
Hyper-Flow Diffusion
Kimon Fountoulakis1, Pan Li2, Shenghao Yang1

1University of Waterloo 2Purdue University

Hypergraph modelling is everywhere
Hypergraphs generalize graphs by allowing a hyperedge to consist
of multiple nodes that capture higher-order relations in the data.

E-commerce
Nodes are products or webpages
Several products can be purchased at once
Several webpages are visited during the same session

Collaboration
Nodes are authors

A group of authors collaborate on a paper/project

Ecology
Nodes are species
Multiple species interact according to their roles in the food chain

Diffusion algorithms are everywhere (for graphs)
Diffusion on a graph is the process of spreading a given initial mass from
some seed node(s) to neighbor nodes using the edges of the graph.

Applications include recommendation systems, node ranking, community
detection, social and biological network analysis, etc.

1 2 3

Diffusion algorithms are everywhere (for graphs)
Diffusion on a graph is the process of spreading a given initial mass from
some seed node(s) to neighbor nodes using the edges of the graph.

Applications include recommendation systems, node ranking, community
detection, social and biological network analysis, etc.

1 2 3

However … hypergraph diffusion has been significantly less explored:
Existing methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.

This work
We propose the first local diffusion method that

• Achieves stronger theoretical guarantees for the local hypergraph
clustering problem;

• Applies to a substantially richer class of higher-order relations with only a
submodularity assumption;

• Permits computationally efficient algorithms.

Higher-order relations: hyperedge cut perspective

How do we treat differently from ?

v1 v2

v3 v4

v1 v2

v3 v4

There are distinct ways to cut a 4-node hyperedge.

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2})

we({v1, v2})

we({v1, v3})

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

Unit: the cost of cutting a hyperedge is
always 1, i.e., we(S) = 1

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2}) = 1

we({v1, v2}) = 1

we({v1, v3}) = 1

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

Unit: the cost of cutting a hyperedge is
always 1, i.e., .

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,
i.e., .

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2}) = 1

we({v1, v2}) = 2

we({v1, v3}) = 2

Higher-order relations: hyperedge cut perspective

Unit: the cost of cutting a hyperedge is
always 1, i.e., .

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,
i.e., .

Submodular: the costs of cutting a
hyperedge form a submodular function,
i.e., is a submodular set
function.

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

we : 2e → ℝ

Distinct ways to cut a 4-node hyperedge may have different costs.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

 specifies the cost of
splitting into and .
we(S)

e S e∖S

Higher-order relations: hyperedge cut perspective

v1 v2

v3 v4

A food network can be mapped into a hypergraph by taking each network
pattern on the left as a hyperedge on the right. This network pattern
captures carbon flow from two preys (,) to two predators (,). v1 v2 v3 v4

v1 v2

v3 v4

Preys

Predators

Higher-order relations: hyperedge cut perspective

we({v1, v2}) = 0

v1 v2

v3 v4

v1 v2

v3 v4

Preys

Predators

The cut-cost encourages separation of predators and preys.we({v1, v2}) = we({v3, v4}) = 0

Higher-order relations: hyperedge cut perspective

The cut-cost encourages separation of predators and preys.
The cut-cost discourages grouping of predators and preys.

we({v1, v2}) = we({v3, v4}) = 0
we({v1, v3}) = we({v2, v4}) = 2

v1 v2

v3 v4

Preys

Predators

v1 v2

v3 v4

we({v1, v2}) = 0

we({v1, v3}) = 2

Higher-order relations: hyperedge cut perspective

The cut-cost encourages separation of predators and preys.
The cut-cost discourages grouping of predators and preys.
The cut-cost assigns less penalty for separating
a single node. It also makes a submodular function.

we({v1, v2}) = we({v3, v4}) = 0
we({v1, v3}) = we({v2, v4}) = 2
we({v1}) = we({v2}) = we({v3}) = we({v4}) = 1

we : 2e → ℝ+

v1 v2

v3 v4

Preys

Predators

v1 v2

v3 v4

we({v1, v2}) = 0

we({v1, v3}) = 2

we({v2}) = 1

Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

For each hyperedge , we define a vector that specifies the flow values.
E.g., , . Flow conservation: entries in sums to 0.

e re
re(v1) = 1 re(v2) = − 6 re

v1 v2

v3 v4

+1

+2+3
−6

Flow on a hyperedgeFlow on a graph edge

Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

v1 v2

v3 v4

+1

+2+3
−6

Flow on a graph edge Flow on a hyperedge

 sends 2 units of mass to
 receives 2 units of mass from

v1 v2
v2 v1

 sends 1 unit of mass to
 receives 6 units of mass from

 sends 4 units of mass to
 receives 5 units of mass from

…

{v1} {v2, v3, v4}
{v2} {v1, v3, v4}
{v1, v3} {v2, v4}
{v1, v2} {v3, v4}

Higher-order relations: hyperedge flow perspective

Flows on graph Flows on hypergraph

v1

−3+3
v2

v4v3

+2 −2
+1

−1
v3v1

v2 v4

v5

v6

+3

+2

+1

−6

−2

0

+1

+1

A natural generalization of network flows.
Flow conservation: numbers within the same hyperedge sum to 0.
We impose additional constraints on the hypergraph flow values so that they can reflect
higher-order relations.

Higher-order relations: duality between flow & cut perspectives

• is a set function
• specifies the cut-cost of

splitting into and
• is submodular

we 2e → ℝ+
we(S)

e S e∖S
we

v1 v2

v3 v4

v1 v2

v3 v4

+1

+2+3
−6

• is a vector in
• specifies the flow over
• lies in

re ℝ|e|

re e
re ℝ+(Be)

Cone generated by the
base polytope of we

Hyper-Flow Diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

• specifies initial mass on nodes.Δ ∈ ℝ|V|
+

Δ(v7) = 5

Consider a hypergraph H = (V, E)

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

+1

−1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

Δ ∈ ℝ|V|
+

re e ∈ E

Hyper-Flow Diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

Hyper-Flow Diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

• Each node has capacity equal to its degree

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

d(v6) = 1

Hyper-Flow Diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

• Each node has capacity equal to its degree

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

d(v6) = 1

Hyper-Flow Diffusion: definition and notation

Consider a hypergraph H = (V, E) v1 v2

v3 v4

v5

v6

v7

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

• Each node has capacity equal to its degree
• A set of flow routings , , is feasible if

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

re e ∈ E
m(v) ≤ d(v), ∀v

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

m(v6) = 2

d(v6) = 1

Hyper-Flow Diffusion: definition and notation

Hyper-Flow Diffusion: formulations

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

Capacity constraint forces diffusion of initial mass

Flow conservation on a hyperedge

 is magnitude of flow (discussed later)ϕe

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

Hyper-Flow Diffusion: formulations

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

re ∈ ϕeBe, ∀e

Flow conservation does not model nontrivial
higher-order relations

Capacity constraint forces diffusion of initial mass

 is magnitude of flow (discussed later)ϕe

New constraint that reflects higher-order relations

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

Hyper-Flow Diffusion: formulations
Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

re ∈ ϕeBe, ∀e New constraint that reflects higher-order relations

Capacity constraint forces diffusion of initial mass

Be = {ρe ∈ ℝ|V| : ρe(S) ≤ we(S)∀S ⊆ V, ρe(V) = we(V)}
The base polytope for we

Magnitude
of flow

Flow conservation does not model nontrivial
higher-order relations

 is magnitude of flowϕemin
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

Hyper-Flow Diffusion: formulations

m(v) ≤ d(v), ∀v

re ∈ ϕeBe, ∀e

Capacity constraint forces diffusion of initial mass

Flow constraint encodes high-order relations

 is magnitude of flowϕe

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

Hyper-Flow Diffusion: formulations

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+
σ
2 ∑

v∈V

d(v)z(v)2

+σd(v)z(v), ∀v

For computational efficiency reasons
we introduce a hyper-parameter σ ≥ 0

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

z≥0

Hyper-Flow Diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
2 ∑

v∈V

d(v)x(v)2 + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

The dual problem is

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator
Reduces to for standard graphsxTLx

 is the Lovasz extension of fe(x) := max
ρe∈Be

ρT
e x we

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

+
σ
2 ∑

v∈V

d(v)z(v)2

+σd(v)z(v), ∀v

For computational efficiency reasons
we introduce a hyper-parameter σ ≥ 0

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

z≥0

Hyper-Flow Diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
2 ∑

v∈V

d(v)x(v)2 + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

The dual problem is

We use the dual solution for node ranking and clustering
 measures the (scaled) excess mass on node after diffusion

x
x(v) v

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

z≥0

+
σ
2 ∑

v∈V

d(v)z(v)2

+σd(v)z(v), ∀v

For computational efficiency reasons
we introduce a hyper-parameter σ ≥ 0

Hyper-Flow Diffusion: local clustering

Conductance of target cluster C

Sweep-cut on optimal dual solution returns a cluster satisfyingx C̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where vol(C) := ∑

v∈C

d(v)

Φ(C̃) ≤ �̃�(Φ(C))

Assumption 1 (overlap): , , for some vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C) α, β ≥
1

logt vol(C)
t

Assumption 2 (parameter): 0 ≤ σ ≤ βΦ(C)/3

Given a set of seed node(s) , find a low-conductance cluster around .S C S

Assign initial mass so .supp(Δ) = S

Hyper-Flow Diffusion: local clustering

Conductance of target cluster C

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where vol(C) := ∑

v∈C

d(v)

Given a set of seed node(s) , find a low-conductance cluster around .S C S

Assign initial mass so .supp(Δ) = S

The first result that is
independent of hyperedge size

in general

Sweep-cut on optimal dual solution returns a cluster satisfyingx C̃

Φ(C̃) ≤ �̃�(Φ(C))

Assumption 1 (overlap): , , for some vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C) α, β ≥
1

logt vol(C)
t

Assumption 2 (parameter): 0 ≤ σ ≤ βΦ(C)/3

Hyper-Flow Diffusion: algorithm

We solve an equivalent primal reformulation via alternating minimization.
The algorithm only touches a small part of the hypergraph.

The figures show the number of nodes touched by the algorithm on 3 different
clusters in the Amazon-reviews dataset, which consists of 2.2 million nodes.

no

nz
er

os

Iteration Iteration Iteration

Proving the worst-case running time is strongly-local is an open problem.

Hyper-Flow Diffusion: empirical results
Cardinality-based -uniform hypergraph stochastic block model:
Boundary hyperedges appear with different probabilities according to
the cardinality of hyperedge cut.

k

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

q1 q2 q3

We consider . Under this generative setting, one should
naturally explore cardinality-based cut-cost for clustering.

q1 ≫ q2 ≥ q3

All our experiments use a single seed node to recover the target

Hyper-Flow Diffusion: empirical results

• LH is a strongly-local hypergraph diffusion method based on graph reduction.
• ACL is a heuristic method that uses PageRank on star expansion.
• HFD is the only method that directly works on original hypergraph.
• U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost.
• For each method, C-* is better than U-*.
• There is a significant performance drop for C-LH at .k = 4

k = 3 k = 4 k = 5 k = 6
1.0

1.2

1.4

1.6

1.8
©

(Ĉ
)/

©
(C

)
U-HFD

C-HFD

U-LH

C-LH

ACL

k = 3 k = 4 k = 5 k = 6
0.80

0.84

0.86

0.92

0.96

1.00

F
1

sc
or

e

U-HFD

C-HFD

U-LH

C-LH

ACL

Higher is betterLower is better

Hyperedge size Hyperedge size

Hyper-Flow Diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

• S-HFD uses specialized submodular cut-cost
shown on the left.

• The example shows that general submodular cut-
cost can be necessary.

• HFD is the only local diffusion method that works
with general submodular cut-costs.

Hyper-Flow Diffusion: empirical results

Local clustering
on a hypergraph
constructed from
Amazon product
reviews data

Nodes are products
Hyperedges are
products purchased
at the same time
Clusters are products
belonging to the same
product category

Hyper-Flow Diffusion: empirical results

Local clustering
on a hypergraph
constructed from
Microsoft academic
coauthorthip data

Nodes are papers
Hyperedges are
papers having at least
a common coauthor
Clusters are papers
published at similar
venues

Hyper-Flow Diffusion: empirical results

Local clustering on a
hypergraph constructed from
travel metasearch data
(F1 scores)

Nodes are hotel accommodations
Hyperedges are accommodations
viewed by the same user in a
browsing session
Clusters are accommodations
located in the same country/territory

Hyper-Flow Diffusion: empirical results

For more experiments and details on both synthetic and real datasets:

Please see our paper Local Hyper-Flow Diffusion, NeurIPS 2021

Julia implementation HFD on GitHub

Thank you!

