
Hyper-Flow Diffusion
Kimon Fountoulakis1, Pan Li2, Shenghao Yang1


1University of Waterloo     2Purdue University



Hypergraph modelling is everywhere
Hypergraphs generalize graphs by allowing a hyperedge to consist 
of multiple nodes that capture higher-order relations in the data. 

E-commerce

Nodes are products or webpages

Several products can be purchased at once

Several webpages are visited during the same session

Collaboration 

Nodes are authors 


A group of authors collaborate on a paper/project

Ecology

Nodes are species

Multiple species interact according to their roles in the food chain



Diffusion algorithms are everywhere (for graphs)
Diffusion on a graph is the process of spreading a given initial mass from 
some seed node(s) to neighbor nodes using the edges of the graph.


Applications include recommendation systems, node ranking, community 
detection, social and biological network analysis, etc.
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However … hypergraph diffusion has been significantly less explored:

Existing methods either do not have a tight theoretical implication, or do not 
model complex high-order relations, or are not scalable.



This work
We propose the first local diffusion method that


• Achieves stronger theoretical guarantees for the local hypergraph 
clustering problem;


• Applies to a substantially richer class of higher-order relations with only a 
submodularity assumption;


• Permits computationally efficient algorithms.



Higher-order relations: hyperedge cut perspective

How do we treat differently from ?
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There are distinct ways to cut a 4-node hyperedge.
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Higher-order relations: hyperedge cut perspective

Unit: the cost of cutting a hyperedge is 
always 1, i.e., .


Cardinality-based: the cost of cutting a 
hyperedge depends on the number of 
nodes in either side of the hyperedge, 
i.e., .


Submodular: the costs of cutting a 
hyperedge form a submodular function, 
i.e.,  is a submodular set 
function.

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

we : 2e → ℝ

Distinct ways to cut a 4-node hyperedge may have different costs.

we({v2}) = 1
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Higher-order relations: hyperedge cut perspective

v1 v2

v3 v4

A food network can be mapped into a hypergraph by taking each network 
pattern on the left as a hyperedge on the right. This network pattern 
captures carbon flow from two preys ( , ) to two predators ( , ). 
v1 v2 v3 v4
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Higher-order relations: hyperedge cut perspective

we({v1, v2}) = 0

v1 v2

v3 v4

v1 v2

v3 v4

Preys

Predators

The cut-cost  encourages separation of predators and preys.we({v1, v2}) = we({v3, v4}) = 0



Higher-order relations: hyperedge cut perspective

The cut-cost  encourages separation of predators and preys.

The cut-cost  discourages grouping of predators and preys.

we({v1, v2}) = we({v3, v4}) = 0
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Higher-order relations: hyperedge cut perspective

The cut-cost  encourages separation of predators and preys.

The cut-cost  discourages grouping of predators and preys.

The cut-cost  assigns less penalty for separating 
a single node. It also makes  a submodular function. 

we({v1, v2}) = we({v3, v4}) = 0
we({v1, v3}) = we({v2, v4}) = 2
we({v1}) = we({v2}) = we({v3}) = we({v4}) = 1

we : 2e → ℝ+

v1 v2

v3 v4

Preys

Predators

v1 v2

v3 v4

we({v1, v2}) = 0

we({v1, v3}) = 2

we({v2}) = 1



Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

For each hyperedge , we define a vector  that specifies the flow values.

E.g., , . Flow conservation: entries in  sums to 0.

e re
re(v1) = 1 re(v2) = − 6 re

v1 v2

v3 v4

+1

+2+3
−6

Flow on a hyperedgeFlow on a graph edge



Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

v1 v2

v3 v4

+1

+2+3
−6

Flow on a graph edge Flow on a hyperedge

 sends 2 units of mass to 

 receives 2 units of mass from 

v1 v2
v2 v1

 sends 1 unit of mass to 

 receives 6 units of mass from 


 sends 4 units of mass to 

 receives 5 units of mass from 


… 

{v1} {v2, v3, v4}
{v2} {v1, v3, v4}
{v1, v3} {v2, v4}
{v1, v2} {v3, v4}



Higher-order relations: hyperedge flow perspective

Flows on graph Flows on hypergraph

v1

−3+3
v2

v4v3

+2 −2
+1

−1
v3v1

v2 v4

v5

v6

+3

+2

+1

−6

−2

0

+1

+1

A natural generalization of network flows.

Flow conservation: numbers within the same hyperedge sum to 0.

We impose additional constraints on the hypergraph flow values so that they can reflect 
higher-order relations.



Higher-order relations: duality between flow & cut perspectives

•  is a set function 

•  specifies the cut-cost of 

splitting  into  and 

•  is submodular

we 2e → ℝ+
we(S)

e S e∖S
we

v1 v2

v3 v4

v1 v2

v3 v4

+1

+2+3
−6

•  is a vector in 

•  specifies the flow over 

•  lies in 

re ℝ|e|

re e
re ℝ+(Be)

Cone generated by the 
base polytope of we



Hyper-Flow Diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

•  specifies initial mass on nodes.Δ ∈ ℝ|V|
+

Δ(v7) = 5

Consider a hypergraph H = (V, E)
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v3 v4

v5
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Δ(v7) = 5

+4
−2

−2

+1
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Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes

• , , specifies the flow routings

Δ ∈ ℝ|V|
+

re e ∈ E
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v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes

• , , specifies the flow routings


•
 specifies net mass on nodes

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2
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Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes

• , , specifies the flow routings


•
 specifies net mass on nodes


• Each node has capacity equal to its degree

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

d(v6) = 1
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Consider a hypergraph H = (V, E) v1 v2

v3 v4

v5

v6

v7

•  specifies initial mass on nodes

• , , specifies the flow routings


•
 specifies net mass on nodes


• Each node has capacity equal to its degree

• A set of flow routings , , is feasible if 

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

re e ∈ E
m(v) ≤ d(v), ∀v

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

m(v6) = 2

d(v6) = 1

Hyper-Flow Diffusion: definition and notation



Hyper-Flow Diffusion: formulations

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

Capacity constraint forces diffusion of initial mass

Flow conservation on a hyperedge

 is magnitude of flow (discussed later)ϕe

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2
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m(v) ≤ d(v), ∀v

∑
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re ∈ ϕeBe, ∀e

Flow conservation does not model nontrivial 
higher-order relations

Capacity constraint forces diffusion of initial mass

 is magnitude of flow (discussed later)ϕe

New constraint that reflects higher-order relations
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Hyper-Flow Diffusion: formulations
Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

re ∈ ϕeBe, ∀e New constraint that reflects higher-order relations

Capacity constraint forces diffusion of initial mass

Be = {ρe ∈ ℝ|V| : ρe(S) ≤ we(S)∀S ⊆ V, ρe(V) = we(V)}
The base polytope for we

Magnitude 
of flow 

Flow conservation does not model nontrivial 
higher-order relations

 is magnitude of flowϕemin
ϕ≥0

1
2 ∑

e∈E

ϕ2
e



Hyper-Flow Diffusion: formulations

m(v) ≤ d(v), ∀v

re ∈ ϕeBe, ∀e

Capacity constraint forces diffusion of initial mass

Flow constraint encodes high-order relations

 is magnitude of flowϕe

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e



Hyper-Flow Diffusion: formulations

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+
σ
2 ∑

v∈V

d(v)z(v)2

+σd(v)z(v), ∀v

For computational efficiency reasons 
we introduce a hyper-parameter σ ≥ 0

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

min
ϕ≥0

1
2 ∑

e∈E

ϕ2
e

z≥0



Hyper-Flow Diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
2 ∑

v∈V

d(v)x(v)2 + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

The dual problem is

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator

Reduces to  for standard graphsxTLx

 is the Lovasz extension of fe(x) := max
ρe∈Be

ρT
e x we

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.
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Hyper-Flow Diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
2 ∑

v∈V

d(v)x(v)2 + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

The dual problem is

We use the dual solution  for node ranking and clustering

  measures the (scaled) excess mass on node  after diffusion

x
x(v) v

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.
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For computational efficiency reasons 
we introduce a hyper-parameter σ ≥ 0



Hyper-Flow Diffusion: local clustering

Conductance of target cluster C

Sweep-cut on optimal dual solution  returns a cluster  satisfyingx C̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where  vol(C) := ∑

v∈C

d(v)

Φ(C̃) ≤ 𝒪̃( Φ(C))

Assumption 1 (overlap): , ,  for some vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C) α, β ≥
1

logt vol(C)
t

Assumption 2 (parameter): 0 ≤ σ ≤ βΦ(C)/3

Given a set of seed node(s) , find a low-conductance cluster  around .S C S

Assign initial mass so .supp(Δ) = S



Hyper-Flow Diffusion: local clustering

Conductance of target cluster C

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where  vol(C) := ∑

v∈C

d(v)

Given a set of seed node(s) , find a low-conductance cluster  around .S C S

Assign initial mass so .supp(Δ) = S

The first result that is 

independent of hyperedge size 

in general

Sweep-cut on optimal dual solution  returns a cluster  satisfyingx C̃

Φ(C̃) ≤ 𝒪̃( Φ(C))

Assumption 1 (overlap): , ,  for some vol(S ∩ C) ≥ βvol(S) vol(S ∩ C) ≥ αvol(C) α, β ≥
1

logt vol(C)
t

Assumption 2 (parameter): 0 ≤ σ ≤ βΦ(C)/3



Hyper-Flow Diffusion: algorithm

We solve an equivalent primal reformulation via alternating minimization.

The algorithm only touches a small part of the hypergraph.

The figures show the number of nodes touched by the algorithm on 3 different 
clusters in the Amazon-reviews dataset, which consists of 2.2 million nodes.


# 
no

nz
er

os

Iteration Iteration Iteration

Proving the worst-case running time is strongly-local is an open problem.



Hyper-Flow Diffusion: empirical results
Cardinality-based -uniform hypergraph stochastic block model: 

Boundary hyperedges appear with different probabilities according to 
the cardinality of hyperedge cut.

k

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

q1 q2 q3

We consider . Under this generative setting, one should 
naturally explore cardinality-based cut-cost for clustering.

q1 ≫ q2 ≥ q3

All our experiments use a single seed node to recover the target



Hyper-Flow Diffusion: empirical results

• LH is a strongly-local hypergraph diffusion method based on graph reduction.

• ACL is a heuristic method that uses PageRank on star expansion.

• HFD is the only method that directly works on original hypergraph.

• U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost.

• For each method, C-* is better than U-*.

• There is a significant performance drop for C-LH at .k = 4

k = 3 k = 4 k = 5 k = 6
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k = 3 k = 4 k = 5 k = 6
0.80

0.84

0.86

0.92

0.96

1.00

F
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U-HFD

C-HFD

U-LH

C-LH

ACL

Higher is betterLower is better

Hyperedge size Hyperedge size



Hyper-Flow Diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network.


we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

• S-HFD uses specialized submodular cut-cost 
shown on the left.


• The example shows that general submodular cut-
cost can be necessary.


• HFD is the only local diffusion method that works 
with general submodular cut-costs.



Hyper-Flow Diffusion: empirical results

Local clustering 

on a hypergraph 
constructed from 

Amazon product 
reviews data

Nodes are products

Hyperedges are 
products purchased 
at the same time

Clusters are products 
belonging to the same 
product category



Hyper-Flow Diffusion: empirical results

Local clustering 

on a hypergraph 
constructed from 

Microsoft academic 
coauthorthip data

Nodes are papers

Hyperedges are 
papers having at least 
a common coauthor

Clusters are papers 
published at similar 
venues



Hyper-Flow Diffusion: empirical results

Local clustering on a 
hypergraph constructed from 

travel metasearch data 

(F1 scores)

Nodes are hotel accommodations

Hyperedges are accommodations 
viewed by the same user in a 
browsing session

Clusters are accommodations 
located in the same country/territory



Hyper-Flow Diffusion: empirical results

For more experiments and details on both synthetic and real datasets:


Please see our paper Local Hyper-Flow Diffusion, NeurIPS 2021

Julia implementation HFD on GitHub 



Thank you!


