p-Norm Flow Diffusion for Local Graph Clustering

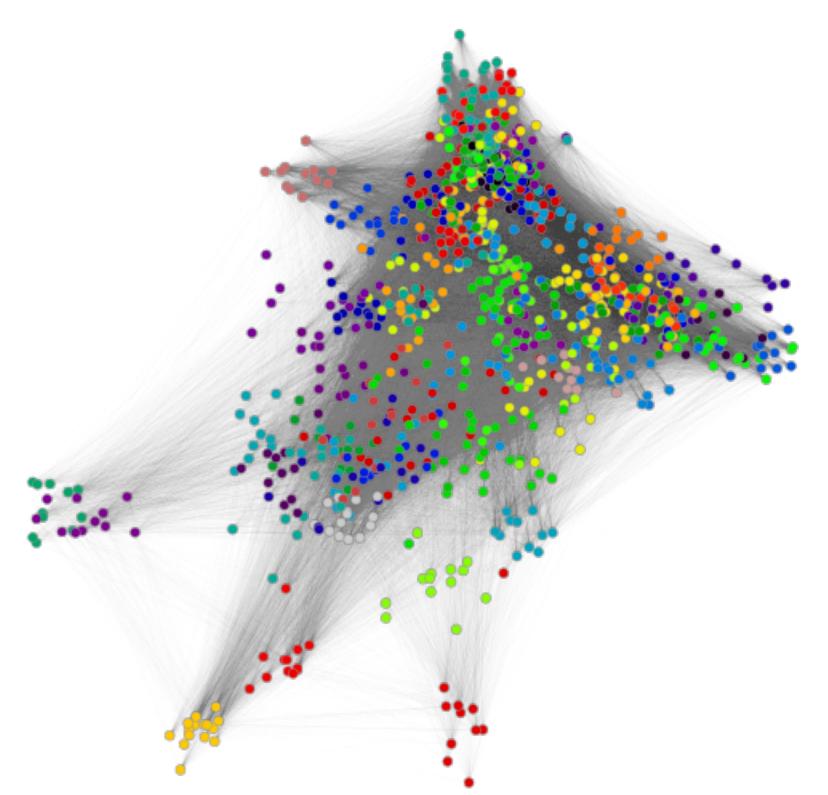
Kimon Fountoulakis¹, Di Wang², Shenghao Yang¹

¹University of Waterloo ²Google Research

Google Research

Motivation: detection of small clusters in large and noisy graphs

-Real large-scale graphs have rich local structure-We often have to detect small clusters in large graphs:



protein-protein interaction graph, color denotes similar functionality

Rather than partitioning graphs with nice structure

US-Senate graph, nice bi-partition in year 1865 around the end of the American civil war

Detection of small clusters in large graphs call for new methods that

-run in time proportional to the size of the output (but not the whole graph),

-supported by good theoretical guarantees,

-require few tuning parameters.

-supported by good theoretical guarantees,

-require few tuning parameters.

(Approximate Personalized) PageRank?

-run in time proportional to the size of the output (but not the whole graph), \checkmark

Graph cut or max-flow approach?

-supported by good theoretical guarantees,

-require few tuning parameters.

-run in time proportional to the size of the output (but not the whole graph), $\sqrt{}$

This work Let's replace PageRank with an even simpler model

-supported by good theoretical guarantees,

-require few tuning parameters.

-run in time proportional to the size of the output (but not the whole graph), $\sqrt{\sqrt{}}$

Existing local graph clustering methods

Spectral diffusions

based on the dynamics of random walks

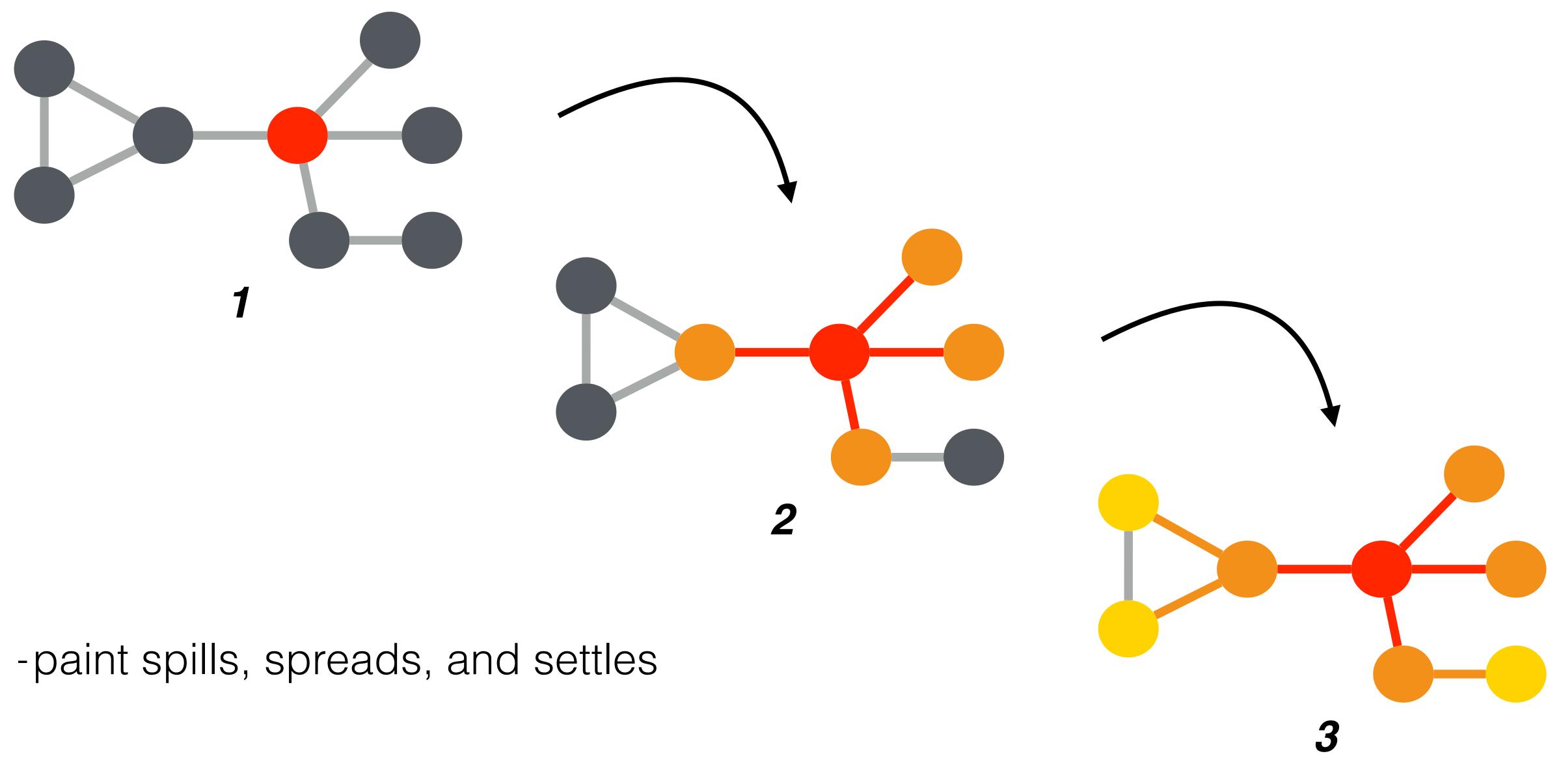
e.g., Approx. PageRank [Andersen *et al.*, 2006]

Combinatorial diffusions

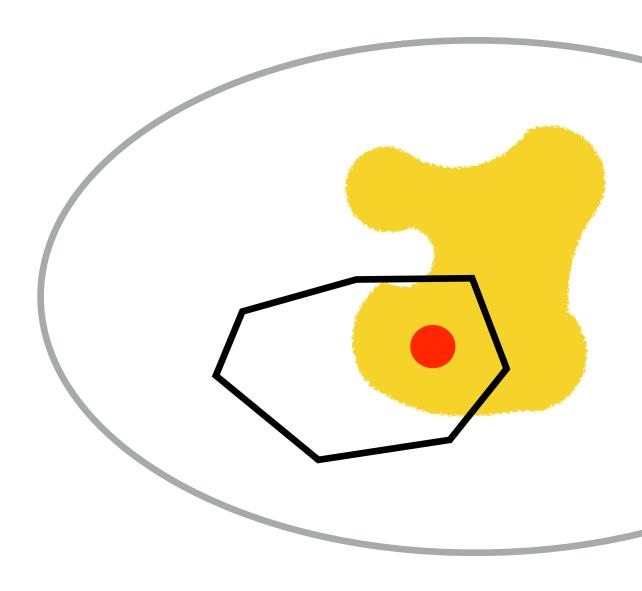
based on the dynamics of network flows

e.g., Capacity Releasing Diffusion [Wang *et al.*, 2017]

Diffusion as physical phenomenon



Spectral diffusions leak mass



-low precision

-low recall

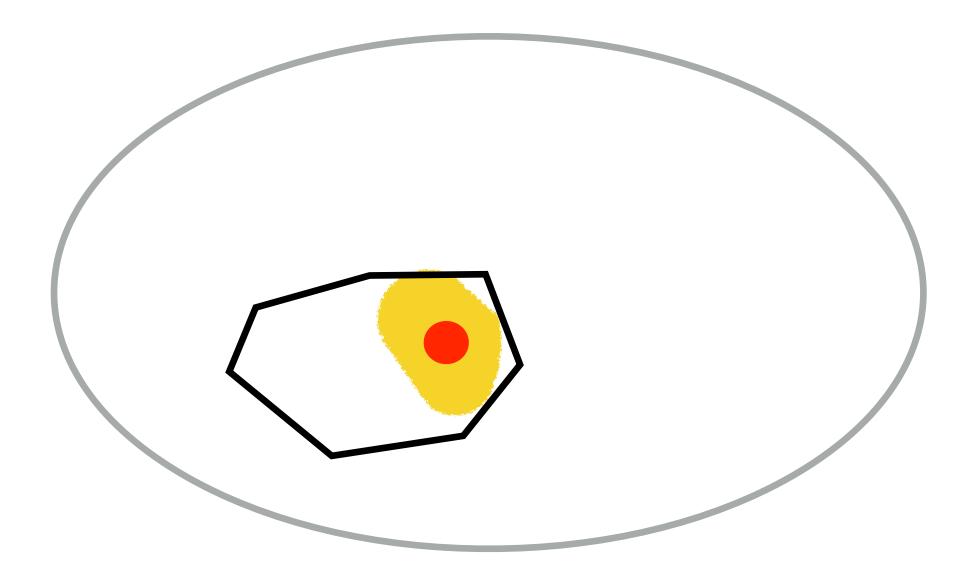
target cluster

starting node

Combinatorial diffusions are hard to tune



strong theoretical guarantees
work very well if tuned correctly



-poor performance if not tuned well

New local graph clustering paradigm

Spectral diffusions

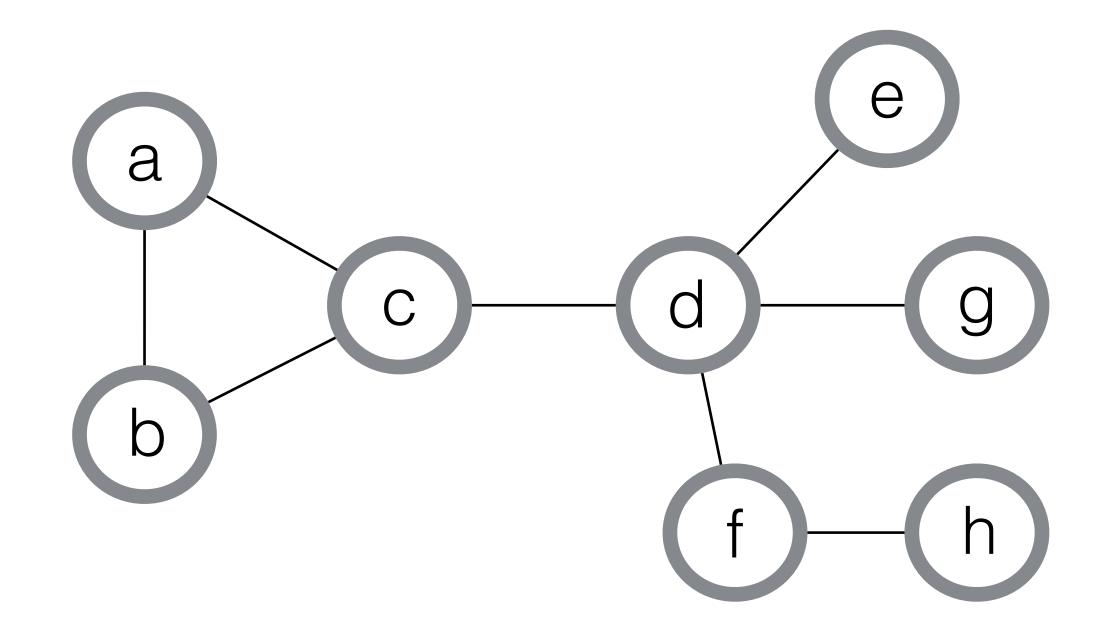
p-Norm flow diffusions

based on the idea of *p*-norm network flow

- -as fast as spectral methods
- -asymptotically as strong as combinatorial methods
- -intuitive interpretation, simple algorithm
- -fewer tuning parameters (than both spectral and combinatorial)

Combinatorial diffusions

-Undirected graph G = (V, E)



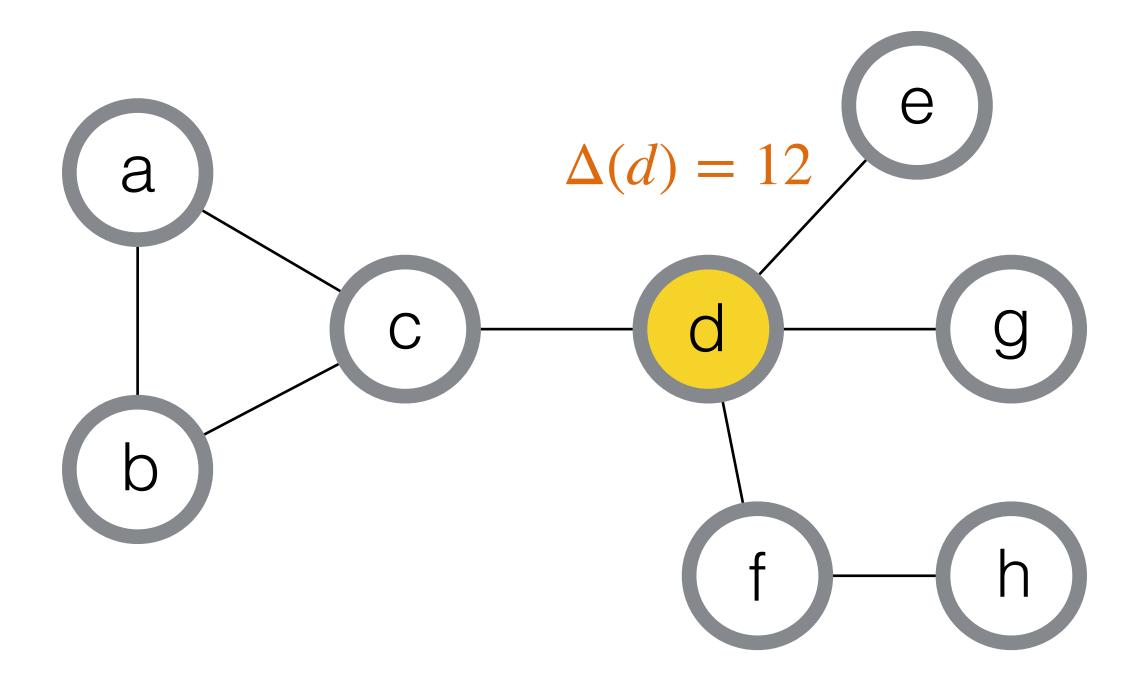
non-zero entries, -1 at column u and 1 at column v

-Ordering of edges and direction is arbitrary

Incidence matrix B								
	а	b	С	d	е	f	g	h
(a,b)	1	-1						
(a,c)	1		-1					
(b,c)		1	-1					
(c,d)			1	-1				
(d,e)				1	-1			
(d,f)				1		-1		
(d,g)				1			-1	
(f,h)						1		-1

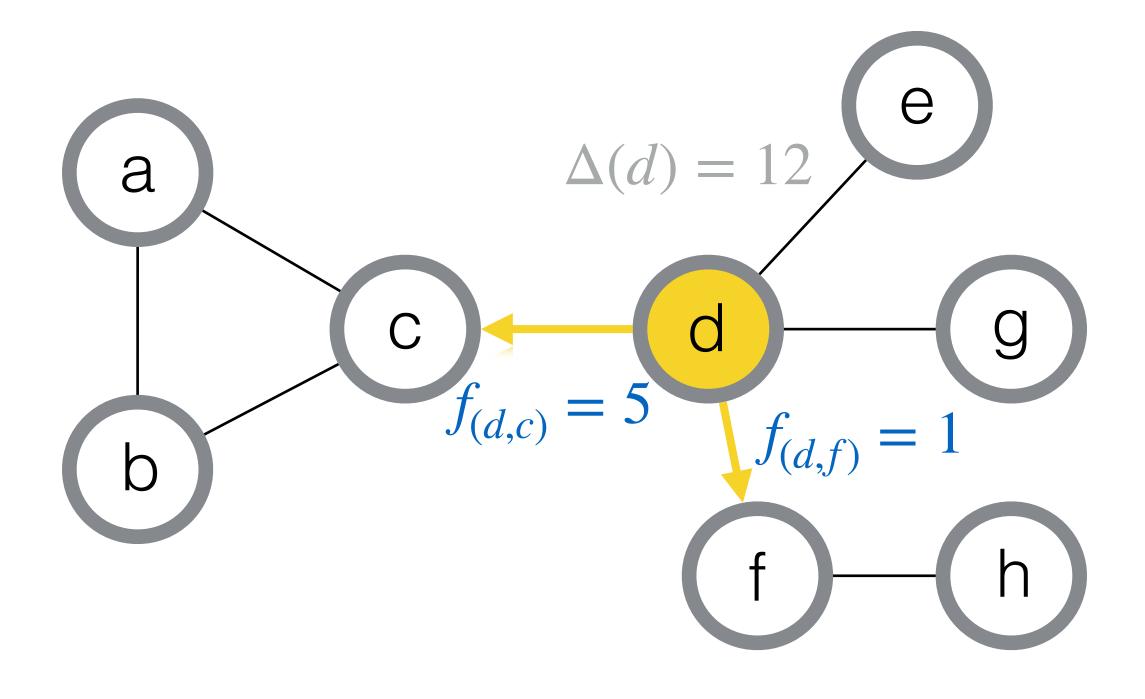
-B is $|E| \times |V|$ signed incidence matrix where the row of edge (u, v) has two

 $\Delta \in \mathbb{R}^{|V|}_+$ specifies **initial mass** on nodes.



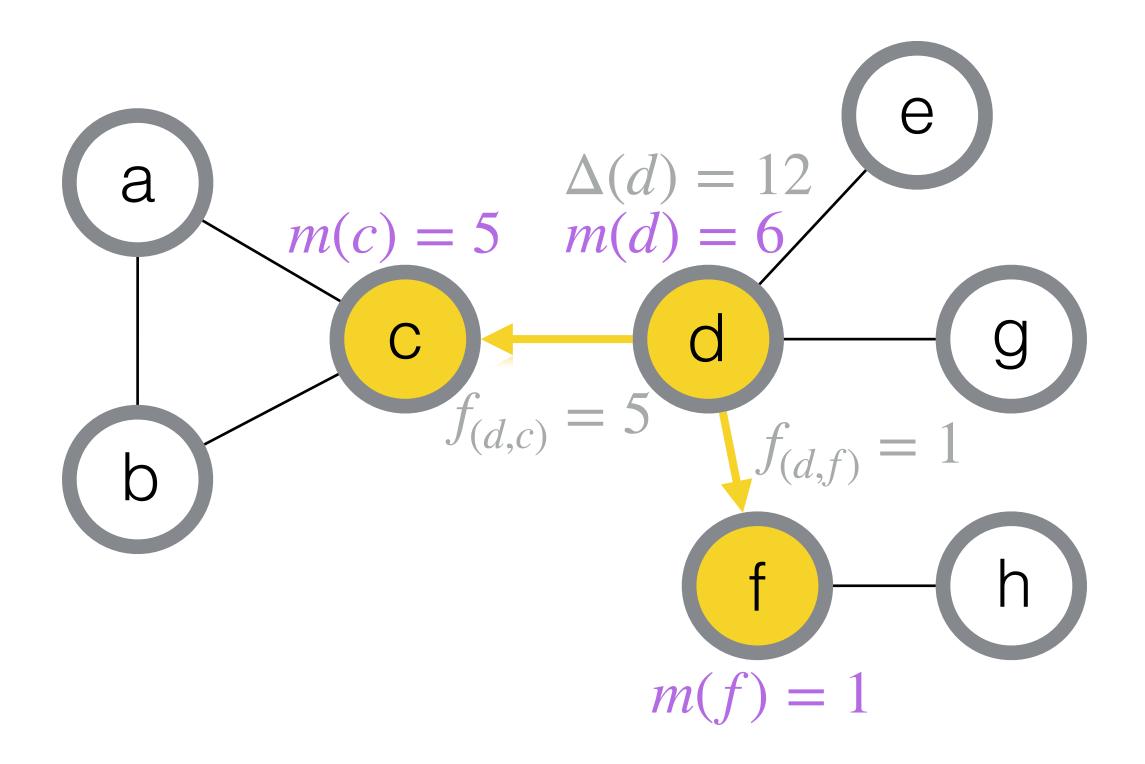
 $\Delta \in \mathbb{R}^{|V|}_+$ specifies initial mass on nodes.

 $f \in \mathbb{R}^{|E|}$ specifies the **amount of** flow.



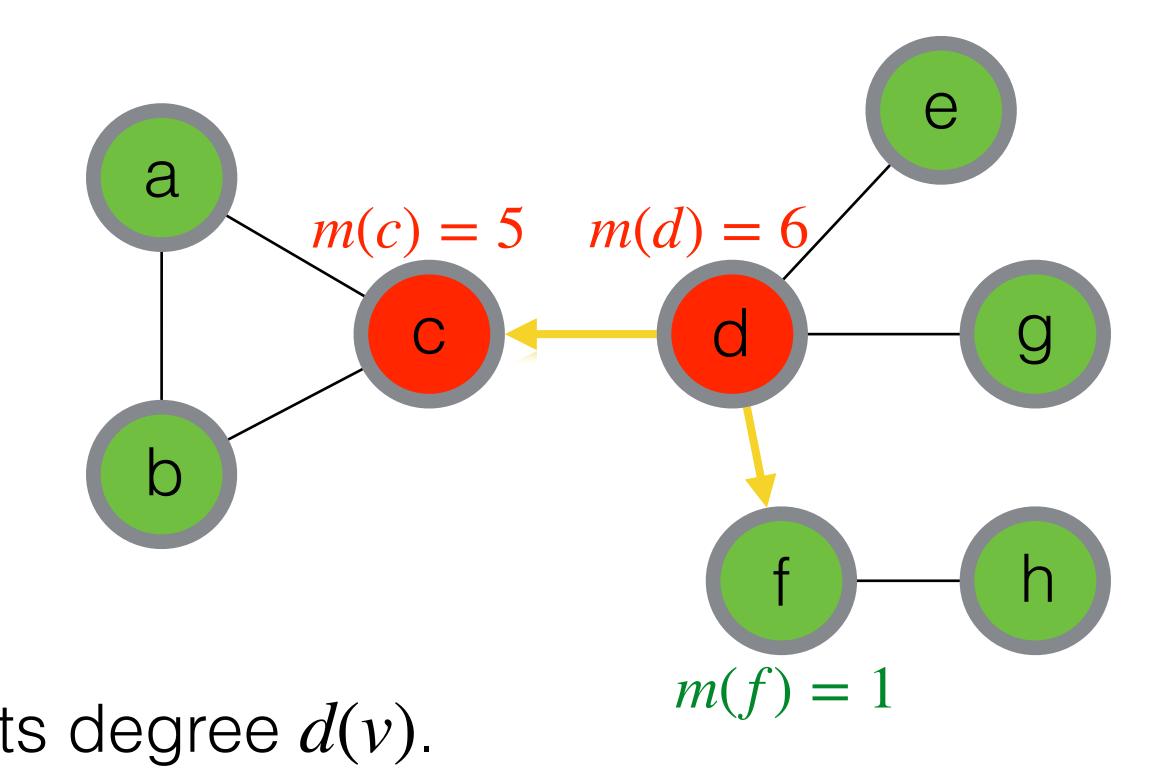
- $\Delta \in \mathbb{R}^{|V|}_+$ specifies initial mass on nodes.
- $-f \in \mathbb{R}^{|E|}$ specifies the amount of flow.

$-m := B^{\mathsf{T}} f + \Delta$ specifies **net mass** on nodes.



- $\Delta \in \mathbb{R}^{|V|}_+$ specifies initial mass on nodes.
- $f \in \mathbb{R}^{|E|}$ specifies the amount of flow.
- $-m := B^{\mathsf{T}} f + \Delta$ specifies net mass on nodes.
- -Each node v has **capacity** equal to its degree d(v).

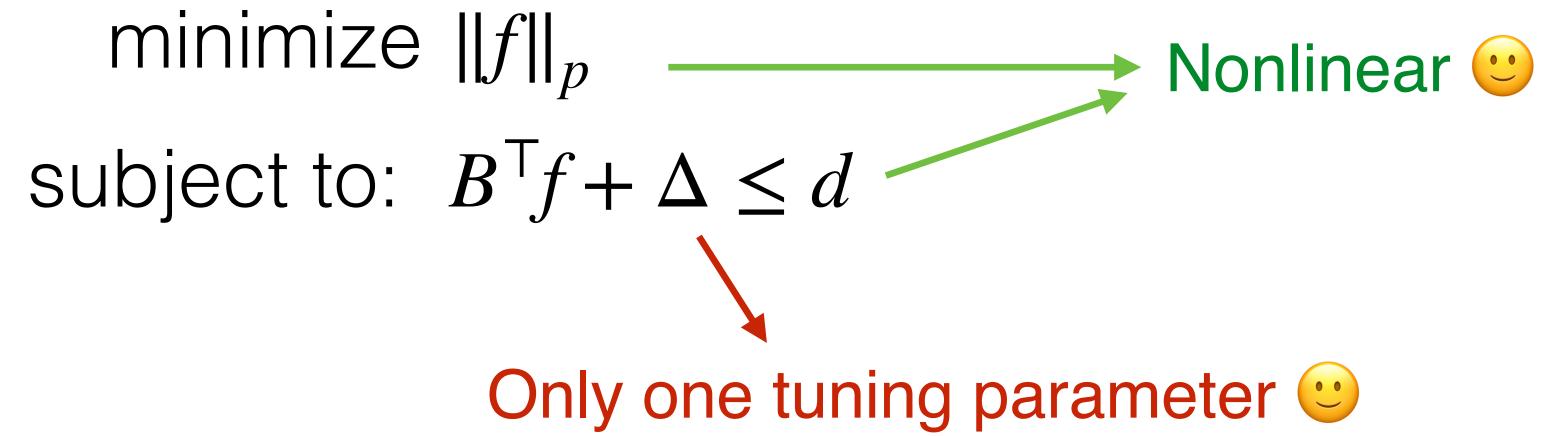
- A flow f is **feasible** if $[B^{T}f + \Delta](v) \leq d(v), \forall v$.



p-Norm flow diffusions - problem formulation

-We formulate diffusion process on graph as optimization:

norm, where $p \in [2,\infty)$.



-Out of all feasible flows f, we are interested in the one having minimum p-

p-Norm flow diffusions - problem formulation

-We formulate diffusion process on graph as optimization:

minimize $||f||_p$

-Versatility: different p-norm flows explore different structures in a graph Locality: $||f^*||_0 \le |\Delta| := \sum_{v \in V} \Delta(v)$

subject to: $B^{\mathsf{T}}f + \Delta \leq d$

p-Norm flow diffusions - problem formulation

-We formulate diffusion process on graph as optimization:

- minimize $||f||_p$
- subject to: $B^{\mathsf{T}}f + \Delta \leq d$

-The dual problem provides node embeddings

Biased towards minimize $x^{\mathsf{T}}(d - \Delta)$ seed node subject to: $||Bx||_q \le 1$ 1/p + 1/q = 1 $x \ge 0$

-Obtain a cluster by applying sweep cut on x

p-Norm flow diffusions - local clustering guarantees

-Conductance of target cluster C $\phi(C) = \frac{|\{(u, v) \in E : u \in C, v \notin C\}|}{\min\{\operatorname{vol}(C), \operatorname{vol}(V \setminus C)\}}$

-Seed set $S := \operatorname{supp}(\Delta)$.

-Assumption (sufficient overlap):

-The output cluster \tilde{C} satisfies

 $\phi(\tilde{C}) \leq$

-Cheeger-type bound $\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\sqrt{\phi(C)})$ for p=2-Constant approximate $\phi(\tilde{C}) \leq \tilde{O}(\phi(C))$ for $p \to \infty$

where $\mathbf{vol}(C) := \sum_{v \in C} d(v)$

$$vol(S \cap C) \ge \beta vol(S) \qquad \alpha, \beta \ge \frac{1}{\log^t vol(C)} \quad \text{for some}$$
$$vol(S \cap C) \ge \alpha vol(C) \qquad \alpha, \beta \ge \frac{1}{\log^t vol(C)} \quad \text{for some}$$

$$\tilde{\mathcal{O}}(\phi(C)^{1-1/p})$$

p-Norm flow diffusions - local clustering guarantees

-Conductance of target cluster C $\phi(C) = \frac{|\{(u,v) \in E : u \in C, v \in M\}}{\min\{\operatorname{vol}(C), \operatorname{vol}(V \setminus C)\}}$

- -Seed set $S := \operatorname{supp}(\Delta)$.
- -Assumption (sufficient overlap):
- -The output cluster \tilde{C} satisfies
 - $\phi(\tilde{C}) \leq$

vol

-Cheeger-type bound $\phi(\tilde{C}) \leq \tilde{O}(\sqrt{\phi(C)})$ for p = 2-Constant approximate $\phi(\tilde{C}) \leq \tilde{\mathcal{O}}(\phi(C))$ for $p \to \infty$

$$\{ \notin C \} \mid$$

where $\mathbf{vol}(C) := \sum_{v \in C} d(v)$

$$vol(S \cap C) \ge \beta vol(S) \qquad \alpha, \beta \ge \frac{1}{\log^t vol(C)} \quad \text{for some } t$$
$$vol(S \cap C) \ge \alpha vol(C)$$

$$\tilde{\mathcal{O}}(\phi(C)^{1-1/p})$$

Proof based on analysis of primal and dual objective and constraints.

Larger *p* penalizes more on the flows that cross "bottleneck" edges, leading to less leakage.

p-Norm flow diffusions - simple strongly local algorithm

-Solve an equivalent penalized dual formulation by a variant of randomized coordinate descent.

> **Iterate:** Send excess mass to its neighbors. Update net mass.

- **Initially** each node has a net mass equals the initial mass.
 - Pick a node v whose net mass exceeds its capacity.

p-Norm flow diffusions - simple strongly local algorithm

-Solve an equivalent penalized dual formulation by a variant of randomized coordinate descent.

> **Initially** each node has a net mass equals the initial mass. **Iterate:** Pick a node v whose net mass exceeds its capacity. Send excess mass to its neighbors.

Update net mass.

Natural tradeoff between speed and robustness to noise 2/q - 1Worst-case running time $\mathcal{O}\left((\Delta)\left(\frac{|\Delta|}{c}\right)\right)$

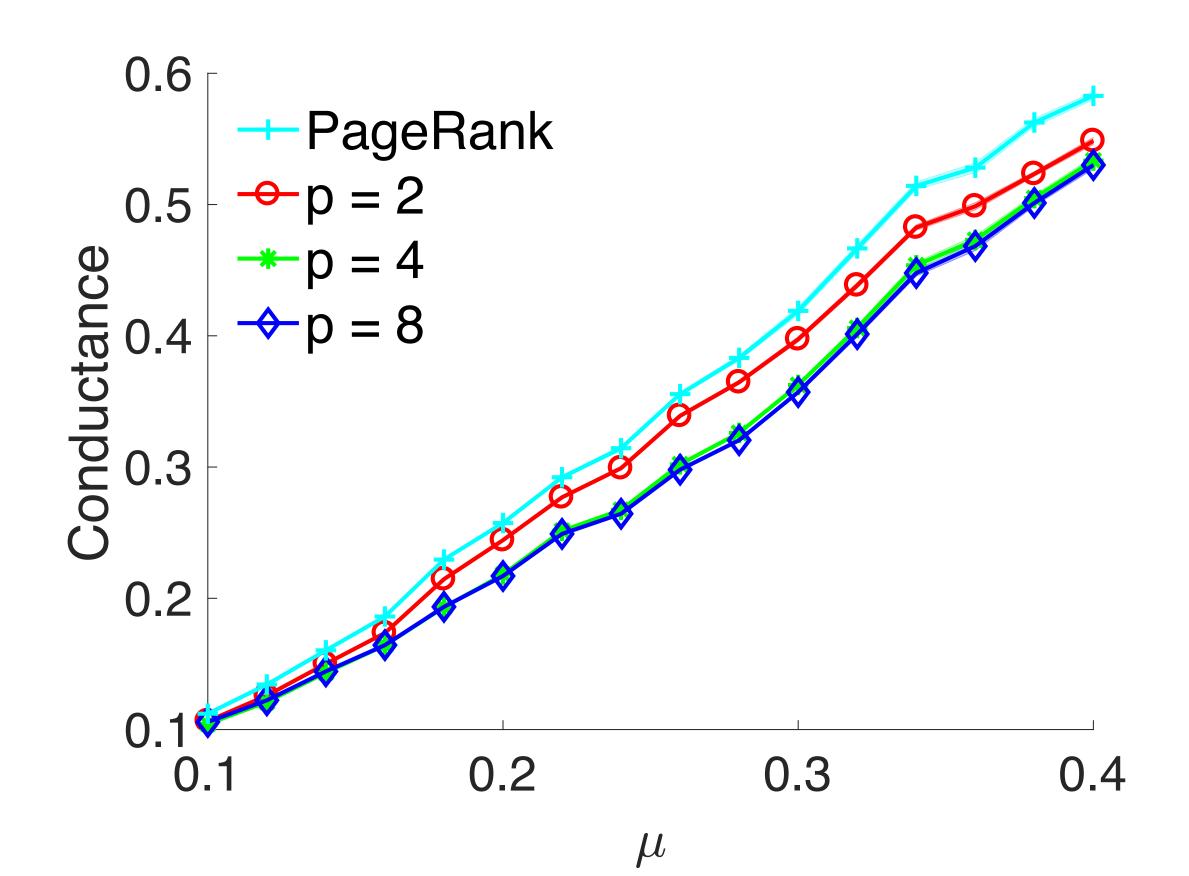
-Linear convergence when q = 2.

Total amount of initial mass

p-Norm flow diffusions - empirical performance

-LFR synthetic model

 $-\mu$ is a parameter that controls noise, the higher the more noise.





p-Norm flow diffusions - empirical performance

-Facebook social network for Colgate University, students in Class of 2009

	PageRank	p = 2	p = 4	very cle
Conductance	0.13	0.13	0.12	groun
F1 measure	0.96	0.96	0.97	truth

- Facebook social network for Johns Hopkins University, students of the same major

	PageRank	p = 2	p = 4	averag
Conductance	0.25	0.23	0.22	groun
F1 measure	0.83	0.85	0.87	truth

- Orkut, large-scale on-line social network, user-defined group

	PageRank	p = 2	p = 4	very
Conductance	0.37	0.35	0.33	gro
F1 measure	0.66	0.71	0.73	tru

Julia implementation: pNormFlowDiffusion on GitHub

- -Includes demonstrations and visualizations on LFR and Facebook social networks.
- -Contains all code to reproduce the results in our paper.

	Local running time, fast computation	Good theoretical guarantee	Simple algorithm, less tuning
Spectral diffusion (e.g. PageRank)			
Combinatorial diffusion (e.g. CRD)			
p-Norm flow diffusion			

