Differentially Private Synthetic Data Generation with Missing Data

Shubhankar Mohapatra, Jianqiao Zong, Florian Kerschbaum, Xi He

To be presented at VLDB 2024

26 Billion Records Exposed in Data Breach – How To Check if You're Affected

The unprecedented leak has affected LinkedIn, Twitter/X, Dropbox, and many more popular sites.

Written by Published on Filia Di Catalda Company 26, 2026 Nova Scotia

Personal data of 50,000 N.S. health-care workers may have been leaked through pension plan

Names, birthdays, addresses, social insurance numbers among the information compromised

Taryn Grant · CBC News · Posted: Mar 06, 2021 1:11 PM EST | Last Updated: March 6, 2021

'Anonymised' data can never be totally anonymous, says study

Findings say it is impossible for researchers to fully protect real identities in datasets

Netflix's Impending (But Still Avoidable) Multi-Million Dollar Privacy Blunder

SEPTEMBER 21, 2009 BY PAUL OHM

In my **last post**, I had promised to say more about **my article on the limits of anonymization and the power of reidentification**. Although I haven't said anything for a few weeks, others have, and I especially appreciate posts by **Susannah Fox**, **Seth Schoen**, and **Nate Anderson**. Not only have these people summarized my article well, they have also added a lot of insightful commentary, and I commend these three posts to you.

Today brings news relating to one of the central examples in my paper: Netflix has announced plans to commit a privacy blunder that could cost it millions of dollars in fines and civil damages.

In mv article. I focus on Netflix's 2006 decision to release millions of records containing the

Differential Privacy

A randomized algorithm A: $\mathcal{D} \to \mathcal{R}$ satisfies (ε, δ)-differential privacy (DP) if for any two adjacent inputs \mathcal{D} , $\mathcal{D}' \in \mathcal{D}$ that differ in an entry and for any subset of outputs $t \subseteq R$ it holds that :

Problem Setup

- Privacy budget (ϵ , δ) spent for each query
- Limited number of queries
- Only DP supported queries

Privacy Firewall

DP Synthetic data generation

A	B	С	D

Marginal based methods

Learn marginals over attributes Add DP noise to the marginals Sample synthetic data from noisy marginals

E.g. PrivBayes and AIM

Column based methods

Learn attributes in a sequence Train intermediate models to predict next attribute Use intermediate models to generate synthetic data

PAGE 8

E.g. Kamino

GAN based methods

Generator generates fake data Discriminator/Critic identifies fake vs real Generator can be used to generate synthetic data

E.g DPautoGAN, DPCTGAN

What's coming up next

- Effect of missing values on private synthetic data generation
- Types of missing data
- Preliminary solutions
- Adaptive recourse for all three types of methods
- Experimental setup
- Results
- Privacy amplification due to missing data
- Conclusion

Effect of missing values on private synthetic data generation

Fig: The effect of missing data on DP synthetic data generation algorithms on Adult

Decrease of 5 - 23% in utility for <5% and 10 - 190% for <20% missing values

Types of missing mechanisms

Occupation	Age	Income
	35	
Academic	40	60k
Business	30	200k

Missing completely at random (MCAR)

No correlation between missing values and observed values

Occupation	Age	Income
Academic	35	60k
Business	40	
Business	30	

Missing at random (MAR)

Missing values correlated to observed values

Occupation	Age	Smokes
Academic	35	No
Business	40	
Business	30	

Missing not at random (MNAR)

Missing values correlated to other missing values

Solution 1 : Complete row approach

- Number of complete rows remaining can be very small
 - 32k rows reduces to ≈ 5k complete rows with 20% MAR
 - ≈ 1k complete rows with 20% MCAR/MNAR
- Complete row also introduces bias in the distribution of attributes

MAR and MNAR are most affected by complete row approach

Fig: Complete row approach on various missing mechanisms

Solution 2 : Imputation

Private imputation can be doways:

- 1. Split privacy budget
- 2. Formulate imputation fu

Splitting results in less synthetic data generatio

DP imputation requires adding proportional to number of rows

В A 13 13 13 What if we deal with missing data and 13 generate synthetic data at the same 13 time? B 13 16 15 16 10 16 12 16 14 16 14

Solution 3 : Adaptive Recourse

Partial marginal observation-based

Α	B	С	D

- Works for marginal based approaches
- The marginals are computed over subset of attributes : AB, C, D
- Learn from complete values in queried marginals
- Save incomplete rows over queried subset

AB and D can save information from this row

Solution 3 : Adaptive Recourse

Column-wise data generation-based

- Attributes are learnt in a sequence
- Synthetic data is generated by leveraging intermediate model
- Impute missing values using learnt models

Solution 3 : Adaptive Recourse

GAN-based

- Missing data is split into data and missing mask
- Two GAN models on missing mask and complete are learnt

After convergence, the data generator is used to sample synthetic data

Experimental Setup

Methods

Marginal based approaches: PrivBayes and AIM Column wise data generation: Kamino GAN based: DPCTGAN, DPAutoGAN

Datasets

Adult, BR2000, Bank and National

Dataset	Cardinality	#Numerical Attr	#Categorical Attr
Adult	32561	5	10
Bank	45211	3	14
BR2000	38000	3	11
National	15012	6	14

Metrics

1-way and 2-way metric (smaller values are better) [Mention how exactly its being calculated]F1-score of 9 ML models (higher values are better)

GAN based methods are trained with ϵ =3 and others with ϵ =1 All results are averaged over 3 runs.

- Adaptive recourse methods perform better than the complete row approach or imputation
- Complete row approach performs second best

Fig: Comparison of adaptive strategies vs complete row approach for all baselines on Bank

Adaptive methods outperform other baselines at various amounts of missing data

Fig: Comparison of adaptive strategies vs complete row approach for all baselines with different missing mechanisms on Bank 20%

Adaptive methods outperform other baselines at various missing mechanisms

PRIVACY AMPLIFICATION DUE TO MISSING Data

Recap Problem Setup

Amplification due to subsampling

Can we use the natural discarding of missing rows to amplify privacy?

nsider an algorithm A: $\mathcal{D} \to \mathcal{R}$ sfies (ε , δ)-differential privacy if a pling mechanism *S* (*D*) that ples a random subset *U* from set *D* of *n* samples with p ability for each sample. Then, the omposite mechanism A(*S* (*D*)) offers ($p\epsilon$, $p\delta$)-DP for small values of ϵ .

Is amplification always possible?

	State	Occupation	Gender	Income	
D	ON	Business	М	80k	
	BC	Artist	М	^{80k} -	
	BC	Artist	F	25k	
	AB	Business	F	100k	

	State	Occupation	Gender	Income
	ON	Business	М	80k
D	BC	Artist		80k
		Artist	F	25k
	AB	Business	F	

	State	Occupation	Gender	Income		State	Occupation	Gender	Income
	ON	Business	М	80k		ON	Business	М	
ō,	BC	Artist	М	80k	→ D'	BC	Artist		
	BC	Artist	F	25k			Artist	F	25k
	AB	Business	F	80k		AB	Business	F	

State and Gender are MCAR and Income is MNAR

Amplification is possible only when each row has independent probability of having missing values.

Amplification for MCAR

					1				
	State	Occupation	Gender	Income		State	Occupation	Gender	Income
	ON	Business	М	80k		ON	Business	М	80k
D	BC	Artist	М	80k	→ D	BC	Artist		80k
	BC	Artist	F	25k			Artist	F	25k
	AB	Business	F	100k		AB	Business	F	

Assuming MCAR for all rows. $\Phi_{\text{state}} = 0.25, \Phi_{\text{occupation}} = 0, \Phi_{\text{gender}} = 0.25, \Phi_{\text{income}} = 0.25$

For complete row approach,

 $\Pi_i(1-\phi_i) = 0.421\epsilon \ (saves \downarrow 0.579\epsilon)$

Attributes $\{A1, \ldots, Ak\}$ Missing probabilities $\{\phi1, \ldots, \phik\}$

The probability of a row not having missing value = $\Pi_i(1 - \phi_i)$

Amplification for partial marginal based approach

Income

80k

80k

25k

	State	Occupation	Gender	Income		State	Occupation	Gender
	ON	Business	М	80k		ON	Business	М
D	BC	Artist	М	80k	→ D	BC	Artist	
	BC	Artist	F	25k			Artist	F
	AB	Business	F	100k		AB	Business	F

Assuming MCAR for all rows. $\Phi_{\text{state}} = 0.25, \Phi_{\text{occupation}} = 0, \Phi_{\text{gender}} = 0.25, \Phi_{\text{income}} = 0.25$

Marginals: M1 <State> : 1 - $\Phi_{\text{state}} = 0.75$ M2 <Occupation> : 1- $\Phi_{\text{occupation}} = 1$ M4 <Gender, Income>: $(1 - \Phi_{\text{gender}}) * (1 - \Phi_{\text{income}}) = 0.5625$

Assuming $\epsilon/3$ budget for each, total is 0.77 ϵ

Amplification for partial marginal based approach

	State	Occupation	Gender	Income		State	Occupation	Gender	Income
	ON	Business	М	80k		ON	Business	М	80k
5	BC	Artist	М	80k	→ D	BC	Artist		80k
	BC	Artist	F	25k			Artist	F	25k
	AB	Business	F	100k		AB	Business	F	

Assuming MCAR for all rows.

 Φ_{state} = 0.25, $\Phi_{occupation}$ = 0, Φ_{gender} = 0.25, Φ_{income} = 0.25

 $\begin{array}{l} Marginals: \\ M1 < State > : 1 - \Phi_{state} = 0.75 \\ M2 < Occupation > : 1 - \Phi_{occupation} = 1 \\ M3 < Gender > : 1 - \Phi_{gender} = 0.75 \\ M4 < Gender, Income >: (1 - \Phi_{gender}) * (1 - \Phi_{income}) = 0.5625 \\ \end{array}$

Assuming equal budget $\epsilon/4$ budget for each If we choose the marginal with most amplification M4 over M3, M1, M2, M4 = 0.83ϵ (\downarrow *saves* 0.17 ϵ)

A better bound is possible if both M3 and M4 are amplified using intersecting attribute

M3 and M4 both amplified using Gender Therefore,

$$0.75 * \frac{\epsilon}{4} + 1 * \frac{\epsilon}{4} + 0.75 \left(2 * \frac{\epsilon}{4}\right) = 0.81\epsilon (\downarrow saves \ 0.19 \epsilon)$$

The problem of finding the best partition is exponential hard

We show optimizations to prune some partitions

Algorithm:

- 1. Find all possible disjoint partitions of the attribute set
- 2. Iterate all partitions
 - 1. Initialize cost for partition
 - 2. Choose best amplification factor in partition for every marginal
 - 3. Calculate total cost
- 3. Return partition with lowest cost

Dataset	MCAR missing %				
	0.1	0.2	0.3	0.4	0.5
Adult	0.88	0.77	0.65	0.47	0.44
BR2000	0.83	0.68	0.55	0.41	0.31

Table: Amplified privacy costs

Conclusion

- We show that missing data can drastically affect the performance of DP synthetic data generation methods
- Complete row approach and imputation are not effective solutions. They either discard too many rows or are costly in terms of privacy.
- Simple adaptive methods significantly improve the quality of DP synthetic data generations methods without spending extra privacy budget
- Missing data can be used to amplify privacy using subsampling techniques

Thank you! Questions? :)

Add your name to lunch list --->

UNIVERSITY OF WATERLOO Group