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Diffusion on graphs

Diffusion on a graph is the process of spreading a given initial mass from 
some seed node(s) to neighbor nodes using the edges of the graph.


Applications include recommendation systems, node ranking, community 
detection, social and biological network analysis, etc.
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Diffusion on hypergraphs
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Diffusion on hypergraphs
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But how to diffuse mass within a hyperedge?



Flow of mass within a hyperedge
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Diffusion on hypergraphs
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Hyper-Flow Diffusion diffuses mass according to hyperedge flows



Modelling higher-order relations

We want hyperedge flows to reflect nontrivial higher-order relations …


Primal-dual relations enable us to look at hyperedge cuts:

How do we treat differently from ?
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Distinct ways to cut a hyperedge may have different penalties.

Modelling higher-order relations
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Different cut penalties lead to different flow dynamics.

Modelling higher-order relations
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No flow of mass is allowed 
between  and {v1, v2} {v3, v4}



Application

Diffusion leaves excess mass on nodes. This induces an ordering of nodes.


We use the ordering for node ranking and local clustering.


It achieves the first edge-size-independent Cheeger-type approximation 
guarantee for local hypergraph clustering.


Empirically, the running time depends only on the output size.



Empirical results

Node-ranking and and local clustering results on a Florida Bay food network.
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• S-HFD uses specialized submodular cut-cost 
shown on the left.


• The example shows that general submodular cut-
cost can be necessary.


• HFD is the only local diffusion method that works 
with general submodular cut-costs.



Hyper-Flow Diffusion

For more details:


Please see our paper Local Hyper-Flow Diffusion, NeurIPS 2021


Thank you!


