Targeted Pandemic Containment
Through
Identifying Local Contact Network Bottlenecks

Shenghao Yang¹

With Chris Bauch¹, Kimon Fountoulakis¹, Priyabrata Senapati¹, Di Wang²

¹University of Waterloo ²Google Research
Network epidemic modelling and control strategies

• Networks are a powerful tool for modelling epidemic dynamics

• Previous models of infection control mostly focused on node-level interventions, e.g., targeted vaccination
Network epidemic modelling and control strategies

- Networks are a powerful tool for modelling epidemic dynamics

- Previous models of infection control mostly focused on node-level interventions, e.g., targeted vaccination

 “… in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective …” (Salathe and Jones, 2010)
Network epidemic modelling and control strategies

- In this work we look at edge-level interventions, e.g., contact reduction, physical distancing, quarantine

 - For county-level networks, selectively closing roads or quarantining towns and cities

 - For individual-level networks, enforce or encourage physical distancing by providing incentives
In this work we look at edge-level interventions, e.g., contact reduction, physical distancing, quarantine.

How to identify important edges for intervention strategies?

Network epidemic modelling and control strategies

- Shortest-path (SP) edge-betweenness
- Current-flow (CF) edge-betweenness
Network epidemic modelling and control strategies

- SP and CF may not work well
- Global “bottlenecks” do not block local transmission
- Less effective in the presence of community outbreak
Quantifying edge importance locally

- We need a new edge-betweenness measure that detects local bottlenecks
Quantifying edge importance locally

• We need a new edge-betweenness measure that detects local bottlenecks

• Electrical current flow

\[
\begin{align*}
\min_{f \in \mathbb{R}^{|E|}} \|f\|^2_2 & \quad \text{s.t.} \quad B^T f + 1_s = 1_t \quad (P') \\
\min_{x \in \mathbb{R}^{|V|}} x^T L x - x^T (1_s - 1_t) & \quad (D')
\end{align*}
\]

- \(f \in \mathbb{R}^{|E|} \): incidence matrix
- \(1_s, 1_t \): indicator vector of \(s \in V \)
- \(x \in \mathbb{R}^{|V|} \): Laplacian matrix
Quantifying edge importance locally

- We need a new edge-betweenness measure that detects local bottlenecks

- Electrical current flow

\[
\min \|f\|_2^2 \quad \text{s.t.} \quad B^Tf + 1_s = 1_t \quad (P') \quad \min \quad x^TLx - x^T(1_s - 1_t) \quad (D')
\]

\(f \in \mathbb{R}^{|E|} \quad \text{incidence matrix} \quad \text{indicator vector of } s \in V \quad x \in \mathbb{R}^{|V|} \quad \text{Laplacian matrix} \)

Global focus: All possible pairs \((s, t) \in V \times V\) are taken into account
Quantifying edge importance locally

- We need a new edge-betweenness measure that detects local bottlenecks

- \textit{p}-norm flow diffusion (for brevity, \(p = 2\) in this presentation)

 \[
 \min \|f\|^2_2 \quad \text{s.t.} \quad B^T f + 1_s \leq T \quad (P) \quad \min \quad x^T Lx - x^T (1_s - T) \quad (D)
 \]

- Electrical current flow

 \[
 \min \|f\|^2_2 \quad \text{s.t.} \quad B^T f + 1_s = 1_t \quad (P') \quad \min \quad x^T Lx - x^T (1_s - 1_t) \quad (D')
 \]

\(f \in \mathbb{R}^{\lvert E \rvert}\) \quad \text{incidence matrix} \quad \text{indicator vector of} \ s \in V \quad x \in \mathbb{R}^{\lvert V \rvert}\) \quad \text{Laplacian matrix}
Quantifying edge importance locally

- We need a new edge-betweenness measure that detects local bottlenecks

- p-norm flow diffusion (for brevity, $p = 2$ in this presentation)

$$\min \|f\|_2^2 \quad \text{s.t.} \quad B^T f + 1_s \leq T \quad (P)$$

$$\min \|f\|_2^2 \quad \text{s.t.} \quad B^T f + 1_s = 1_t \quad (P')$$

- Electrical current flow

$$\min x^T L x - x^T (1_s - T) \quad (D)$$

$$\min x^T L x - x^T (1_s - 1_t) \quad (D')$$

$t \in \mathbb{R}_{+}^{\|V\|}$ specifies node capacities

$f \in \mathbb{R}^{\|E\|}$

incidence matrix

indicator vector of $s \in V$

$x \in \mathbb{R}^{\|V\|}$

Laplacian matrix
Quantifying edge importance locally

- We need a new edge-betweenness measure that detects local bottlenecks.

- \(p \)-norm flow diffusion (for brevity, \(p = 2 \) in this presentation)

\[
\min \|f\|_2^2 \quad \text{s.t.} \quad B^T f + 1_s \leq T \quad (P) \quad \min_{x \geq 0} x^T L x - x^T (1_s - T) \quad (D)
\]

- We set \(T(v) = \deg(v)/(2\lambda |E|) \), where \(\lambda \in (0,1] \) controls locality.
Quantifying edge importance locally

- We need a new edge-betweenness measure that detects local bottlenecks

- p-norm flow diffusion (for brevity, $p = 2$ in this presentation)

$$\min \|f\|_2^2 \text{ s.t. } B^Tf + 1_s \leq T \quad (P) \quad \min_{x \geq 0} x^T L x - x^T (1_s - T) \quad (D)$$

- We set $T(v) = \deg(v)/(2\lambda |E|)$, where $\lambda \in (0,1]$ controls locality

- Denote f^λ_s the optimal flow arising from source node s with locality λ

- Local-flow (LF) betweenness of an edge $e \in E$ is

$$lb(e; \lambda) := \frac{1}{|V|} \sum_{s \in V} |f^\lambda_s(e)|$$
Quantifying edge importance locally

- Local-flow (LF) betweenness
 - Colors and edge widths are chosen to reflect relative magnitude
Quantifying edge importance locally

SP

Remove top 20% edges

Global

CF

Remove top 20% edges

Global

LF

Local
Facebook-county network

- 3100 counties
- Two counties are connected with an edge if there exists strong social interaction
- Social interaction tends to happen mostly among nearby counties
Facebook-county network - simulated epidemic dynamics

- Network SEIR model
- Targeting top 25% edges

NI: No Intervention
UI: Uniform Intervention
EG: Eigenvector centrality
HD: Degree centrality
SP: Shortest-Path betweenness
CF: Current-Flow betweenness
LF: Local-Flow betweenness
Facebook-county network - simulated epidemic dynamics

- **NI:** No Intervention
- **UI:** Uniform Intervention
- **HD:** Degree centrality
- **SP:** Shortest-Path betweenness
- **CF:** Current-Flow betweenness
- **EG:** Eigenvector centrality
- **LF:** Local-Flow betweenness

Epidemic peak

Outbreak size
Why is LF most effective?

- **Distribution of top 25% edges** reflected by county-level colors:
 - **red** means most incident edges are reduced (in edge weights)
 - **dark blue** means few incident edges are reduced (in edge weights)
Why is LF most effective?

- Counties in red form a tightly-knit local cluster with few out-links
- 100% out-links are among top 5% edges identified by LF
- <20% out-links are identified by SP or CF
Are the results robust?

- Estimated reproduction number for Covid-19 is $R_0 = 2.5$
- We tried \textbf{varying reproduction numbers} $R_0 \in \{1.5, 2.5, 3.5, 4.5\}$

- 3 very \textbf{different initializations} from where epidemic starts
 - randomly chosen 1% counties spread across the network
 - a tightly-knit cluster of counties
 - single cities: Chicago, New York, Los Angeles

- \textbf{Delayed interventions} applied in the middle of the epidemic (not from the start)

* All these different settings produce consistent results
Thank you!
Computation time

- Computing LF for all edges requires $O(\lambda |V||E|), \lambda \in (0,1]$
Why is LF most effective?

- **Distribution of small-size clusters** (consisting of ≤ 100 counties) by conductance
Facebook-county network - simulated epidemic dynamics

15-day delay

30-day delay

45-day delay

60-day delay
More datasets

- **Wi-Fi hotspots Montreal** network, $|V| = 103K$, $|E| = 631K$
- **Portland, Oregon** network, $|V| = 1.6M$, $|E| = 31M$
- **Sub-sampled Portland, Oregon** network, $|V| = 10K$, $|E| = 199K$
- Agent-based SEIR network model