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TL; DR: We provide a very simple local clustering algorithm 
with provable guarantees for attributed graphs
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• Graphs with node attributes which provide additional information 
are becoming increasingly available

• We study local clustering in attributed graphs, based on 
reweighing edges from a Gaussian kernel of node attributes and 
then locally diffusing mass in the graph

• We study how reweighing edges can help recover a target cluster 
from a contextual local random graph model

• We conduct experiments to illustrate the results

Intuition: why reweighing edges?
• If boundary edges (i.e. a cut) that connect a target cluster to the 

outside have very small weights, then this forces a diffusion to 
spread mass within the target

• Fewer mass leak can lead to better local clustering result

• The following toy example on a grid graph shows the difference 
between diffusion in unweighted and reweighed graphs

Local graph clustering with attributes
• Input: Graph , seed node , attributes 

• Algorithm (informal):

• Define weighted graph  with edge weight

 if 

• Run weighted local graph diffusion in  starting from 

• Check where and how the source mass spread within 

• Obtain an output cluster (by applying some rounding procedure)

The algorithm is local and does not require processing all data points
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Contextual local random graph model
• Given a set of nodes  and a target cluster 

• Draw an edge  with probability  if 

• Draw an edge  with probability  if 

• Edges  where  can be arbitrary

• Every node  has -dimensional attributes 

• Signal  for all 

• Noise  has independent mean zero sub-Gaussian coordinates

• Attribute-side cluster-wise signal and noise are

 and 

where  is coordinate-wise sub-Gaussian variance proxy

• Assumption:  for some 
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Performance guarantee
• Very good node attributes: local diffusion in the reweighed 

graph  fully recovers  with zero false positives

• Moderately good node attributes: local diffusion in the 
reweighed graph  fully recovers  with  false 
positives, where

• This shows the recovery is jointly controlled by graph structure 
and node attributes
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Experiments

• Plot shows recovery of a randomly chosen target cluster from 20-
block SBM on 10,000 nodes and 100-dim Gaussian attributes

• Experiments on two real-world co-authorship networks show that, 
on average over 20 different target clusters, using node attributes 
lead to 4.3% increase in the F1 score

• Additional comparisons with global spectral and classification 
baselines are found in the paper
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