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Hypergraph modelling are everywhere
Hypergraphs generalize graphs by allowing a hyperedge to consist 
of multiple nodes that capture higher-order relations in the data. 

E-commerce

Nodes are products or webpages

Several products can be purchased at once

Several webpages are visited during the same session

Collaboration 

Nodes are authors 


A group of authors collaborate on a paper/project

Ecology

Nodes are species

Multiple species interact according to their roles in the food chain



Diffusion algorithms are everywhere (for graphs)

4.2 million results




Diffusion algorithms are everywhere (for graphs)

4.2 million results

Diffusion on a graph is the process of spreading a given initial mass from 
some seed node(s) to neighbor nodes using the edges of the graph.


Applications include recommendation systems, node ranking, community 
detection, social and biological network analysis, etc.

1 2 3



Diffusion algorithms are everywhere (for graphs)

4.2 million results


However … hypergraph diffusion has been significantly less explored:

Existing methods either do not have a tight theoretical implication, or do not 
model complex high-order relations, or are not scalable to large datasets.



Our motivation

However … hypergraph diffusion has been significantly less explored:

Existing methods either do not have a tight theoretical implication, or do not 
model complex high-order relations, or are not scalable to large datasets.

We propose the first local diffusion method that


•Achieves stronger theoretical guarantees for the local hypergraph 
clustering problem;


•Applies to a substantially richer class of higher-order relations with 
only a submodularity assumption;


•Permits computational efficient algorithms.



Higher-order relations: hyperedge cut perspective

How do we treat differently from ?
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There are distinct ways to cut a 4-node hyperedge.
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Distinct ways to cut a 4-node hyperedge may have different costs.
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Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.
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Unit: the cost of cutting a hyperedge is 
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Higher-order relations: hyperedge cut perspective

Unit: the cost of cutting a hyperedge is 
always 1, i.e., .


Cardinality-based: the cost of cutting a 
hyperedge depends on the number of 
nodes in either side of the hyperedge, 
i.e., .


Submodular: the costs of cutting a 
hyperedge form a submodular function, 
i.e.,  is a submodular set 
function.

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

we : 2e → ℝ

Distinct ways to cut a 4-node hyperedge may have different costs.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2
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Higher-order relations: hyperedge cut perspective

v1 v2

v3 v4

A food network can be mapped into a hypergraph by taking each network 
pattern on the left as a hyperedge on the right. This network pattern 
captures carbon flow from two preys ( , ) to two predators ( , ). 
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Higher-order relations: hyperedge cut perspective

we({v1, v2}) = 0
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Preys

Predators

The cut-cost  encourages separation of predators and preys.we({v1, v2}) = we({v3, v4}) = 0



Higher-order relations: hyperedge cut perspective

The cut-cost  encourages separation of predators and preys.

The cut-cost  discourages grouping of predators and preys.
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Higher-order relations: hyperedge cut perspective

The cut-cost  encourages separation of predators and preys.

The cut-cost  discourages grouping of predators and preys.

The cut-cost  assigns less penalty for separating 
a single node. It also makes  a submodular function. 

we({v1, v2}) = we({v3, v4}) = 0
we({v1, v3}) = we({v2, v4}) = 2
we({v1}) = we({v2}) = we({v3}) = we({v4}) = 1

we : 2e → ℝ+
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v3 v4

Preys

Predators

v1 v2
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we({v1, v2}) = 0

we({v1, v3}) = 2

we({v2}) = 1



Higher-order relations: hyperedge flow perspective

To specify flows (i.e., movement of mass) over an edge or hyperedge, we 
associate each node a number which indicates the direction (sign) and 
magnitude of flow.

v1 v2
+2 −2

Graph edge

v1 v2

v3 v4
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+2+3
−6

Hyperedge



Higher-order relations: hyperedge flow perspective

Flows on graph Flows on hypergraph

v1

−3+3
v2

v4v3

+2 −2
+1

−1
v3v1

v2 v4

v5

v6

+3

+2

+1

−6

−2

0

+1

+1

A natural generalization of network flows.

Flow conservation: numbers within the same hyperedge sum to 0.

Additional constraints required for hyperedges so that the numbers reflect higher-order relations.



Hyper-Flow Diffusion
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Hyper-Flow Diffusion

Δ = 5

• Initial mass  on some seed node(s)

• Diffuse mass according to flows over hyperedges
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Hyper-Flow Diffusion

• Initial mass  on some seed node(s)

• Diffuse mass according to flows over hyperedges


• Leave net mass  on nodes
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Hyper-Flow Diffusion

• Initial mass  on some seed node(s)

• Diffuse mass according to flows over hyperedges


• Leave net mass  on nodes


• Net mass cannot exceed capacity  
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Hyper-Flow Diffusion

• Initial mass  on some seed node(s)

• Diffuse mass according to flows over hyperedges


• Leave net mass  on nodes


• Net mass cannot exceed capacity  

Δ

m
d

v4

v5

v6

v7

+4
−2

−2

+1

−1

Δ = 5

d(v6) = 1
We impose additional constraints so that the 
flow values respect higher-order relations 
modelled by the cut-cost function .


Hyper-Flow Diffusion is the diffusion of initial 
mass according to minimum -norm flow.

we

ℓ2
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Hyper-Flow Diffusion

• Initial mass  on some seed node(s)

• Diffuse mass according to flows over hyperedges


• Leave net mass  on nodes


• Net mass cannot exceed capacity  
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We use the excess mass on nodes for node ranking and local clustering

We impose additional constraints so that the 
flow values respect higher-order relations 
modelled by the cut-cost function .


Hyper-Flow Diffusion is the diffusion of initial 
mass according to minimum -norm flow.

we

ℓ2



Hyper-Flow Diffusion: empirical results
Cardinality-based -uniform hypergraph stochastic block model: 

Boundary hyperedges appear with different probabilities according to 
the cardinality of hyperedge cut.

k

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

q1 q2 q3

We consider . Under this generative setting, one should 
naturally explore cardinality-based cut-cost for clustering.

q1 ≫ q2 ≥ q3

All our experiments use a single seed node to recover the target



Hyper-Flow Diffusion: empirical results

• LH is a strongly-local hypergraph diffusion method based on graph reduction.

• ACL is a heuristic method that uses PageRank on star expansion.

• HFD is the only method that directly works on original hypergraph.

• U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost.

• For each method, C-* is better than U-*.

• There is a significant performance drop for C-LH at .k = 4
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Hyper-Flow Diffusion: empirical results

Local clustering 

on a hypergraph 
constructed from 

Amazon product 
reviews data

Nodes are products

Hyperedges are 
products reviewed by 
the same person

Clusters are products 
belonging to the same 
product category



Hyper-Flow Diffusion: empirical results

Local clustering 

on a hypergraph 
constructed from 

Microsoft academic 
coauthorthip data

Nodes are papers

Hyperedges are 
papers having at least 
a common coauthor

Clusters are papers 
published at similar 
venues



Hyper-Flow Diffusion: empirical results

Local clustering on a 
hypergraph constructed from 

travel metasearch data 

(F1 scores)

Nodes are hotel accommodations

Hyperedges are accommodations 
viewed by the same user in a 
browsing session

Clusters are accommodations 
located in the same country/territory



Hyper-Flow Diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network.


we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

• S-HFD uses specialized submodular cut-cost 
shown on the left.


• The example shows that general submodular cut-
cost can be necessary.


• HFD is the only local diffusion method that works 
with general submodular cut-costs.



Hyper-Flow Diffusion: empirical results

For more experiments and details on both synthetic and real datasets:


Please see our preprint Local Hyper-Flow Diffusion on arXiv:2102.07945


Julia implementation HFD on GitHub 



Thank you!


