Targeted Pandemic Containment Through Identifying Local Contact Network Bottlenecks

Shenghao Yang¹

With Chris Bauch¹, Kimon Fountoulakis¹, Priyabrata Senapati¹, Di Wang²

¹University of Waterloo ²Google Research

Google Research

- Networks are a powerful tool for modelling epidemic dynamics
- Previous models of infection control mostly focused on node-level interventions, e.g., targeted vaccination

- Networks are a powerful tool for modelling epidemic dynamics
- Previous models of infection control mostly focused on node-level interventions, e.g., targeted vaccination

"... in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective" (Salathe and Jones, 2010)

- In this work we look at edge-level interventions, e.g., contact reduction, physical distancing, quarantine
 - For county-level networks, selectively closing roads or quarantining towns and cities
 - by providing incentives

- For individual-level networks, enforce or encourage physical distancing

- In this work we look at edge-level interventions, e.g., contact reduction, physical distancing, quarantine
- How to identify important edges for intervention strategies?

Shortest-path (SP) edge-betweenness

Current-flow (CF) edge-betweenness

- SP and CF may not work well
- Global "bottlenecks" do not block local transmission
- Less effective in the presence of community outbreak

Electrical current flow

Global focus: All possible pairs $(s, t) \in V \times V$ are taken into account

- *p*-norm flow diffusion (for brevity, p = 2 in this presentation) min $||f||_2^2$ s.t. $B^T f + \mathbf{1}_s \le T$ (P) $\min x^T L x - x^T (\mathbf{1}_s - T) \quad (D)$ x > 0
- Electrical current flow

- p-norm flow diffusion (for brevity, p = 2 in this presentation) min $||f||_2^2$ s.t. $B^T f + \mathbf{1}_s \leq T$ (F Electrical current flow $T \in$ min $||f||_2^2$ s.t. $B^T f + \mathbf{1}_s = \mathbf{1}_t$ (*F* incidence $f \in \mathbb{R}^{|E|}$ indicat of s matrix

P)
$$\min_{x \ge 0} x^T L x - x^T (\mathbf{1}_s - T) \quad (D)$$

 $\in \mathbb{R}^{|V|}_+$ specifies node capacities
P')
$$\min_{x \ge 0} x^T L x - x^T (\mathbf{1}_s - \mathbf{1}_t) \quad (D')$$

tor vector $x \in \mathbb{R}^{|V|}$ Laplacian matrix
 $x \in V$

- p-norm flow diffusion (for brevity, p = 2 in this presentation) min $||f||_2^2$ s.t. $B^T f + \mathbf{1}_s \le T$ (P
- We set $T(v) = \frac{\deg(v)}{2\lambda |E|}$, where $\lambda \in (0,1]$ controls locality

P)
$$\min_{\substack{x \ge 0}} x^T L x - x^T (\mathbf{1}_s - T) \quad (D)$$

- We need a new edge-betweenness measure that detects local bottlenecks
- *p*-norm flow diffusion (for brevity, p = 2 in this presentation) min $||f||_2^2$ s.t. $B^T f + \mathbf{1}_s \leq T$ (*P*) min $x^T L x - x^T (2)$
- We set $T(v) = \frac{\deg(v)}{2\lambda |E|}$, where $\lambda \in (0,1]$ controls locality
- Denote f_s^{λ} the optimal flow arising form source node s with locality λ
- Local-flow (LF) betweenness of an edge $e \in E$ is

$$P) \qquad \min_{x \ge 0} x^T L x - x^T (\mathbf{1}_s - T) \quad (D)$$

$$lb(e;\lambda) := \frac{1}{|V|} \sum_{s \in V} |f_s^{\lambda}(e)|$$

- Local-flow (LF) betweenness
 - Colors and edge widths are chosen to reflect relative magnitude

 $\lambda = 0.4$

Global

Global

Local

Facebook-county network

- 3100 counties
- Two counties are connected with an edge if there exists strong social interaction
- Social interaction tends to happen mostly among nearby counties

Facebook-county network - simulated epidemic dynamics

NI: No Intervention UI: Uniform Intervention EG: Eigenvector centrality HD: Degree centrality SP: Shortest-Path betweenness CF: Current-Flow betweenness LF: Local-Flow betweenness 0.00

Facebook-county network - simulated epidemic dynamics

Epidemic peak

EG: Eigenvector centrality **UI: Uniform Intervention NI:** No Intervention HD: Degree centrality SP: Shortest-Path betweenness CF: Current-Flow betweenness LF: Local-Flow betweenness

Why is LF most effective?

• Distribution of top 25% edges reflected by county-level colors:

- red means most incident edges are reduced (in edge weights)
- dark blue means few incident edges are reduced (in edge weights)

Why is LF most effective?

- Counties in red form a tightly-knit local cluster with few out-links 100% out-links are among top 5% edges identified by LF <20% out-links are identified by SP or CF

Are the results robust?

- Estimated reproduction number for Covid-19 is $R_0 = 2.5$
- We tried <u>varying reproduction numbers</u> $R_0 \in \{1.5, 2.5, 3.5, 4.5\}$
- 3 very <u>different initializations</u> from where epidemic starts
 - randomly chosen 1% counties spread across the network
 - a tightly-knit cluster of counties
 - single cities: Chicago, New York, Los Angeles
- All these different settings produce consistent results

Delayed interventions applied in the middle of the epidemic (not from the start)

Computation time

• Computing LF for all edges requires $O(\lambda |V| |E|), \lambda \in (0,1]$

|V| = 10,000, |E| = 199,128

Why is LF most effective?

• **Distribution of small-size clusters** (consisting of ≤ 100 counties) by conductance

Facebook-county network - simulated epidemic dynamics

More datasets

- Wi-Fi hotspots Montreal network, |V| = 103K, |E| = 631K
- Portland, Oregon network, |V| = 1.6M, |E| = 31M
- Sub-sampled Portland, Oregon network, |V| = 10K, |E| = 199K
- Agent-based SEIR network model

Portland

Portland Sub-sampled