# p-Norm Flow Diffusion for Local Graph Clustering

Kimon Fountoulakis<sup>1</sup>, Di Wang<sup>2</sup>, Shenghao Yang<sup>1</sup>

<sup>1</sup>University of Waterloo <sup>2</sup>Google Research

IOS 2022



# Google Research

# Sublinear-time Coordinate Descent Algorithm p-Norm Flow Diffusion for Local Graph Clustering

Kimon Fountoulakis<sup>1</sup>, Di Wang<sup>2</sup>, Shenghao Yang<sup>1</sup>

<sup>1</sup>University of Waterloo <sup>2</sup>Google Research

IOS 2022



# Google Research

## Motivation: detection of small clusters in large and noisy graphs

Graph clustering partitions nodes into closely connected clusters 



A random geometric graph partitions into two well-balanced pieces



US-Senate graph, nice bi-partition in year 1865 around the end of the American civil war

## Motivation: detection of small clusters in large and noisy graphs

- Graph clustering partitions nodes into closely connected clusters
- Most real-world graphs lack nice global structures they have rich local structures



A typical real-world graph has a classic hairball layout



Protein-protein interaction graph, color denotes similar functionality

## Our goals: local algorithm with good theoretical guarantees

#### Local graph clustering

- we often have to detect small-scale clusters in large and noisy graphs
- given a small set of seed nodes, identify a good cluster around it



LFR benchmark, red nodes form a target cluster

sters in large and noisy graphs y a good cluster around it



Facebook friendship graph at a liberal arts collage, red nodes are students of year 2008

## Our goals: local algorithm with good theoretical guarantees

#### Local graph clustering

- we often have to detect small-scale clusters in large and noisy graphs
- given a small set of seed nodes, identify a good cluster around it
- This requires new algorithms that
  - (local) has a running time that only depends on the size of the output
  - (simple) has fewer tuning parameters, is easy to implement
  - (tight) is supported by good approximation guarantees



LFR benchmark, red nodes form a target cluster

sters in large and noisy graphs y a good cluster around it

ends on the size of the output s easy to implement tion guarantees



Facebook friendship graph at a liberal arts collage, red nodes are students of year 2008

## Existing local graph clustering methods

#### **Spectral diffusions**

#### based on the dynamics of *random walks*

e.g., Approx. PageRank [ACL 2006]

Diffusion as a physical phenomenon: paint spills, spreads and settles





#### **Combinatorial diffusions**

#### based on the dynamics of maximum flows

e.g., Capacity Releasing Diffusion [WFH+ 2017]



## Existing local graph clustering methods

#### **Spectral diffusions**

#### based on the dynamics of *random walks*

e.g., Approx. PageRank [ACL 2006]



Spectral diffusions leak mass

#### **Combinatorial diffusions**

#### based on the dynamics of maximum flows

#### e.g., Capacity Releasing Diffusion [WFH+ 2017]



Combinatorial diffusions are hard to tune

## Existing local graph clustering methods

#### **Spectral diffusions**

#### **p-Norm flow diffusions**

based on the idea of minimizing p-norm network flows





Spectral diffusions leak mass

p-Norm flow diffusion combines the best of both worlds



#### **Combinatorial diffusions**



Combinatorial diffusions are hard to tune

#### • Undirected graph G = (V, E)



- B is  $|E| \times |V|$  signed incidence matrix where the row of edge (u, v) has two non-zero entries, -1 at column u and 1 at column v
- Ordering of edges and direction is arbitrary

| Incidence matrix B |   |    |    |    |    |    |    |    |
|--------------------|---|----|----|----|----|----|----|----|
|                    | а | b  | С  | d  | е  | f  | g  | h  |
| (a,b)              | 1 | -1 |    |    |    |    |    |    |
| (a,c)              | 1 |    | -1 |    |    |    |    |    |
| (b,c)              |   | 1  | -1 |    |    |    |    |    |
| (c,d)              |   |    | 1  | -1 |    |    |    |    |
| (d,e)              |   |    |    | 1  | -1 |    |    |    |
| (d,f)              |   |    |    | 1  |    | -1 |    |    |
| (d,g)              |   |    |    | 1  |    |    | -1 |    |
| (f,h)              |   |    |    |    |    | 1  |    | -1 |

•  $\Delta \in \mathbb{R}^{|V|}_+$  specifies initial mass on nodes.



- $\Delta \in \mathbb{R}^{|V|}_+$  specifies **initial mass** on nodes.
- $f \in \mathbb{R}^{|E|}$  specifies the **amount of flow**.



- $\Delta \in \mathbb{R}^{|V|}_+$  specifies **initial mass** on nodes.
- $f \in \mathbb{R}^{|E|}$  specifies the **amount of flow**.
- $m := B^T f + \Delta$  specifies **net mass** on nodes.



- $\Delta \in \mathbb{R}^{|V|}_+$  specifies **initial mass** on nodes.
- $f \in \mathbb{R}^{|E|}$  specifies the **amount of flow**.
- $m := B^T f + \Delta$  specifies **net mass** on nodes.
- Each node v has **capacity** equal to its degree d(v).
- A flow f is **feasible** if  $[B^T f + \Delta](v) \le d(v), \forall v.$



- Diffusion process on graph as optimization
- - Different *p*-norms lead to diffusions that explore different structures in a graph
- vector of node s, and t > 0 is a tuning parameter.

## minimize $||f||_p^p$ subject to: $B^T f + \Delta \leq d$

• Out of all feasible flows f, we are interested in the one having minimum p-norm,  $p \in [2,\infty)$ .

In practice if only one seed node  $s \in V$  is given, we set  $\Delta = t \cdot \mathbf{1}_s$  where  $\mathbf{1}_s$  is the indicator

- Diffusion process on graph as optimization
- - Different *p*-norms lead to diffusions that explore different structures in a graph
- vector of node s, and t > 0 is a tuning parameter.
- The optimal solution is sparse:  $nnz(f^*) \leq ||\Delta||_1$
- In local clustering applications, usually  $nnz(f^*) \ll len(f^*)$

## minimize $||f||_p^p$ subject to: $B^T f + \Delta \leq d$

• Out of all feasible flows f, we are interested in the one having minimum p-norm,  $p \in [2,\infty)$ .

In practice if only one seed node  $s \in V$  is given, we set  $\Delta = t \cdot \mathbf{1}_s$ , where  $\mathbf{1}_s$  is the indicator

The total running time of an optimization algorithm should depend on  $nnz(f^*)$ , not  $len(f^*)$ .

- Diffusion process on graph as optimization • The dual problem is (for 1/p + 1/q = 1)
- When  $q \in (1,2)$ , smooth it by replacing  $|x_i x_j|^q$  with  $((x_i x_j)^2 + \mu^2)^{q/2}$

minimize  $||f||_p^p$ subject to:  $B^T f + \Delta \leq d$ 

 $\underset{q}{\text{minimize}} \sum_{x \ge 0} \frac{1}{q} \|Bx\|_q^q - x^T (\Delta - d)$ 

- Diffusion process on graph as optimization minimized
  Subject to
- The dual problem is (for 1/p + 1/q = 1) minimize<sub>x \ge 0</sub>  $\frac{1}{\sqrt{2}}$
- When  $q \in (1,2)$ , smooth it by replacing  $|x_i|$ 
  - Lipschitz coordinate gradient with paran
  - Strongly convex objective with parameter
  - Setting  $\mu = O((\epsilon / \|\Delta\|_1)^{1/q})$  coordinate de  $O\left(\frac{\|\Delta\|_1 d_{\max}}{d_{\max}}\right)$

minimize  $||f||_p^p$ subject to:  $B^T f + \Delta \leq d$ 

$$\begin{aligned} z e_{x \ge 0} & \frac{1}{q} ||Bx||_q^q - x^T (\Delta - d) \\ \text{cing } |x_i - x_j|^q \text{ with } ((x_i - x_j)^2 + \mu^2)^{q/2} \\ \text{ch parameter } d(i)\mu^{q-2} \\ \text{parameter } \gamma > (p-1)||\Delta||_1^p)^{-1} \text{ (over a restricted domain)} \\ \text{dinate descent finds } \epsilon \text{-suboptimal solution in time} \\ \frac{\Delta ||_1 d_{\max}}{\gamma} \left(\frac{||\Delta||_1}{\epsilon}\right)^{2/q-1} \log \frac{1}{\epsilon} \end{aligned}$$

Algorithm 1 Coordinate solutionInitialize: 
$$x_0 = 0$$
For  $k = 0, 1, 2, \dots$ , doSet  $S_k = \{i \in V \mid \nabla_i F_\mu(x)\}$ Pick  $i_k \in S_k$  uniformly atUpdate  $x_{k+1} = x_k - \frac{\mu^{2k}}{\deg k}$ If  $S_k = \emptyset$  then return  $x$ 

•  $0 = x_0 \le x_1 \le \dots \le x_k \le x^*$  for all  $k \ge 0$ 

• A curial property that guarantees convergence and rate of convergence

#### ver for smoothed dual problem



Algorithm 1 Coordinate solutionInitialize: 
$$x_0 = 0$$
For  $k = 0, 1, 2, \dots$ , doSet  $S_k = \{i \in V \mid \nabla_i F_\mu(x)\}$ Output  $i_k \in S_k$  uniformly atUpdate  $x_{k+1} = x_k - \frac{\mu^2}{\deg x}$ If  $S_k = \emptyset$  then return  $x$ 

## • $0 = x_0 \le x_1 \le \dots \le x_k \le x^*$ for all $k \ge 0$

- A curial property that guarantees convergence and rate of convergence
- Intuitively, diffusion is a local phenomenon



#### ver for smoothed dual problem



## Local clustering guarantee

• Conductance of target cluster  $C \subset V$ 

$$\phi(C) = \frac{|\{(u,v) \in E : u \in C, v \notin C\}|}{\min\{\operatorname{vol}(C), \operatorname{vol}(V \setminus C)\}} \text{ where } \operatorname{vol}(C) := \sum_{v \in C} d(v)$$

- Seed set  $S := \operatorname{supp}(\Delta)$
- Assumption (sufficient overlap):  $vol(S \cap C) \ge \beta vol(S)$ ,  $vol(S \cap C) \ge \alpha vol(C)$ ,  $\alpha, \beta \geq 1/\log^t \operatorname{vol}(C)$  for some t

## Local clustering guarantee

• Conductance of target cluster  $C \subset V$ 

$$\phi(C) = \frac{|\{(u,v) \in E : u \in C, v \notin C\}|}{\min\{\operatorname{vol}(C), \operatorname{vol}(V \setminus C)\}} \text{ where } \operatorname{vol}(C) := \sum_{v \in C} d(v)$$

- Seed set  $S := \operatorname{supp}(\Delta)$
- Assumption (sufficient overlap):  $vol(S \cap C) \ge \beta vol(S)$ ,  $vol(S \cap C) \ge \alpha vol(C)$ ,  $\alpha, \beta \geq 1/\log^t \operatorname{vol}(C)$  for some t
- Apply the sweepcut rounding procedure to  $x^*$  returns a cluster C satisfying

  - Cheeger-type bound  $\phi(\tilde{C}) \leq \tilde{O}(\sqrt{\phi(C)})$  for p = 2
  - Constant approximation  $\phi(\tilde{C}) \leq \tilde{O}(\phi(C))$  for  $p \to \infty$

 $\phi(\tilde{C}) \leq \tilde{O}(\phi(C)^{1-1/p})$ 

## Local clustering guarantee

• Conductance of target cluster  $C \subset V$ 

$$\phi(C) = \frac{|\{(u,v) \in E : u \in C, v \notin C\}|}{\min\{\operatorname{vol}(C), \operatorname{vol}(V \setminus C)\}} \text{ where } \operatorname{vol}(C) := \sum_{v \in C} d(v)$$

- Seed set  $S := \operatorname{supp}(\Delta)$
- Assumption (sufficient overlap):  $vol(S \cap C) \ge \beta vol(S)$ ,  $vol(S \cap C) \ge \alpha vol(C)$ ,  $\alpha, \beta \geq 1/\log^t \operatorname{vol}(C)$  for some t
- Apply the sweepcut rounding procedure to  $x^*$  returns a cluster C satisfying

  - Cheeger-type bound  $\phi(\tilde{C}) \leq \tilde{O}(\sqrt{\phi(C)})$  for p = 2
  - Constant approximation  $\phi(\tilde{C}) \leq \tilde{O}(\phi(C))$  for  $p \to \infty$

Tradeoff between running time  $O\left(\frac{\|\Delta\|_1 d_{\max}}{\gamma}\right)$ 

 $\phi(\tilde{C}) \leq \tilde{O}(\phi(C)^{1-1/p})$ 

$$\frac{1}{\epsilon}\left(\frac{\|\Delta\|_1}{\epsilon}\right)^{2/q-1}\lograc{1}{\epsilon}$$
 and approximation  $ilde{O}(\phi(C)^{1/q})$ 



## **Empirical performance**

- LFR synthetic graphs





#### • $\mu$ is a parameter that controls noise, higher $\mu$ means more noisy clustering structure

## **Empirical performance**

#### Facebook social network for Colgate University, students in Class of 2009

|             | PageRank | p = 2 | p = 4 | very c |
|-------------|----------|-------|-------|--------|
| Conductance | 0.13     | 0.13  | 0.12  | grou   |
| F1 measure  | 0.96     | 0.96  | 0.97  | trut   |

Facebook social network for Johns Hopkins University, students of the same major

|             | PageRank | <b>p = 2</b> | p = 4 | avera |
|-------------|----------|--------------|-------|-------|
| Conductance | 0.25     | 0.23         | 0.22  | grou  |
| F1 measure  | 0.83     | 0.85         | 0.87  | trut  |

Orkut, large-scale on-line social network, user-defined group

|             | PageRank | p = 2 | p = 4 | ver |
|-------------|----------|-------|-------|-----|
| Conductance | 0.37     | 0.35  | 0.33  | g   |
| F1 measure  | 0.66     | 0.71  | 0.73  |     |







### **Extensions**

- - Orders of magnitude faster than traditional measures
- (Submodular) Hypergraph diffusion [FLY 2021]
  - Submodular function minimization, alternating minimization, duality ...



#### References

p-Norm Flow Diffusion for Local Graph Clustering. K. Fountoulakis, D. Wang, S. Yang. ICML 2020 Local Hyper-Flow Diffusion. K. Fountoulakis, P. Li, S. Yang. NeurIPS 2021

# New network centrality with applications in network epidemic intervention [YSW+ 2021]

