Computing Inconsistency Measures Under Differential Privacy

Shubhankar Mohapatra¹, Amir Gilad², Xi He¹, Benny Kimelfeld³ University of Waterloo¹, Hebrew University², Technion³

Background

Denial Constraints and Conflict Graphs

ID	Capital	Country	
	Ottawa	Canada	
2	Ottawa	Canada	4
3	Ottawa	Canada	
4	Ottawa	Kanada	3

 σ : Capital —> Country

"country of two tuples must be the same if their capital is the same"

Inconsistency Measures [1]

Given, dataset D and constraint set Σ , inconsistency measures are of the form $I(D, \Sigma) \to \mathbb{R}$:

- I.Drastic Measure $I_D(G)$ = existence of an edge
- 2. Minimal inconsistency measure $I_{MI}(G)$ = number of edges
- 3. Problematic measure $I_P(G)$ = number of vertices with positive degree
- 4. Maximal consistency measure I_{MC} (G) = number of maximal independent sets \bigcirc
- 5. Optimal repair measure I_R (G) = minimum vertex cover size

Differentially Private Inconsistency Measures

Challenges

- I. Computational hardness: Minimum vertex cover (I_R) and #maximal independent sets (I_{MC}) are NP hard problems
- 2. High sensitivity: Maximum change in output when G is replaced by G' is $\mathcal{O}(n)$, where n is the number of nodes

= our work

Differential Privacy [2]

Experiments

A randomized algorithm $A: \mathcal{G} \to \mathcal{R}$ satisfies ε -differential privacy (DP) if for any two adjacent graphs $G, G' \in \mathcal{G}$ that differ in a node and for any subset of outputs $o \subseteq \mathcal{R}$ it holds that:

 $\Pr[A(G) \in o] \le e^{\varepsilon} \Pr[A(G') \in o]$

Inconsistency: Random typo to 1% rows

Measure: True vs private by adding one typo

I can't share information before you buy! Is this data good for me? Data Buyer Private marketplace Research Questions:

- Are there errors in a private dataset?
- How much effort is required to repair?

DP vertex cover size for I_R [2 \ll O(n)] We analyse the 2-approximate vertex cover size algorithm and show that it has sensitivity of 2

<u>Datasets</u>

• Privacy: $\varepsilon = 1$

at a time

<u>Setup</u>

- Five real-world datasets with varying conflict graph densities
- We experiment on subset of 10k and repeat for 10 times and average

Dataset	#Tuples	#Attributes	#Constraints	Graph density
Adult	32k	15	3	9635
Flight	500k	20	13	1520
Hospital	II4k	15	7	793
Stock	I22k	7	I	I
Tax	IM	15	9	373

References:

- I.Livshits, Ester, et al. "Properties of inconsistency measures for databases." *International Conference on Management of Data*. 2021.
- 2.Dwork, Cynthia, et al. "Calibrating noise to sensitivity in private data analysis." *TCC* 2006
- 3. Day, Wei-Yen, et al. "Publishing graph degree distribution with node differential privacy." International Conference on Management of Data 2016.
- 4.Dong, Wei, et al. "R2T: Instance-optimal Truncation for Differentially Private Query Evaluation with Foreign Keys." *ACM SIGMOD* 2023

