

Motivation

- Diffusion in a graph is the process of spreading a given initial mass from some seed node(s) to nearby nodes along edges. A diffusion is **local** if it spreads mass to only a small fraction of the entire graph.
- Hypergraphs are capable of encoding complex higheroder relations among entities. Many real-world systems are naturally modelled by hypergraphs.
- Existing local diffusion methods for hypergraphs do not model nontrivial higher-order relations.
- We propose Hyper-Flow Diffusion (HFD), a generic local diffusion framework for hypergraphs. HFD applies to a rich class of higher-order relations which unify and extend many previously studied special cases.

Background: Hyperedge Cut

Observation:

There are distinct ways to cut a 4-node hyperedge.

Question:

differently from

Given a hyperedge $e = \{v_1, v_2, \dots, v_k\}$, we define a set function $w_{\rho}: 2^{e} \to \mathbb{R}_{+}$, where $w_{\rho}(S)$ specifies the cost of splitting *e* into *S* and $e \setminus S$.

 \checkmark The cut-cost w_{ρ} encodes nontrivial higher-order relations among nodes in e.

Kimon Fountoulakis, Pan Li, Shenghao Yang

Hierarchy of Hyperedge Cut

Unit (i.e., all-or-nothing): $w_e(S) = 1$ if $S \cap e \neq \emptyset$, 0 o/w. **Cardinality-based:** $w_e(S) = g(\min |S|, |e \setminus S|)$ for a

concave function g.

Submodular: W_{ρ} is a submodular set function.

Cut-cost $w_e(\{v_1, v_2\}) = w_e(\{v_3, v_4\}) = 0$ encourages separation of predators and preys. Cut-cost $w_e(\{v_1, v_3\}) = w_e(\{v_2, v_4\}) = 2$ discourages grouping of predators and preys.

Flow & Cut Primal-Dual Form

HFD is formulated as a primal-dual convex optimization problem. The primal problem has a physical interpretation as routing flows over hyperedges. The dual problem is

Generalized Lovasz hypergraph extension of W_{ρ} Laplacian operator

Local Hyper-Flow Diffusion

Local Hypergraph Clustering

Given a set of seed node(s) S, the goal of local hypergraph clustering is to find a low conductance cluster C around S.

Main result:

Method (cut

ACL (unit) LH (unit) HFD (unit) HFD (submo

The **conductance** of a set $A \subseteq V$ is

 $\Phi(A) = \sum_{v \in E} w_e(A) / \operatorname{vol}(A), \text{ where } \operatorname{vol}(A) = \sum_{v \in A} d(v).$

If $\operatorname{vol}(S \cap C) \ge \beta \operatorname{vol}(S)$, $\operatorname{vol}(S \cap C) \ge \alpha \operatorname{vol}(C)$, $\alpha, \beta \geq \Omega(1/\log^t \operatorname{vol}(C))$ for some t, and $0 \leq \sigma \leq \mathcal{O}(\beta \Phi(C))$, then applying sweep-cut on the optimal solution x returns a cluster \tilde{C} such that $\Phi(\tilde{C}) \leq \tilde{O}(\sqrt{\Phi(C)})$.

Empirical Evaluations

Synthetic experiments using hypergraph SBM:

Local clustering in a real food network (F1 scores):

t-cost)	Producers	Low-level	High-level
		consumers	consumers
	0.69	0.44	0.57
	0.69	0.45	0.57
	0.69	0.47	0.64
odular)	0.69	0.62	0.84