \Sigma are defined recursively:

1. \varnothing and \{ \epsilon \} are regular.

2. \{ c\} is regular for each character c \in \Sigma .

3. If A and B are regular, then A \cup B is regular.

4. If A and B are regular, then AB is regular.

5. If A is regular, then A\ast is regular.

In the above definition, we consider only languages defined over a fixed alphabet \Sigma . The first
two items function as base cases: they say that the empty language \varnothing is regular, and the languages
of size 1 consisting of a single string of length at most 1 are also regular. Taken together with the
last three items, this definition is saying that regular languages are the ones we can form by starting
with these basic size-1 languages, and using any combination of unions, concatenations, and stars
in any order. If a language A can be constructed in this way, it is called regular; if it cannot, A is
not regular.

Which languages are regular? We can start with a few observations. First, for every string
x \in \Sigma \ast , the language \{ x\} is regular. This holds even if the string x is not a single character but a
longer string. To see why, recall that a string is a finite sequence of characters, and can therefore
be written as a finite concatenation of length-1 strings: x = x1x2x3 . . . xn, where n = | x| . It
follows that the set \{ x\} is equal to the concatenation \{ x1\} \{ x2\} \{ x3\} . . . \{ xn\} . Each of these sets
\{ xi\} contains just a single character in \Sigma , and is therefore regular. Moreover, concatenation of two
regular languages gives a regular language. It therefore follows that the concatenation of all these
strings, which equals \{ x\} , is still regular (formally, we would have to prove this by induction).

We have concluded that \{ x\} is regular for every string x. This means every language of size 1 is
regular. Now, recall that the union of two regular languages is regular. From this we can conclude

1

2 LECTURE 2. REGULAR EXPRESSIONS

that each language of size 2 is also regular: after all, such a language must have the form \{ x, y\} for
some strings x and y, and \{ x, y\} = \{ x\} \cup \{ y\} . Since \{ x\} and \{ y\} are regular, it must be the case
that \{ x, y\} is regular as well.

Next, we can use the same argument to show that every language of size 3 is regular, and that
every language of size 4 is regular, and so on. In fact, using induction, we can generalize this
argument prove the following theorem.

Theorem 2.1. Every finite language is regular.

Of course, not only finite languages are regular. Another example of a regular language is the
language of all strings \Sigma \ast . Why is this regular? Well, the alphabet \Sigma is finite, and therefore regular,
and the star operation preserves regularity (by the definition of regular languages). Another example
of a regular language is the language A of all strings that have the form 00 . . . 011 . . . 1, consisting
of some number of zeros followed by some number of ones. This language is regular because it can
be constructed as follows: \{ 0\} \ast \{ 1\} \ast .

Question 2.2. Let A be the language of all strings in \Sigma \ast of even length. Is A regular?

The answer is yes: A can be written as (\Sigma \Sigma)\ast , and is therefore regular. This is because \Sigma \Sigma is
the language that contains all strings of length 2, and applying star to it gives all strings that can
be constructed out of length-2 pieces—that is, all even-length strings.

Are there languages that are not regular? It turns out that there are. One example is the
language over \{ 0, 1\} consisting of all strings with an equal number of ones and zeros. We will have
to wait a few lectures before proving that this language is not regular. Later in the course, we will
see a general way of proving irregularity of languages.

2.2 Regular Expressions

As we saw above, to show that a language is regular, all we need to do is to show how to decompose
it into the elementary pieces (\epsilon and characters in \Sigma) using the operations union, concatenation,
and star. Regular expressions are a notation for such decompositions which is a little bit cleaner,
removing clutter from excess brackets.

Formally, a regular expression is a string. If the alphabet is \Sigma , a regular expression over \Sigma
will actually be a string over an expanded alphabet: in addition to the characters in \Sigma , a regular
expression can also include the characters \varnothing , \epsilon , \cup , \ast , (, and). Note that we will assume \Sigma did
not already contain any of those characters; this assumption is not a problem, because the symbols
used in \Sigma are arbitrary; we could always replace them by the numbers 0, 1, 2, . . . , | \Sigma | - 1 without
affecting our analysis of the languages over \Sigma (all that would change is the notation we use to talk
about such languages).

The formal definition of a regular expression over \Sigma is recursive, just like the definition of a
regular language was recursive.

1. The symbol \varnothing is a regular expression.

2. The symbol \epsilon is a regular expression.

3. For each c \in \Sigma , the symbol c is a regular expression.

4. If R1 and R2 are regular expressions, then the string (R1 \cup R2) is a regular expression.

5. If R1 and R2 are regular expressions, then the string (R1R2) is a regular expression.

2.3. EXAMPLES OF REGULAR EXPRESSIONS 3

6. If R is a regular expression, then the string (R\ast) is a regular expression.

Note that in the above definition, \varnothing is a symbol rather than being the empty set; regular
expressions are always just strings, though they are strings that are meant to represent languages.
It might sometimes be helpful to place regular expressions in quotes, like ``\varnothing \prime \prime , to remind ourselves
that we are talking about symbols or strings rather than sets (which share some of the notation).

One of the main ways in which regular expressions differ from standard set notation is that the
curly brackets \{ \} are omitted. For example, if \Sigma = \{ 0, 1\} , the set \{ 0, 1\} has regular expression
(0 \cup 1), even though in ordinary set notation we would have to write \{ 0\} \cup \{ 1\} . In effect, regular
expressions are a shorthand that allows us to use 0 to denote \{ 0\} , 1 to denote \{ 1\} , \epsilon to denote \{ \epsilon \} ,
and so on.

Next, we formally define how to convert a regular expression into the set it represents. This
conversion is intuitive, but it is nice to have a formal definition. If R is a regular expression over
\Sigma , we denote the language of R by L(R), which we define as follows.

1. If R = \varnothing , then L(R) = \varnothing .

2. If R = \epsilon , then L(R) = \{ \epsilon \} .

3. If R = c for some c \in \Sigma , then L(R) = \{ c\} .

4. If R = (R1 \cup R2) for some regular expressions R1 and R2, then L(R) = L(R1) \cup L(R2).

5. If R = (R1R2) for some regular expressions R1 and R2, then L(R) = L(R1)L(R2).

6. If R = (R\ast
1) for some regular expression R1, then L(R) = L(R1)

\ast .

As you may have noticed, one annoying feature of the way we’ve defined regular expressions is
that there are a lot of round brackets around everything. These round brackets are an artifact of
the formal definition (in which we want to ensure the order of operations is not ambiguous), but
they are often not necessary when writing informally. For example, in this class, we will simply
write 0\cup 1 as a valid regular expression for \{ 0, 1\} , even though formally it would have to be (0\cup 1).

To be able to discard even more parentheses, we introduce an order of operations for regular
oprations:

\bullet Star is applied before concatenation and union.

\bullet Concatenation is applied before union.

This means that the expression 01\ast \cup 0\ast 1 should be interpreted as equivalent to the regular ex-
pression ((0(1\ast))\cup ((0\ast)1)). This convention cleans up a lot of clutter and makes regular expressions
much more readable.

2.3 Examples of Regular Expressions

The art of constructing regular expressions takes some getting used to. Let’s go through a few
exercises to get a feel for how they work.

Question 2.3. Let A be the language over \{ 0, 1\} consisting of all strings with an even number of
ones. What is a regular expression for A?

4 LECTURE 2. REGULAR EXPRESSIONS

We want to use a regular expression to capture only the strings with an even number of ones.
One attempt might be (11)\ast . However, this gives us the set \{ \epsilon , 11, 1111, 111111, . . . \} , and while this
set contains only strings with an even number of ones, it is missing many other strings with an even
number of ones, such as 0101.

The right way to approach this problem is to try to decompose the target language A into
smaller pieces. How can we construct a string with an even number of ones out of smaller blocks?
Well, one way to do so is to notice that a string with an even number of ones is a concatenation of
smaller strings, each with exactly two ones. So if we had a regular expression for the strings with
exactly two ones, we may be able to use it as a building block. In turn, a string with two ones can
be further decomposed: it looks like a block of zeros, followed by a 1, followed by another block of
zeros, followed by another 1, finally followed by another block of zeros. This is the regular expression
0\ast 10\ast 10\ast . Note that 0\ast represents a block of zeros: it gives the language L(0\ast) = \{ \epsilon , 0, 00, 000, . . . \} ,
which contains any number of zeros in a row (such a block of 0s may even have size zero).

Putting this together, it suggests the regular expression (0\ast 10\ast 10\ast)\ast . This regular expression
represents taking any number of strings with two 1s, and concatenating those strings together. This
almost gives us what we want; however, this language is still missing some strings with an even
number of ones. It is missing the strings 0, 00, 000, etc. (although it does contain the string \epsilon).
That’s because there was a subtle error in the way we’ve decomposed our strings: we said that a
string with an even number of ones is always a concatenation of strings with two ones, but this is
only true of the original string had at least two ones. One way to fix this is to add back all the
strings with no ones in them. Those strings have the simple regular expression 0\ast , so we get the
final expression 0\ast \cup (0\ast 10\ast 10\ast)\ast , which is correct.

A simpler regular expression for the same language is 0\ast (10\ast 10\ast)\ast . This regular expression
employs a different way of breaking apart a string with an even number of ones: it is using the fact
that a string with an even number of ones always looks like some number of zeros, then any number
of blocks, with each of the blocks having exactly two ones and also starting with a one. Both of
these regular expressions represent the same language, so both are valid regular expressions for A.
Formally, we have L(0\ast (10\ast 10\ast)\ast) = L(0\ast \cup (0\ast 10\ast 10\ast)\ast).

Question 2.4. Let B be the language over \{ 0, 1, 2\} consisting of all strings which contain the pattern
012 inside of them. What is a regular expression for B?

As before, we should try to break apart the strings in B into smaller blocks. Here, the decompo-
sition is clear: any string in B looks like some arbitrary string, followed by 012, followed by another
arbitrary string. This has the regular expression (0 \cup 1 \cup 2)\ast 012(0 \cup 1 \cup 2)\ast .

Question 2.5. Let C be the language over \{ 0, 1\} consisting of all strings x with an even number of
0s and an even number of 1s. What is a regular expression for C?

As before, we would like to decompose strings in C into simpler blocks. One attempt might
be to say that each block should contain exactly two zeros and two ones; this would suggest the
regular expression (0011 \cup 0101 \cup 0110 \cup 1001 \cup 1010 \cup 1100)\ast . However, the language generated
by this regular expression is missing a lot of strings: for example, consider the string 00011101. It
has an even number of zeros and an even number of ones, but its first four characters form 0001,
which does not have an even number of zeros or ones. Therefore, the string 00011101 would not be
generated by our candidate regular expression above, even though it is in C.

To find a regular expression for C, we need a different decomposition of a string x \in C into
simpler pieces. First, we note that x must have even length, say 2n. Now, let’s look at x as n
blocks of size 2, each of which is one of 00, 11, 01, or 10. Observe that 00 and 11 may occur

2.4. ARE ALL LANGUAGES REGULAR? 5

any number of times (since they don’t change the parity of the number of zeros or the number
of ones), but the blocks 01 and 10 must together occur an even number of times. We’ve already
seen how to construct a regular expression for the language A above, which had an even number
of ones and an arbitrary number of zeros in each string. We will now do something similar: we
wish to have an even number of 01 or 10 blocks, and an arbitrary number of 00 or 11 blocks in our
string. Copying from our regular expression for A, we then get the following regular expression for
C: (00 \cup 11)\ast ((01 \cup 10)(00 \cup 11)\ast (01 \cup 10)(00 \cup 11)\ast)\ast .

2.4 Are All Languages Regular?

So far, we have not proven any language to be irregular; we’ve only used regular expressions to show
that a variety of languages are regular. One might wonder if all languages are regular, and if not,
why not. In a previous offering of the course, some students came up with the following (wrong)
proof that all langauges are regular.

Wrong Theorem 2.6. All languages are regular.

Wrong proof. Let \Sigma be an arbitrary alphabet, and let A be an arbitrary language. For each string
x \in A, the set \{ x\} is finite, and therefore regular. Now, note that A =

\bigcup
x\in A\{ x\} (that is, A is

equal to the union, over all x \in A, of the sets \{ x\}). Since a union of regular languages is regular,
we conclude that A is regular.

What is the problem with this proof? It is true that A is the union of all languages of the form
\{ x\} for x \in A, and it is also true that each such language is regular (since it is finite). However,
it is not true that a union of regular languages is regular—or at least, this is not true for infinite
unions. Recall that in the definition of regularity, we said that a union of two regular languages is
regular. This also implies (by induction) that a union of any finite number of regular languages is
regular. But it does not mean that a union of infinitely many languages is regular! Be careful on
this point: infinite unions often behave differently (and preserve different properties of languages)
than finite unions.

Another common point of confusion is this: the language \Sigma \ast is regular (since \Sigma is finite and
star preserves regularity). Since every language A over \Sigma is a subset of \Sigma \ast , doesn’t that mean every
language is regular?

No: a subset of a regular language need not be regular. It’s true that languages are regular if
they are in some sense “simple”, but in many cases, subsets of a language are more complicated than
the original language.

Finally, although we are not yet ready to prove that any individual language is not regular, here
is an argument for why irregular languages must exist. Recall that each regular language over \Sigma
can be represented by a regular expression over \Sigma . Recall also that a regular expression is just a
string whose alphabet is \Sigma \cup \{ \varnothing , \epsilon , (,),\cup ,\ast \} . Let’s call this expanded alphabet \Sigma \prime . Then \Sigma \prime is also
finite. Since regular expressions are strings over \Sigma \prime , each regular expression is in (\Sigma \prime)\ast . Now, as
mentioned (without proof) in the previous class, the set (\Sigma \prime)\ast is infinite but countable, since \Sigma \prime is
finite. This means there are only countably many regular expressions over \Sigma .

On the other hand, how many languages over \Sigma are there? Recall that each language is a subset
of \Sigma \ast . Hence the set of all languages over \Sigma is exactly the set of all subsets of \Sigma \ast , i.e. the set \scrP (\Sigma \ast).
In the previous class, we mentioned (again without proof) that the power set of a set S always has
strictly larger cardinality. This means that \scrP (\Sigma \ast) has cardinality larger than that of \Sigma \ast . Since \Sigma \ast

is countably infinite, it follows that \scrP (\Sigma \ast) must be uncountable. In other words, while there are
countably many regular expressions over \Sigma , there are uncountably many languages over \Sigma !

6 LECTURE 2. REGULAR EXPRESSIONS

This means that regular expressions cannot be matched up to the languages without there being
languages “left over”. In particular, there cannot be a regular expression for each language. Indeed,
this argument actually implies that there are uncountably infinity irregular languages: in some
sense, almost all the languages out there are actually irregular.

In the next few lectures, we will introduce a computational model which will provide an alternate
characterization of regular languages. We will use this to deepen our understanding of which
languages are and are not regular, and we’ll introduce some tools for showing that languages are
not regular.

	Sets and Strings
	Course Overview
	Sets
	Infinite sets

	Strings
	Languages
	Summary

	Regular Expressions
	Regular Languages
	Regular Expressions
	Examples of Regular Expressions
	Are All Languages Regular?
	References

