
Hyper-Flow Diffusion
Kimon Fountoulakis1, Pan Li2, Shenghao Yang1

1University of Waterloo 2Purdue University

Networks 2021

Hypergraph modelling are everywhere
Hypergraphs generalize graphs by allowing a hyperedge to consist
of multiple nodes that capture higher-order relations in the data. 

E-commerce

Nodes are products or webpages

Several products can be purchased at once

Several webpages are visited during the same session

Collaboration

Nodes are authors

A group of authors collaborate on a paper/project

Ecology

Nodes are species

Multiple species interact according to their roles in the food chain

Diffusion algorithms are everywhere (for graphs)

4.2 million results

Diffusion algorithms are everywhere (for graphs)

4.2 million results

Diffusion on a graph is the process of spreading a given initial mass from
some seed node(s) to neighbor nodes using the edges of the graph.

Applications include recommendation systems, node ranking, community
detection, social and biological network analysis, etc.

1 2 3

Diffusion algorithms are everywhere (for graphs)

4.2 million results

However … hypergraph diffusion has been significantly less explored:

Existing methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable to large datasets.

Our motivation

However … hypergraph diffusion has been significantly less explored:

Existing methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable to large datasets.

We propose the first local diffusion method that

•Achieves stronger theoretical guarantees for the local hypergraph
clustering problem;

•Applies to a substantially richer class of higher-order relations with
only a submodularity assumption;

•Permits computational efficient algorithms.

Higher-order relations: hyperedge cut perspective

How do we treat differently from ?

v1 v2

v3 v4

v1 v2

v3 v4

There are distinct ways to cut a 4-node hyperedge.

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2})

we({v1, v2})

we({v1, v3})

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

Unit: the cost of cutting a hyperedge is
always 1, i.e., we(S) = 1

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2}) = 1

we({v1, v2}) = 1

we({v1, v3}) = 1

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

Unit: the cost of cutting a hyperedge is
always 1, i.e., .

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,
i.e., .

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2}) = 1

we({v1, v2}) = 2

we({v1, v3}) = 2

Higher-order relations: hyperedge cut perspective

Unit: the cost of cutting a hyperedge is
always 1, i.e., .

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,
i.e., .

Submodular: the costs of cutting a
hyperedge form a submodular function,
i.e., is a submodular set
function.

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

we : 2e → ℝ

Distinct ways to cut a 4-node hyperedge may have different costs.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

 specifies the cost of
splitting into and .
we(S)

e S e∖S

Higher-order relations: hyperedge cut perspective

v1 v2

v3 v4

A food network can be mapped into a hypergraph by taking each network
pattern on the left as a hyperedge on the right. This network pattern
captures carbon flow from two preys (,) to two predators (,).
v1 v2 v3 v4

v1 v2

v3 v4

Higher-order relations: hyperedge cut perspective

we({v1, v2}) = 0

v1 v2

v3 v4

v1 v2

v3 v4

Preys

Predators

The cut-cost encourages separation of predators and preys.we({v1, v2}) = we({v3, v4}) = 0

Higher-order relations: hyperedge cut perspective

The cut-cost encourages separation of predators and preys.

The cut-cost discourages grouping of predators and preys.

we({v1, v2}) = we({v3, v4}) = 0
we({v1, v3}) = we({v2, v4}) = 2

v1 v2

v3 v4

Preys

Predators

v1 v2

v3 v4

we({v1, v2}) = 0

we({v1, v3}) = 2

Higher-order relations: hyperedge cut perspective

The cut-cost encourages separation of predators and preys.

The cut-cost discourages grouping of predators and preys.

The cut-cost assigns less penalty for separating
a single node. It also makes a submodular function.

we({v1, v2}) = we({v3, v4}) = 0
we({v1, v3}) = we({v2, v4}) = 2
we({v1}) = we({v2}) = we({v3}) = we({v4}) = 1

we : 2e → ℝ+

v1 v2

v3 v4

Preys

Predators

v1 v2

v3 v4

we({v1, v2}) = 0

we({v1, v3}) = 2

we({v2}) = 1

Higher-order relations: hyperedge flow perspective

To specify flows (i.e., movement of mass) over an edge or hyperedge, we
associate each node a number which indicates the direction (sign) and
magnitude of flow.

v1 v2
+2 −2

Graph edge

v1 v2

v3 v4

+1

+2+3
−6

Hyperedge

Higher-order relations: hyperedge flow perspective

Flows on graph Flows on hypergraph

v1

−3+3
v2

v4v3

+2 −2
+1

−1
v3v1

v2 v4

v5

v6

+3

+2

+1

−6

−2

0

+1

+1

A natural generalization of network flows.

Flow conservation: numbers within the same hyperedge sum to 0.

Additional constraints required for hyperedges so that the numbers reflect higher-order relations.

Hyper-Flow Diffusion

v1 v2

v3 v4

v5

v6

v7

• Initial mass on some seed node(s)Δ

Δ = 5

v1 v2

v3 v4

v5

v6

v7

+4
−2

−2

+1

−1

Hyper-Flow Diffusion

Δ = 5

• Initial mass on some seed node(s)

• Diffuse mass according to flows over hyperedges

Δ

v1 v2

v3

m(v7) = 1

m(v5) = 1

m(v6) = 2

Hyper-Flow Diffusion

• Initial mass on some seed node(s)

• Diffuse mass according to flows over hyperedges

• Leave net mass on nodes

Δ

m
v4

v5

v6

v7

+4
−2

−2

+1

−1

Δ = 5

v1 v2

v3

m(v7) = 1

m(v5) = 1

m(v6) = 2

Hyper-Flow Diffusion

• Initial mass on some seed node(s)

• Diffuse mass according to flows over hyperedges

• Leave net mass on nodes

• Net mass cannot exceed capacity

Δ

m
d

v4

v5

v6

v7

+4
−2

−2

+1

−1

Δ = 5

d(v6) = 1

v1 v2

v3

m(v7) = 1

m(v5) = 1

m(v6) = 2

Hyper-Flow Diffusion

• Initial mass on some seed node(s)

• Diffuse mass according to flows over hyperedges

• Leave net mass on nodes

• Net mass cannot exceed capacity

Δ

m
d

v4

v5

v6

v7

+4
−2

−2

+1

−1

Δ = 5

d(v6) = 1
We impose additional constraints so that the
flow values respect higher-order relations
modelled by the cut-cost function .

Hyper-Flow Diffusion is the diffusion of initial
mass according to minimum -norm flow.

we

ℓ2

v1 v2

v3

m(v7) = 1

m(v5) = 1

m(v6) = 2

Hyper-Flow Diffusion

• Initial mass on some seed node(s)

• Diffuse mass according to flows over hyperedges

• Leave net mass on nodes

• Net mass cannot exceed capacity

Δ

m
d

v4

v5

v6

v7

+4
−2

−2

+1

−1

Δ = 5

d(v6) = 1

We use the excess mass on nodes for node ranking and local clustering

We impose additional constraints so that the
flow values respect higher-order relations
modelled by the cut-cost function .

Hyper-Flow Diffusion is the diffusion of initial
mass according to minimum -norm flow.

we

ℓ2

Hyper-Flow Diffusion: empirical results
Cardinality-based -uniform hypergraph stochastic block model:

Boundary hyperedges appear with different probabilities according to
the cardinality of hyperedge cut.

k

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

q1 q2 q3

We consider . Under this generative setting, one should
naturally explore cardinality-based cut-cost for clustering.

q1 ≫ q2 ≥ q3

All our experiments use a single seed node to recover the target

Hyper-Flow Diffusion: empirical results

• LH is a strongly-local hypergraph diffusion method based on graph reduction.

• ACL is a heuristic method that uses PageRank on star expansion.

• HFD is the only method that directly works on original hypergraph.

• U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost.

• For each method, C-* is better than U-*.

• There is a significant performance drop for C-LH at .k = 4

k = 3 k = 4 k = 5 k = 6
1.0

1.2

1.4

1.6

1.8
©

(Ĉ
)/

©
(C

)
U-HFD

C-HFD

U-LH

C-LH

ACL

k = 3 k = 4 k = 5 k = 6
0.80

0.84

0.86

0.92

0.96

1.00

F
1

sc
or

e

U-HFD

C-HFD

U-LH

C-LH

ACL

Lower is better Higher is better

Hyper-Flow Diffusion: empirical results

Local clustering

on a hypergraph
constructed from

Amazon product
reviews data

Nodes are products

Hyperedges are
products reviewed by
the same person

Clusters are products
belonging to the same
product category

Hyper-Flow Diffusion: empirical results

Local clustering

on a hypergraph
constructed from

Microsoft academic
coauthorthip data

Nodes are papers

Hyperedges are
papers having at least
a common coauthor

Clusters are papers
published at similar
venues

Hyper-Flow Diffusion: empirical results

Local clustering on a
hypergraph constructed from

travel metasearch data

(F1 scores)

Nodes are hotel accommodations

Hyperedges are accommodations
viewed by the same user in a
browsing session

Clusters are accommodations
located in the same country/territory

Hyper-Flow Diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

• S-HFD uses specialized submodular cut-cost
shown on the left.

• The example shows that general submodular cut-
cost can be necessary.

• HFD is the only local diffusion method that works
with general submodular cut-costs.

Hyper-Flow Diffusion: empirical results

For more experiments and details on both synthetic and real datasets:

Please see our preprint Local Hyper-Flow Diffusion on arXiv:2102.07945

Julia implementation HFD on GitHub

Thank you!

