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Hypergraph modelling is everywhere
Hypergraphs generalize graphs by allowing a hyperedge to consist 
of multiple nodes that capture higher-order relations in the data. 

E-commerce
Nodes are products or webpages 
Several products can be purchased at once 
Several webpages are visited during the same session

Collaboration 
Nodes are authors  

A group of authors collaborate on a paper/project

Ecology
Nodes are species 
Multiple species interact according to their roles in the food chain



Diffusion algorithms are everywhere (for graphs)
Diffusion on a graph is the process of spreading a given initial mass from 
some seed node(s) to neighbor nodes using the edges of the graph. 

Applications include recommendation systems, node ranking, community 
detection, social and biological network analysis, etc.
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However … hypergraph diffusion has been significantly less explored:
Existing methods either do not have a tight theoretical implication, or do not 
model complex high-order relations, or are not scalable.



This work
We propose the first local diffusion method that 

• Achieves stronger theoretical guarantees for the local hypergraph 
clustering problem; 

• Applies to a substantially richer class of higher-order relations with only a 
submodularity assumption; 

• Permits computationally efficient algorithms.



Higher-order relations: hyperedge cut perspective

How do we treat differently from ?
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There are distinct ways to cut a 4-node hyperedge.
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Higher-order relations: hyperedge cut perspective

Unit: the cost of cutting a hyperedge is 
always 1, i.e., . 

Cardinality-based: the cost of cutting a 
hyperedge depends on the number of 
nodes in either side of the hyperedge, 
i.e., . 

Submodular: the costs of cutting a 
hyperedge form a submodular function, 
i.e.,  is a submodular set 
function.
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we(S) = f(min{ |S | , |e∖S |})

we : 2e → ℝ

Distinct ways to cut a 4-node hyperedge may have different costs.
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Higher-order relations: hyperedge cut perspective

v1 v2

v3 v4

A food network can be mapped into a hypergraph by taking each network 
pattern on the left as a hyperedge on the right. This network pattern 
captures carbon flow from two preys ( , ) to two predators ( , ).  v1 v2 v3 v4
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Higher-order relations: hyperedge cut perspective
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The cut-cost  encourages separation of predators and preys.we({v1, v2}) = we({v3, v4}) = 0



Higher-order relations: hyperedge cut perspective

The cut-cost  encourages separation of predators and preys. 
The cut-cost  discourages grouping of predators and preys.
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Higher-order relations: hyperedge cut perspective

The cut-cost  encourages separation of predators and preys. 
The cut-cost  discourages grouping of predators and preys. 
The cut-cost  assigns less penalty for separating 
a single node. It also makes  a submodular function. 

we({v1, v2}) = we({v3, v4}) = 0
we({v1, v3}) = we({v2, v4}) = 2
we({v1}) = we({v2}) = we({v3}) = we({v4}) = 1

we : 2e → ℝ+

v1 v2

v3 v4

Preys

Predators

v1 v2

v3 v4

we({v1, v2}) = 0

we({v1, v3}) = 2

we({v2}) = 1



Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

For each hyperedge , we define a vector  that specifies the flow values. 
E.g., , . Flow conservation: entries in  sums to 0.

e re
re(v1) = 1 re(v2) = − 6 re

v1 v2

v3 v4

+1

+2+3
−6

Flow on a hyperedgeFlow on a graph edge



Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

v1 v2

v3 v4

+1
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Flow on a graph edge Flow on a hyperedge

 sends 2 units of mass to  
 receives 2 units of mass from 

v1 v2
v2 v1

 sends 1 unit of mass to  
 receives 6 units of mass from  

 sends 4 units of mass to  
 receives 5 units of mass from  

… 

{v1} {v2, v3, v4}
{v2} {v1, v3, v4}
{v1, v3} {v2, v4}
{v1, v2} {v3, v4}



Higher-order relations: hyperedge flow perspective

Flows on graph Flows on hypergraph
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A natural generalization of network flows. 
Flow conservation: numbers within the same hyperedge sum to 0.
We impose additional constraints on the hypergraph flow values so that they can reflect 
higher-order relations.



Higher-order relations: duality between flow & cut perspectives

•  is a set function  
•  specifies the cut-cost of 

splitting  into  and  
•  is submodular

we 2e → ℝ+
we(S)

e S e∖S
we

v1 v2

v3 v4

v1 v2

v3 v4

+1

+2+3
−6

•  is a vector in  
•  specifies the flow over  
•  lies in 

re ℝ|e|

re e
re ℝ+(Be)

Cone generated by the 
base polytope of we



Hyper-Flow Diffusion: definition and notation
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•  specifies initial mass on nodes.Δ ∈ ℝ|V|
+

Δ(v7) = 5

Consider a hypergraph H = (V, E)
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Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes 
• , , specifies the flow routings

Δ ∈ ℝ|V|
+

re e ∈ E
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Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes 
• , , specifies the flow routings 

•
 specifies net mass on nodes

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2
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•  specifies initial mass on nodes 
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•
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• Each node has capacity equal to its degree
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Consider a hypergraph H = (V, E) v1 v2

v3 v4

v5

v6

v7

•  specifies initial mass on nodes 
• , , specifies the flow routings 

•
 specifies net mass on nodes 

• Each node has capacity equal to its degree 
• A set of flow routings , , is feasible if 
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Hyper-Flow Diffusion: definition and notation



Hyper-Flow Diffusion: formulations

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

Capacity constraint forces diffusion of initial mass

Flow conservation on a hyperedge

 is magnitude of flow (discussed later)ϕe

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2
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Hyper-Flow Diffusion: formulations
Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

re ∈ ϕeBe, ∀e New constraint that reflects higher-order relations

Capacity constraint forces diffusion of initial mass

Be = {ρe ∈ ℝ|V| : ρe(S) ≤ we(S)∀S ⊆ V, ρe(V) = we(V)}
The base polytope for we

Magnitude 
of flow 

Flow conservation does not model nontrivial 
higher-order relations

 is magnitude of flowϕemin
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Hyper-Flow Diffusion: formulations

m(v) ≤ d(v), ∀v

re ∈ ϕeBe, ∀e

Capacity constraint forces diffusion of initial mass

Flow constraint encodes high-order relations

 is magnitude of flowϕe

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
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Hyper-Flow Diffusion: formulations

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+
σ
2 ∑

v∈V

d(v)z(v)2

+σd(v)z(v), ∀v

For computational efficiency reasons 
we introduce a hyper-parameter σ ≥ 0

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.
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Hyper-Flow Diffusion: formulations

min
x≥0

1
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σ
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The dual problem is

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator
Reduces to  for standard graphsxTLx

 is the Lovasz extension of fe(x) := max
ρe∈Be

ρT
e x we
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Hyper-Flow Diffusion: formulations

min
x≥0

1
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fe(x)2 +
σ
2 ∑

v∈V

d(v)x(v)2 + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

The dual problem is

We use the dual solution  for node ranking and clustering
  measures the (scaled) excess mass on node  after diffusion

x
x(v) v

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.
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Hyper-Flow Diffusion: local clustering

Conductance of target cluster C

Sweep-cut on optimal dual solution  returns a cluster  satisfyingx C̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where  vol(C) := ∑

v∈C

d(v)

Φ(C̃) ≤ �̃�( Φ(C))

Assumption 1 (overlap): , ,  for some vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C) α, β ≥
1

logt vol(C)
t

Assumption 2 (parameter): 0 ≤ σ ≤ βΦ(C)/3

Given a set of seed node(s) , find a low-conductance cluster  around .S C S

Assign initial mass so .supp(Δ) = S



Hyper-Flow Diffusion: local clustering

Conductance of target cluster C

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where  vol(C) := ∑

v∈C

d(v)

Given a set of seed node(s) , find a low-conductance cluster  around .S C S

Assign initial mass so .supp(Δ) = S

The first result that is  
independent of hyperedge size 

in general

Sweep-cut on optimal dual solution  returns a cluster  satisfyingx C̃

Φ(C̃) ≤ �̃�( Φ(C))

Assumption 1 (overlap): , ,  for some vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C) α, β ≥
1

logt vol(C)
t

Assumption 2 (parameter): 0 ≤ σ ≤ βΦ(C)/3



Hyper-Flow Diffusion: algorithm

We solve an equivalent primal reformulation via alternating minimization. 
The algorithm only touches a small part of the hypergraph.

The figures show the number of nodes touched by the algorithm on 3 different 
clusters in the Amazon-reviews dataset, which consists of 2.2 million nodes. 

# 
no

nz
er

os

Iteration Iteration Iteration

Proving the worst-case running time is strongly-local is an open problem.



Hyper-Flow Diffusion: empirical results
Cardinality-based -uniform hypergraph stochastic block model:  
Boundary hyperedges appear with different probabilities according to 
the cardinality of hyperedge cut.

k

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

q1 q2 q3

We consider . Under this generative setting, one should 
naturally explore cardinality-based cut-cost for clustering.

q1 ≫ q2 ≥ q3

All our experiments use a single seed node to recover the target



Hyper-Flow Diffusion: empirical results

• LH is a strongly-local hypergraph diffusion method based on graph reduction. 
• ACL is a heuristic method that uses PageRank on star expansion. 
• HFD is the only method that directly works on original hypergraph. 
• U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost. 
• For each method, C-* is better than U-*. 
• There is a significant performance drop for C-LH at .k = 4

k = 3 k = 4 k = 5 k = 6
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Hyper-Flow Diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network. 

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

• S-HFD uses specialized submodular cut-cost 
shown on the left. 

• The example shows that general submodular cut-
cost can be necessary. 

• HFD is the only local diffusion method that works 
with general submodular cut-costs.



Hyper-Flow Diffusion: empirical results

Local clustering  
on a hypergraph 
constructed from  
Amazon product 
reviews data

Nodes are products 
Hyperedges are 
products purchased 
at the same time 
Clusters are products 
belonging to the same 
product category



Hyper-Flow Diffusion: empirical results

Local clustering  
on a hypergraph 
constructed from  
Microsoft academic 
coauthorthip data

Nodes are papers 
Hyperedges are 
papers having at least 
a common coauthor 
Clusters are papers 
published at similar 
venues



Hyper-Flow Diffusion: empirical results

Local clustering on a 
hypergraph constructed from  
travel metasearch data  
(F1 scores)

Nodes are hotel accommodations 
Hyperedges are accommodations 
viewed by the same user in a 
browsing session 
Clusters are accommodations 
located in the same country/territory



Hyper-Flow Diffusion: empirical results

For more experiments and details on both synthetic and real datasets: 

Please see our paper Local Hyper-Flow Diffusion, NeurIPS 2021

Julia implementation HFD on GitHub 



Thank you!


