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Sublinear-time Coordinate Descent Algorithm



Motivation: detection of small clusters in large and noisy graphs 

‣ Graph clustering partitions nodes into closely connected clusters

A random geometric graph

partitions into two well-balanced pieces

US-Senate graph, 

nice bi-partition in year 1865 around the end of 


the American civil war



Motivation: detection of small clusters in large and noisy graphs 

‣ Graph clustering partitions nodes into closely connected clusters

‣ Most real-world graphs lack nice global structures - they have rich local structures

Protein-protein interaction graph,

color denotes similar functionality 

A typical real-world graph 
has a classic hairball layout  



Our goals: local algorithm with good theoretical guarantees

‣ Local graph clustering

• we often have to detect small-scale clusters in large and noisy graphs

• given a small set of seed nodes, identify a good cluster around it

LFR benchmark, red nodes 
form a target cluster

Facebook friendship graph at a liberal arts collage, 
red nodes are students of year 2008



Our goals: local algorithm with good theoretical guarantees

‣ Local graph clustering

• we often have to detect small-scale clusters in large and noisy graphs

• given a small set of seed nodes, identify a good cluster around it


‣ This requires new algorithms that

• (local) has a running time that only depends on the size of the output

• (simple) has fewer tuning parameters, is easy to implement

• (tight) is supported by good approximation guarantees

LFR benchmark, red nodes 
form a target cluster

Facebook friendship graph at a liberal arts collage, 
red nodes are students of year 2008



Existing local graph clustering methods

e.g., Approx. PageRank [ACL 2006]

Spectral diffusions Combinatorial diffusions

based on the dynamics of 
random walks

based on the dynamics of 
maximum flows

e.g., Capacity Releasing Diffusion [WFH+ 2017]

1 2 3

‣ Diffusion as a physical phenomenon: paint spills, spreads and settles



Existing local graph clustering methods
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maximum flows
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Spectral diffusions leak mass Combinatorial diffusions are 
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Existing local graph clustering methods

Spectral diffusions Combinatorial diffusions

p-Norm flow diffusions

based on the idea of 


minimizing p-norm network flows

p-Norm flow diffusion combines 
the best of both worldsSpectral diffusions leak mass Combinatorial diffusions are 

hard to tune

target cluster

seed node



Notations and definitions

Incidence matrix B
a b c d e f g h

(a,b) 1 -1

(a,c) 1 -1

(b,c) 1 -1

(c,d) 1 -1

(d,e) 1 -1

(d,f) 1 -1

(d,g) 1 -1

(f,h) 1 -1
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‣ Undirected graph G = (V, E)

‣  is signed incidence matrix where the row of edge  has two non-zero 
entries, -1 at column  and 1 at column 


‣ Ordering of edges and direction is arbitrary

B |E | × |V | (u, v)
u v
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Δ

Δ(d) = 12

Notations and definitions

‣  specifies initial mass on 
nodes.
Δ ∈ ℝ|V|

+
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f(d,c) = 5 f(d,f ) = 1

Δ(d) = 12

Notations and definitions

‣  specifies initial mass on 
nodes.


‣  specifies the amount of flow.

Δ ∈ ℝ|V|
+

f ∈ ℝ|E|
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m(c) = 5 m(d) = 6

m( f ) = 1

Δ(d) = 12

f(d,c) = 5 f(d,f ) = 1

Notations and definitions

‣  specifies initial mass on 
nodes.


‣  specifies the amount of flow.


‣  specifies net mass on 
nodes.

Δ ∈ ℝ|V|
+

f ∈ ℝ|E|

m := BTf + Δ
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‣  specifies initial mass on 
nodes.


‣  specifies the amount of flow.


‣  specifies net mass on 
nodes.


‣ Each node v has capacity equal to its 
degree .


‣ A flow  is feasible if 
.

Δ ∈ ℝ|V|
+

f ∈ ℝ|E|

m := BTf + Δ

d(v)

f
[BTf + Δ](v) ≤ d(v), ∀v

m(c) = 5 m(d) = 6

m( f ) = 1

Notations and definitions



‣ Diffusion process on graph as optimization

‣ Out of all feasible flows  , we are interested in the one having minimum p-norm, .

• Different p-norms lead to diffusions that explore different structures in a graph


‣ In practice if only one seed node  is given, we set  where  is the indicator 
vector of node , and  is a tuning parameter.

f p ∈ [2,∞)

s ∈ V Δ = t ⋅ 1s 1s
s t > 0

minimize ∥f∥p
p

subject to:  BTf + Δ ≤ d

Diffusion as optimization



‣ Diffusion process on graph as optimization

‣ Out of all feasible flows  , we are interested in the one having minimum p-norm, .

• Different p-norms lead to diffusions that explore different structures in a graph


‣ In practice if only one seed node  is given, we set  where  is the indicator 
vector of node , and  is a tuning parameter.


‣ The optimal solution is sparse: 


‣ The total running time of an optimization algorithm should depend on , not .

• In local clustering applications, usually 

f p ∈ [2,∞)

s ∈ V Δ = t ⋅ 1s 1s
s t > 0

nnz( f*) ≤ ∥Δ∥1

nnz( f*) len( f*)
nnz( f*) ≪ len( f*)

minimize ∥f∥p
p

subject to:  BTf + Δ ≤ d

Diffusion as optimization



‣ Diffusion process on graph as optimization

‣ The dual problem is (for )1/p + 1/q = 1

minimize ∥f∥p
p

subject to:  BTf + Δ ≤ d

Diffusion as optimization

minimizex≥0
1
q

∥Bx∥q
q − xT(Δ − d)

‣ When , smooth it by replacing  with q ∈ (1,2) |xi − xj |
q ((xi − xj)2 + μ2)q/2



‣ Diffusion process on graph as optimization

‣ The dual problem is (for )1/p + 1/q = 1

minimize ∥f∥p
p

subject to:  BTf + Δ ≤ d

Diffusion as optimization

minimizex≥0
1
q

∥Bx∥q
q − xT(Δ − d)

‣ When , smooth it by replacing  with 

a


• Lipschitz coordinate gradient with parameter  

• Strongly convex objective with parameter  (over a restricted domain)


• Setting  coordinate descent finds -suboptimal solution in time


q ∈ (1,2) |xi − xj |
q ((xi − xj)2 + μ2)q/2

d(i)μq−2

γ > (p − 1)∥Δ∥p
1)−1

μ = O((ϵ/∥Δ∥1)1/q) ϵ

O ( ∥Δ∥1dmax

γ ( ∥Δ∥1

ϵ )
2/q−1

log
1
ϵ )



Diffusion as optimization

‣  for all 

• A curial property that guarantees convergence and rate of convergence
0 = x0 ≤ x1 ≤ ⋯ ≤ xk ≤ x* k ≥ 0

The only difference from the 
standard randomized CD



Diffusion as optimization

‣  for all 

• A curial property that guarantees convergence and rate of convergence

• Intuitively, diffusion is a local phenomenon

0 = x0 ≤ x1 ≤ ⋯ ≤ xk ≤ x* k ≥ 0

The only difference from the 
standard randomized CD



Local clustering guarantee

‣ Conductance of target cluster C ⊂ V

‣ Seed set S := supp(Δ)

  where  ϕ(C) = |{(u, v) ∈ E : u ∈ C, v ∉ C} |
min {vol(C), vol(V∖C)}

vol(C) := ∑v∈C
d(v)

‣ Assumption (sufficient overlap): , , 
 for some 

vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C)
α, β ≥ 1/logt vol(C) t



Local clustering guarantee

‣ Conductance of target cluster C ⊂ V

‣ Seed set S := supp(Δ)

‣ Apply the sweepcut rounding procedure to  returns a cluster  satisfying





• Cheeger-type bound  for 

• Constant approximation  for 

x* C̃
ϕ(C̃) ≤ Õ(ϕ(C)1−1/p)

ϕ(C̃) ≤ Õ( ϕ(C)) p = 2
ϕ(C̃) ≤ Õ(ϕ(C)) p → ∞

  where  ϕ(C) = |{(u, v) ∈ E : u ∈ C, v ∉ C} |
min {vol(C), vol(V∖C)}

vol(C) := ∑v∈C
d(v)

‣ Assumption (sufficient overlap): , , 
 for some 

vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C)
α, β ≥ 1/logt vol(C) t



Local clustering guarantee

‣ Conductance of target cluster C ⊂ V

‣ Seed set S := supp(Δ)

‣ Apply the sweepcut rounding procedure to  returns a cluster  satisfying





• Cheeger-type bound  for 

• Constant approximation  for 


‣ Tradeoff between running time  and approximation  

x* C̃
ϕ(C̃) ≤ Õ(ϕ(C)1−1/p)

ϕ(C̃) ≤ Õ( ϕ(C)) p = 2
ϕ(C̃) ≤ Õ(ϕ(C)) p → ∞

O ( ∥Δ∥1dmax

γ ( ∥Δ∥1

ϵ )
2/q−1

log
1
ϵ ) Õ(ϕ(C)1/q)

‣ Assumption (sufficient overlap): , , 
 for some 

vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C)
α, β ≥ 1/logt vol(C) t

  where  ϕ(C) = |{(u, v) ∈ E : u ∈ C, v ∉ C} |
min {vol(C), vol(V∖C)}

vol(C) := ∑v∈C
d(v)



Empirical performance

0.1 0.2 0.3 0.4
0.1

0.2

0.3

0.4

0.5

0.6

C
on

du
ct

an
ce

PageRank
p = 2
p = 4
p = 8

0.1 0.2 0.3 0.4

0.6

0.8

1

F1
 m

ea
su

re

PageRank
p=2
p=4
p=8

‣ LFR synthetic graphs

•  is a parameter that controls noise, higher  means more noisy clustering structureμ μ

Lower is better Higher is better



Empirical performance

‣ Facebook social network for Colgate University, students in Class of 2009

PageRank p = 2 p = 4
Conductance 0.13 0.13 0.12
F1 measure 0.96 0.96 0.97

‣ Facebook social network for Johns Hopkins University, students of the same major
PageRank p = 2 p = 4

Conductance 0.25 0.23 0.22
F1 measure 0.83 0.85 0.87

PageRank p = 2 p = 4
Conductance 0.37 0.35 0.33
F1 measure 0.66 0.71 0.73

‣ Orkut, large-scale on-line social network, user-defined group

very clean

ground


truth

average

ground


truth

very noisy

ground


truth



Extensions

‣ New network centrality with applications in network epidemic intervention [YSW+ 2021]

• Orders of magnitude faster than traditional measures


‣ (Submodular) Hypergraph diffusion [FLY 2021]

• Submodular function minimization, alternating minimization, duality …
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