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Hypergraph modelling are everywhere
Hypergraphs generalize graphs by allowing a hyperedge to consist 
of multiple nodes that capture higher-order relations in the data. 

E-commerce
Nodes are products or webpages 
Several products can be purchased at once 
Several webpages are visited during the same session

Collaboration 
Nodes are authors  

A group of authors collaborate on a paper/project

Ecology
Nodes are species 
Multiple species interact according to their roles in the food chain



Diffusion algorithms are everywhere (for graphs)

4.2 million results 



Diffusion algorithms are everywhere (for graphs)

4.2 million results 
Diffusion on a graph is the process of spreading a given initial mass from 
some seed node(s) to neighbor nodes using the edges of the graph. 

Applications include recommendation systems, node ranking, community 
detection, social and biological network analysis, etc.
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Hypergraph diffusion has been significantly less explored:
Existing methods either do not have a tight theoretical implication, or do not 
model complex high-order relations, or are not scalable.
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We propose the first local diffusion method that 

•Achieves stronger theoretical guarantees for the local hypergraph 
clustering problem; 

•Applies to a substantially richer class of higher-order relations with 
only a submodularity assumption; 

•Permits computational efficient algorithms.



Our motivation

We propose the first local diffusion method that 

•Achieves stronger theoretical guarantees for the local hypergraph 
clustering problem; 

•Applies to a substantially richer class of higher-order relations with 
only a submodularity assumption; 

•Permits computational efficient algorithms.

Hypergraph diffusion has been significantly less explored:
Existing methods either do not have a tight theoretical implication, or do not 
model complex high-order relations, or are not scalable.

Connection to a nonlinear hypergraph Laplacian operator 
will become clear later 
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Higher-order relations: hyperedge cut perspective

Unit: the cost of cutting a hyperedge is 
always 1, i.e., . 

Cardinality-based: the cost of cutting a 
hyperedge depends on the number of 
nodes in either side of the hyperedge, 
i.e., . 

Submodular: the costs of cutting a 
hyperedge form a submodular function, 
i.e.,  is a submodular set 
function.

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

we : 2e → ℝ

Distinct ways to cut a 4-node hyperedge may have different costs.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

 specifies the cost of 
splitting  into  and .
we(S)

e S e∖S



Higher-order relations: hyperedge flow perspective
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For each hyperedge , we have a vector  specifying the flow values. 
E.g., , . Flow conservation: entries in  sums to 0.

e re
re(v1) = 1 re(v2) = − 6 re

Graph edge Hyperedge



Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

v1 v2

v3 v4

+1

+2+3
−6

For each hyperedge , we have a vector  specifying the flow values. 
E.g., , . Flow conservation: entries in  sums to 0. 
Additional constraints on  can make the flow values respect higher-
order relations.

e re
re(v1) = 1 re(v2) = − 6 re

re

Graph edge Hyperedge



Higher-order relations: hyperedge flow perspective

Flows on graph Flows on hypergraph

v1

−3+3
v2

v4v3

+2 −2
+1
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v3v1
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v5

v6

+3

+2
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0

+1
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A natural generalization of network flows.



Higher-order relations: primal-dual flow/cut connection

•  is a set function on  
•  specifies the cut-cost of 

splitting  into  and  
•  is submodular

we e
we(S)

e S e∖S
we

v1 v2

v3 v4

v1 v2

v3 v4

+1

+2+3
−6

•  is a vector in  
•  specifies the flow over  
•  lies in 

re ℝ|e|

re e
re ℝ+(Be)

Cone generated by the 
base polytope of we



Hyper-flow diffusion: definition and notation
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•  specifies initial mass on nodes.Δ ∈ ℝ|V|
+

Δ(v7) = 5

Consider a hypergraph H = (V, E)
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Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes 
• , , specifies the flow routings

Δ ∈ ℝ|V|
+

re e ∈ E
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Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes 
• , , specifies the flow routings 

•
 specifies net mass on nodes

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2
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Consider a hypergraph H = (V, E)

•  specifies initial mass on nodes 
• , , specifies the flow routings 

•
 specifies net mass on nodes 

• Each node has capacity equal to its degree

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

d(v6) = 1
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Consider a hypergraph H = (V, E) v1 v2

v3 v4

v5

v6

v7

•  specifies initial mass on nodes 
• , , specifies the flow routings 

•
 specifies net mass on nodes 

• Each node has capacity equal to its degree 
• A set of flow routings , , is feasible if 

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

re e ∈ E
m(v) ≤ d(v), ∀v
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Hyper-flow diffusion: definition and notation



Hyper-flow diffusion: formulations

min
1
2 ∑

e∈E

ϕ2
e

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

Capacity constraint forces diffusion of initial mass

Flow conservation on a hyperedge

 is magnitude of flow (discussed later)ϕe

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2
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Hyper-flow diffusion: formulations
Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

re ∈ ϕeBe, ∀e New constraint that reflects higher-order relations

Capacity constraint forces diffusion of initial mass

Be = {ρe ∈ ℝ|V| : ρe(S) ≤ we(S)∀S ⊆ V, ρe(V) = we(V)}
The base polytope for we

Magnitude 
of flow 

Flow conservation does not model nontrivial 
higher-order relations

 is magnitude of flowϕemin
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Hyper-flow diffusion: formulations

m(v) ≤ d(v), ∀v

re ∈ ϕeBe, ∀e

Capacity constraint forces diffusion of initial mass

Flow constraint encodes high-order relations

 is magnitude of flowϕemin
1
2 ∑

e∈E

ϕ2
e

Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2



Hyper-flow diffusion: formulations

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e
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Hyper-flow diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
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d(v)x2
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m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+σd(v)zv , ∀v

For computational efficiency reasons 
we introduce a hyper-parameter σ ≥ 0

The dual problem is

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator
Reduces to  for standard graphsxTLx

 is the Lovasz extension of fe(x) := max
ρe∈Be
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e x we
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Hyper-flow diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
2 ∑

v∈V

d(v)x2
v + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+σd(v)zv , ∀v

For computational efficiency reasons 
we introduce a hyper-parameter σ ≥ 0

The dual problem is

We use the dual solution  for node ranking and clustering x
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Given , cut-costs  for , initial mass , our diffusion 
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2



Hyper-flow diffusion: local clustering guarantee

Conductance of target cluster C

Seed set .S := supp(Δ)

The output cluster  satisfiesC̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where  vol(C) := ∑v∈C

d(v)

Φ(C̃) ≤ 𝒪̃( Φ(C))

vol(S ∩ C) ≥ βvol(S)
vol(S ∩ C) ≥ αvol(C)

α, β ≥
1

logt vol(C)
for some tAssumption 1 (sufficient overlap):

Assumption 2: 0 ≤ σ ≤ βΦ(C)/3
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Hyper-flow diffusion: local clustering guarantee

Conductance of target cluster C

Seed set .S := supp(Δ)

The output cluster  satisfiesC̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where  vol(C) := ∑v∈C

d(v)

Φ(C̃) ≤ 𝒪̃( Φ(C))

vol(S ∩ C) ≥ βvol(S)
vol(S ∩ C) ≥ αvol(C)

α, β ≥
1

logt vol(C)
for some tAssumption 1 (sufficient overlap):

Assumption 2: 0 ≤ σ ≤ βΦ(C)/3
The first result that is 
independent of hyperedge 
size in general

An important part of the proof builds on a generalized 
Rayleigh quotient lower bound for hypergraphs



Hyper-flow diffusion: algorithm

We solve an equivalent primal reformulation via alternating minimization. 
The algorithm only touches a small part of the hypergraph.

The figures show the number of nodes touched by the algorithm on 3 
different clusters in the Amazon-reviews dataset, which consists of 2.2 
million nodes. 

# 
no

nz
er
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Iteration Iteration Iteration



Hyper-flow diffusion: empirical results

Cardinality-based -uniform stochastic block model:  
Boundary hyperedges appear with different probabilities according to 
the cardinality of hyperedge cut.

k

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

q1 q2 q3

We consider . Under this generative setting, one should 
naturally explore cardinality-based cut-cost for clustering.

q1 ≫ q2 ≥ q3



Hyper-flow diffusion: empirical results

k = 3 k = 4 k = 5 k = 6
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U-* means unit cut-cost; C-* means cardinality-based cut-cost. 
For each method, C-* is better than U-*. 
There is a significant performance drop for C-LH at .k = 4

Lower is better Higher is better



Hyper-flow diffusion: empirical results

F1 scores for local clustering on a real hypergraph constructed from 
travel metasearch data. 



Hyper-flow diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network. 

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

S-HFD uses specialized submodular cut-cost 
shown on the left. 
The example shows that general submodular 
cut-cost can be necessary.



Thank you!



Hyper-flow diffusion: more empirical results

Conductance and F1 results for local clustering on real hypergraphs. 
Unit cut-cost is used in these experiments. 


