Kimon Fountoulakis¹, Pan Li², Shenghao Yang¹ ¹University of Waterloo ²Purdue University Networks 2021 #### Hypergraph modelling are everywhere Hypergraphs generalize graphs by allowing a hyperedge to consist of multiple nodes that capture higher-order relations in the data. #### E-commerce Nodes are products or webpages Several products can be purchased at once Several webpages are visited during the same session Nodes are authors A group of authors collaborate on a paper/project #### **Ecology** Nodes are species Multiple species interact according to their roles in the food chain ### Diffusion algorithms are everywhere (for graphs) ### Diffusion algorithms are everywhere (for graphs) **Diffusion** on a graph is the process of spreading a given initial mass from some seed node(s) to neighbor nodes using the edges of the graph. Applications include *recommendation systems*, *node ranking*, *community detection*, *social and biological network analysis*, etc. ### Diffusion algorithms are everywhere (for graphs) # However ... hypergraph diffusion has been significantly less explored: Existing methods either do not have a tight theoretical implication, or do not model complex high-order relations, or are not scalable to large datasets. #### Our motivation We propose the first local diffusion method that - Achieves stronger theoretical guarantees for the local hypergraph clustering problem; - Applies to a substantially richer class of higher-order relations with only a submodularity assumption; - Permits computational efficient algorithms. However ... hypergraph diffusion has been significantly less explored: Existing methods either do not have a tight theoretical implication, or do not model complex high-order relations, or are not scalable to large datasets. There are distinct ways to cut a 4-node hyperedge. Distinct ways to cut a 4-node hyperedge may have different costs. $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$. Distinct ways to cut a 4-node hyperedge may have different costs. **Unit:** the cost of cutting a hyperedge is always 1, i.e., $w_e(S) = 1$ $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$. Distinct ways to cut a 4-node hyperedge may have different costs. $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$. **Unit:** the cost of cutting a hyperedge is always 1, i.e., $w_e(S) = 1$. **Cardinality-based:** the cost of cutting a hyperedge depends on the number of nodes in either side of the hyperedge, i.e., $w_e(S) = f(\min\{|S|, |e \setminus S|\})$. Distinct ways to cut a 4-node hyperedge may have different costs. $w_e(S)$ specifies the cost of splitting e into S and $e \setminus S$. **Unit:** the cost of cutting a hyperedge is always 1, i.e., $w_e(S) = 1$. **Cardinality-based:** the cost of cutting a hyperedge depends on the number of nodes in either side of the hyperedge, i.e., $w_e(S) = f(\min\{|S|, |e \setminus S|\})$. **Submodular:** the costs of cutting a hyperedge form a submodular function, i.e., $w_e: 2^e \to \mathbb{R}$ is a submodular set function. A food network can be mapped into a hypergraph by taking each network pattern on the left as a hyperedge on the right. This network pattern captures carbon flow from two preys (v_1, v_2) to two predators (v_3, v_4) . The cut-cost $w_e(\{v_1, v_2\}) = w_e(\{v_3, v_4\}) = 0$ encourages separation of predators and preys. The cut-cost $w_e(\{v_1, v_2\}) = w_e(\{v_3, v_4\}) = 0$ encourages separation of predators and preys. The cut-cost $w_e(\{v_1, v_3\}) = w_e(\{v_2, v_4\}) = 2$ discourages grouping of predators and preys. The cut-cost $w_e(\{v_1,v_2\}) = w_e(\{v_3,v_4\}) = 0$ encourages separation of predators and preys. The cut-cost $w_e(\{v_1,v_3\}) = w_e(\{v_2,v_4\}) = 2$ discourages grouping of predators and preys. The cut-cost $w_e(\{v_1\}) = w_e(\{v_2\}) = w_e(\{v_3\}) = w_e(\{v_4\}) = 1$ assigns less penalty for separating a single node. It also makes $w_e: 2^e \to \mathbb{R}_+$ a submodular function. To specify flows (i.e., movement of mass) over an edge or hyperedge, we associate each node a number which indicates the direction (sign) and magnitude of flow. Flows on graph Flows on hypergraph A natural generalization of network flows. Flow conservation: numbers within the same hyperedge sum to 0. Additional constraints required for hyperedges so that the numbers reflect higher-order relations. Initial mass △ on some seed node(s) - Initial mass Δ on some seed node(s) - Diffuse mass according to flows over hyperedges - Initial mass Δ on some seed node(s) - Diffuse mass according to flows over hyperedges - Leave net mass *m* on nodes - Initial mass △ on some seed node(s) - Diffuse mass according to flows over hyperedges - Leave net mass *m* on nodes - Net mass cannot exceed capacity d - Initial mass ∆ on some seed node(s) - Diffuse mass according to flows over hyperedges - Leave net mass *m* on nodes - Net mass cannot exceed capacity d We impose additional constraints so that the flow values respect higher-order relations modelled by the cut-cost function w_e . Hyper-Flow Diffusion is the diffusion of initial mass according to minimum ℓ_2 -norm flow. - Initial mass Δ on some seed node(s) - Diffuse mass according to flows over hyperedges - Leave net mass *m* on nodes - Net mass cannot exceed capacity d We impose additional constraints so that the flow values respect higher-order relations modelled by the cut-cost function w_e . Hyper-Flow Diffusion is the diffusion of initial mass according to minimum ℓ_2 -norm flow. We use the excess mass on nodes for node ranking and local clustering Cardinality-based k-uniform hypergraph stochastic block model: Boundary hyperedges appear with different probabilities according to the cardinality of hyperedge cut. We consider $q_1 \gg q_2 \geq q_3$. Under this generative setting, one should naturally explore cardinality-based cut-cost for clustering. All our experiments use a single seed node to recover the target - LH is a strongly-local hypergraph diffusion method based on graph reduction. - ACL is a heuristic method that uses PageRank on star expansion. - HFD is the only method that directly works on original hypergraph. - U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost. - For each method, C-* is better than U-*. - There is a significant performance drop for C-LH at k=4. Local clustering on a hypergraph constructed from Amazon product reviews data Nodes are products Hyperedges are products reviewed by the same person Clusters are products belonging to the same product category | | | | Cluster | | | | | | | | | |-------------|----------|--------------------------------------|------------------|---------------------|--------------|------------------------------|---------------------|--------------|------------------------------|------------------------------|------------------------------| | Metric | Seed | Method | 1 | 2 | 3 | 12 | 15 | 17 | 18 | 24 | 25 | | Conductance | Single | U-HFD
U-LH-2.0
U-LH-1.4
ACL | 0.33 | 0.50
0.44 | 0.25
0.25 | 0.16
0.44
0.36
0.54 | 0.74
0.81 | 0.44
0.40 | 0.17
0.57
0.51
0.63 | 0.14
0.58
0.54
0.68 | 0.61
0.59 | | | Multiple | U-HFD
U-LH-2.0
U-LH-1.4
ACL | 0.05
0.05 | 0.13 | 0.15
0.15 | 0.21
0.15 | | 0.45
0.33 | 0.14
0.26
0.19
0.33 | 0.18
0.14 | 0.32
0.53
0.47
0.59 | | F1 score | Single | U-HFD
U-LH-2.0
U-LH-1.4
ACL | 0.23
0.23 | 0.07
0.09 | 0.23
0.35 | 0.29
0.40 | 0.05 0.00 | 0.06
0.07 | 0.80
0.21
0.31
0.17 | 0.28
0.35 | 0.05
0.06 | | | Multiple | | 0.59 0.52 | 0.42
0.45 | 0.73
0.73 | 0.77
0.90 | 0.22
0.27 | 0.25
0.29 | 0.91
0.65
0.79
0.51 | 0.62
0.77 | 0.17
0.20 | Local clustering on a hypergraph constructed from Microsoft academic coauthorthip data Nodes are papers Hyperedges are papers having at least a common coauthor Clusters are papers published at similar venues | | | Cluster | | | | | | |----------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|--| | Metric | Method | Data | ML | TCS | CV | | | | Cond | U-HFD
U-LH-2.0
U-LH-1.4
ACL | 0.03
0.07
0.07
0.08 | 0.06
0.09
0.08
0.11 | 0.06
0.10
0.09
0.11 | 0.03
0.07
0.07
0.09 | | | | F1 score | U-HFD
U-LH-2.0
U-LH-1.4
ACL | | 0.46 | 0.59 | 0.59 | | | Local clustering on a hypergraph constructed from travel metasearch data (F1 scores) Nodes are hotel accommodations Hyperedges are accommodations viewed by the same user in a browsing session Clusters are accommodations located in the same country/territory | Method | South Korea | Iceland | Puerto Rico | Crimea | Vietnam | Hong Kong | Malta | Guatemala | Ukraine | Estonia | |----------------------|-------------|---------|-------------|--------|---------|-------------|-------|-----------|---------|---------| | U-HFD | 0.75 | 0.99 | 0.89 | 0.85 | 0.28 | 0.82 | 0.98 | 0.94 | 0.60 | 0.94 | | C-HFD | 0.76 | 0.99 | 0.95 | 0.94 | 0.32 | 0.80 | 0.98 | 0.97 | 0.68 | 0.94 | | U-LH-2.0 | 0.70 | 0.86 | 0.79 | 0.70 | 0.24 | 0.92 | 0.88 | 0.82 | 0.50 | 0.90 | | C-LH-2.0 | 0.73 | 0.90 | 0.84 | 0.78 | 0.27 | 0.94 | 0.96 | 0.88 | 0.51 | 0.83 | | U-LH-1.4 | 0.69 | 0.84 | 0.80 | 0.75 | 0.28 | 0.87 | 0.92 | 0.83 | 0.47 | 0.90 | | C-LH-1.4 | 0.71 | 0.88 | 0.84 | 0.78 | 0.27 | 0.88 | 0.93 | 0.85 | 0.50 | 0.85 | | ACL | 0.65 | 0.84 | 0.75 | 0.68 | 0.23 | 0.90 | 0.83 | 0.69 | 0.50 | 0.88 | Node-ranking and and local clustering results on a Florida Bay food network. | | Top-2 node-ranki | Clustering F1 | | | | |--------|--|---------------------|-------|------|------| | Method | Query: Raptors | Query: Gray Snapper | Prod. | Low | High | | C-HFD | Epiphytic Gastropods, Detriti. Gastropods
Epiphytic Gastropods, Detriti. Gastropods
Gruiformes, Small Shorebirds | | | 0.47 | 0.64 | - S-HFD uses specialized submodular cut-cost shown on the left. - The example shows that general submodular cutcost can be necessary. - HFD is the only local diffusion method that works with general submodular cut-costs. For more experiments and details on both synthetic and real datasets: Please see our preprint Local Hyper-Flow Diffusion on arXiv:2102.07945 Julia implementation HFD on GitHub (7) # Thank you!