

Introduction

TL; DR: We provide a very simple local clustering algorithm with provable guarantees for attributed graphs

- Graphs with node attributes which provide additional information are becoming increasingly available
- We study local clustering in attributed graphs, based on reweighing edges from a Gaussian kernel of node attributes and then locally diffusing mass in the graph
- We study how reweighing edges can help recover a target cluster from a contextual local random graph model
- We conduct experiments to illustrate the results

Intuition: why reweighing edges?

- If boundary edges (i.e. a cut) that connect a target cluster to the outside have very small weights, then this forces a diffusion to spread mass within the target
- Fewer mass leak can lead to better local clustering result
- The following toy example on a grid graph shows the difference between diffusion in unweighted and reweighed graphs

Weighted Flow Diffusion for Local Graph Clustering with Node Attributes **An Algorithm and Statistical Guarantees**

Shenghao Yang and Kimon Fountoulakis

Local graph clustering with attributes

- Input: Graph G = (V, E), seed node $s \in V$, attributes $X_i \in \mathbb{R}^d$
- Algorithm (informal):
- Define weighted graph G' = (V, E, w) with edge weight $w_{ij} = \exp(-\gamma ||X_i - X_j||^2)$ if $(i, j) \in E$
- Run weighted local graph diffusion in G' starting from s
- Check where and how the source mass spread within G'
- Obtain an output cluster (by applying some rounding procedure)

Contextual local random graph model

- Given a set of nodes V and a target cluster $K \subset V$ • Draw an edge (i, j) with probability p if $i \in K, j \in K$ • Draw an edge (i, j) with probability q if $i \in K, j \notin K$ • Edges (i, j) where $i, j \notin K$ can be arbitrary • Every node $i \in V$ has d-dimensional attributes $X_i = \mu_i + Z_i$

- Signal $\mu_i = \mu_i$ for all $i, j \in K$
- Noise Z_i has independent mean zero sub-Gaussian coordinates
- Attribute-side cluster-wise signal and noise are

$$\hat{\mu} = \min_{i \in K, j \notin K} \|\mu_i - \mu_i\|_{K^{-1}}$$

where σ_{ℓ} is coordinate-wise sub-Gaussian variance proxy

• Assumption: $\hat{\mu} = \omega(\hat{\sigma}\sqrt{\lambda \log |V|})$ for some λ

The algorithm is local and does not require processing all data points

- $\| \text{and } \hat{\sigma} = \max \sigma_{\ell} \|$

- positives, where
 - and node attributes

Performance guarantee

Very good node attributes: local diffusion in the reweighed graph G' fully recovers K with zero false positives

• Moderately good node attributes: local diffusion in the reweighed graph G' fully recovers K with $O(1/\eta^2 - 1) |K|$ false

$$\eta = \frac{p \cdot |K|}{p \cdot |K| + q \cdot |V \setminus K|} \cdot \frac{e^{-\omega(\lambda)}}{\lambda} \equiv \text{attribute strength}$$
external connectivity

This shows the recovery is jointly controlled by graph structure

Plot shows recovery of a randomly chosen target cluster from 20block SBM on 10,000 nodes and 100-dim Gaussian attributes

Experiments on two real-world co-authorship networks show that, on average over 20 different target clusters, using node attributes lead to 4.3% increase in the F1 score

Additional comparisons with global spectral and classification baselines are found in the paper