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Hypergraph modelling are everywhere

Hypergraphs generalize graphs by allowing a hyperedge to consist
of multiple nodes that capture higher-order relations in the data.

E-commerce
Nodes are products or webpages
Several products can be purchased at once

O O  Several webpages are visited during the same session

Collaboration
Nodes are authors

A group of authors collaborate on a paper/project

. Nodes are species
Multiple species interact according to their roles in the food chain

@ "\ Ecology




Diffusion algorithms are everywhere (for graphs)

Go gle Scholar network diffusion

& Articles About 4,240,000 results)(0.04 sec)
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Diffusion algorithms are everywhere (for graphs)

Go gle Scholar network diffusion

é Articles

4.2 million results

Diffusion on a graph is the process of spreading a given initial mass from
some seed node(s) to neighbor nodes using the edges of the graph.

Applications iInclude recommendation systems, node ranking, community
detection, social and biological network analysis, etc.




Diffusion algorithms are everywhere (for graphs)

Go gle Scholar network diffusion

& Articles About 4,240,000 results)(0.04 sec)

\

4.2 million results

Go gle Scholar hypergraph diffusion n

& Articles About 5,840 results (0.03 sec)

Hypergraph diffusion has been significantly less explored:
EXisting methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.



Our motivation

We propose the first local diffusion method that

e Achieves stronger theoretical guarantees for the local hypergraph
clustering problem;

e Applies to a substantially richer class of higher-order relations with
only a submodularity assumption:;

e Permits computational efficient algorithms.

Hypergraph diffusion has been significantly less explored:
EXisting methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.



Our motivation

We propose the first local diffusion method that

e Achieves stronger theoretical guarantees for the local hypergraph
clustering problem;

e Applies to a substantially richer class of higher-order relations with
only a submodularity assumption:;

e Permits computational efficient algorithms.

Connection to a nonlinear hypergraph Laplacian operator
will become clear later

Hypergraph diffusion has been significantly less explored:
EXisting methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.



Higher-order relations: hyperedge cut perspective

There are distinct ways to cut a 4-node hyperedge.

How do we treat




Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.
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Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

Unit: the cost of cutting a hyperedge is
always 1, i.e, w,(5) = 1
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Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.
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Unit: the cost of cutting a hyperedge is
always 1, i.e., w,(5) = 1.

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,

.e., w,(S) =f(min{|S],|e\S|})



Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.
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Submodular: the costs of cutting a
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Higher-order relations: hyperedge flow perspective

e
+2 =2 +3 +2
@

Graph edge Hyperedge

For each hyperedge e, we have a vector r, specitying the flow values.
E.g., r,(vi) =1, r,(v,) = — 6. Flow conservation: entries in r, sums to 0.



Higher-order relations: hyperedge flow perspective

e
2 2 13 12
OO

Graph edge Hyperedge

Additional constraints on r, can make the flow values respect higher-
order relations.



Higher-order relations: hyperedge flow perspective

@\ D+1 +30)-2  +1(%)
+2 —?
+ 3 -3
@/ (-6 +200)0  +1(%)

Flows on graph Flows on hypergraph

A natural generalization of network flows.



Higher-order relations: primal-dual flow/cut connection

e W, IS a set function on e e 1, is avectorinl €]
« w,(S) specifies the cut-cost of 1, specifies the flow over e
splitting e into S and e\S . 7, liesin[R_(B,)

* W, IS submodular Cone generated by the

base polytope of w,



Hyper-flow diffusion: definition and notation

Consider a hypergraph H = (V, E)

. A € R specifies initial mass on nodes.




Hyper-flow diffusion: definition and notation

Consider a hypergraph H = (V, E)

. 1,, € € E, specifies the flow routings



Hyper-flow diffusion: definition and notation

Consider a hypergraph H = (V, E)

Cm:i=A - Z r, specifies on nodes

eck



Hyper-flow diffusion: definition and notation

Consider a hypergraph H = (V, E)

 Each node has capacity equal to its degree d(ve) = 1

@t @, @ O



Hyper-flow diffusion: definition and notation

Consider a hypergraph H = (V, E)

 Each node has capacity equal to its degree d(ve) = 1

@t @, @ O

m(vg) = 2



Hyper-flow diffusion: definition and notation

Consider a hypergraph H = (V, E)

« A setof flow routings r,, ¢ € E, is feasible if
m(v) < d(v), Vv




Hyper-flow diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #»,-norm cost.

1
min 5 Z qsg +<— ¢, is magnitude of flow (discussed later)

eck

m(v) < d(v),Vv <— Capacity constraint forces diffusion of initial mass

Z r,(v) = 0,Ve «— Flow conservation on a hyperedge

vee



Hyper-flow diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #»,-norm cost.

min %z b7

eck

m@v) <dv),Vv

OW conservation does not model nontrivial
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€

€

r, € ¢,B,,Ve <«— New constraint that reflects higher-order relations



Hyper-flow diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #»,-norm cost.

.1 | .
min 5 Z b7 +<— ¢, is magnitude of flow

eck

m@v) <dv),Vv

Ve €V€ <+<— New constraint that reflects higher-order relations

!

B.={p e€RVl:pS)<w(S)VSCV,p(V)=w(V
Magnitude e = 1P PAS) S WLSHVS C V. p(V) = w(V))
of flow The base polytope for w,




Hyper-flow diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #,-norm cost.

.1 | .
min 5 z b7 +<— ¢, is magnitude of flow

eck

m(v) < d(v),Vv «— (Capacity constraint forces diffusion of initial mass

r, € ¢,B,,Ve  <«— Flow constraint encodes high-order relations



Hyper-flow diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #»,-norm cost.

min % z . +§ 2 dv)z;

ecE eV ¥~ For computational efficiency reasons
«— we introduce a hyper-parameter 6 > 0

m(v) < d(v)+od(v)z,,Vv

r, € ¢,B,,Ve



Hyper-flow diffusion: formulations

min % D P +§ D d(v)z;]

eck vevV

m(v) < d(v)+od(v)z,, Vv

r,€ ¢,B,,Ve

e e’

1 | O
| in — — ) dw)x?+(d - A
The dual problem is  min 2662;51‘;@) + 2% (W)x2 + (d — A)Tx

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator
Reduces to x! Lx for standard graphs

1. (x) := maé(peTx s the Lovasz extension of w,
pee (4



Hyper-flow diffusion: formulations

Given H = (V, E), cut-costs w, for e € E, initial mass A, our diffusion
problem finds feasible flow routings with minimum £»,-norm cost.

min — Z b +— Z d(v)z;

eeE vEV For computational efficiency reasons
we introduce a hyper-parameter o > 0

m(v) < d(v)+od(v)z,,Vv

r,€ ¢,B,Ve

The dual problem is min —2f(x)2+ Zd(v)x +(d—-A)'x

>0
* vEV

We use the dual solution x for node ranking and clustering



Hyper-flow diffusion: local clustering guarantee

Conductance of target cluster C

> - We(C)
— = wherevol(C) := d
(D(C) min {vol(C), vol(V\C)} Yoo Z"EC W

Seed set S = supp(A).

vol(S N C) = fvol(S) |

Assumption 1 (sufficient overlap): vol(SN C) > avol(C) a, > oz voI(C) for some ¢

Assumption 2: 0 < o < pDO(C)/3
The output cluster C satisfies ®(C) < O(/P(C))



Hyper-flow diffusion: local clustering guarantee

Conductance of target cluster C

ZeEE We(C)

D(C) = R T where vol(C) := ZveCd(v)
Seed set § ;= supp(A).
| o vol(S N C) > pvol(S) 1
Assumption 1 (sufficient overlap): vol(S C) > avol(C) a,p 2 log' vol(C) for some ¢

Assumption 2: 0 < o < pDO(C)/3
The first result that is

The output cluster C satisfies ®(C) < 5(\/(13((:)) independent of hyperedge

size in general



Hyper-flow diffusion: local clustering guarantee

The first result that Is

The output cluster C satisfies ®(C) < @(\/CI)(C)) independent of hyperedge

size in general

An important part of the proof builds on a generalized
Rayleigh quotient lower bound for hypergraphs




Hyper-tflow diffusion: algorithm

We solve an equivalent primal reformulation via alternating minimization.

The algorithm only touches a small part of the hypergraph.
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The figures show the number of nodes touched by the algorithm on 3
different clusters in the Amazon-reviews dataset, which consists of 2.2

million nodes.




Hyper-flow diffusion: empirical results

Cardinality-based k-uniform stochastic block model:

Boundary hyperedges appear with different probabillities according to
the cardinality of hyperedge cut.
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We consider g; > g, 2 ¢s. Under this generative setting, one shoulo
naturally explore cardinality-based cut-cost for clustering.



Hyper-flow diffusion: empirical results

HFD LOU”
HFD %i F : I
T 0.96-
LH =
o S 0.92
2 ® U-HFD } } }
E 0861 A C-HFD
_ ¥ U-LH
0.84- C-LH
[ ¥ i I
0.80
k=4 k=3 k=4 k=5 k=

U-* means unit cut-cost; C-* means cardinality-based cut-cost.
For each method, C-* is better than U-".
There is a significant performance drop for C-LH at k = 4.



Hyper-flow diffusion: empirical results

1 scores for local clustering on a real hypergraph constructed from
travel metasearch data.

Method South Korea Iceland Puerto Rico Crimea Vietnam Hong Kong Malta Guatemala Ukraine Estonia,

U-HFD 0.75 0.99 0.89 0.8 0.28 0.82 0.98 0.94 0.60 0.94
C-HFD 0.76 0.99 0.95 0.94 0.32 0.80 0.98 0.97 0.68 0.94
U-LH-2.0 0.70 0.86 0.79 0.70 0.24 0.92 0.88 0.82 0.50 0.90
C-LH-2.0 0.73 0.90 0.84 0.78 0.27 0.94 0.96 0.88 0.51 0.83
U-LH-14 0.69 0.84 0.80 0.75 0.28 0.87 0.92 0.83 0.47 0.90
C-LH-14 0.71 0.88 0.84 0.78 0.27 0.88 0.93 0.8 0.50 0.8
ACL 0.65 0.84 0.75 0.68 0.23 0.90 0.83 0.69 0.50 0.88




Hyper-flow diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network.

Top-2 node-ranking results Clustering F1

Method Query: Raptors Query: Gray Snapper Prod. Low High

U-HFD Epiphytic Gastropods, Detriti. Gastropods Meiofauna, Epiphytic Gastropods [0.69 0.47 0.64
C-HFD Predatory Shrimp, Herbivorous Shrimp  Herb. Amphipods, Pink Shrimp [0.67 0.53 0.43
S-HFD Gruiformes, Small Shorebirds Snook, Mojarra 0.69 0.65 0.83

i
(@ \ @9 S-HFD uses specialized submodular cut-cost
Yo w({v2)) = 1 shown on the left.

® vl =0 The example shows that general submodular
X 7, cut-cost can be necessary.

w,({vy, va}) =2



Thank you!



Hyper-flow diffusion: more empirical results

Conductance and F1 results for local clustering on real hypergraphs.

Unit cut-cost is used In these experiments.

£ b Amazon-reviews Microsoft-academic Florida-Bay
< < 1 2 3 12 15 17 18 24 25 |Data ML TCS CV |Prod. Low High
HFD  0.17 0.11 0.12 0.16 0.36 0.25 0.17 0.14 0.28 | 0.03 0.06 0.06 0.03| 0.49 0.36 0.35
= LH-2.0 0.42 0.50 0.25 0.44 0.74 0.44 0.57 0.58 0.61|0.07 0.09 0.10 0.07| 0.51 0.39 0.39
3 LH-1.4 0.33 0.44 0.25 0.36 0.81 0.40 0.51 0.54 0.59|0.07 0.08 0.09 0.07| 0.49 0.39 0.41
ACL 042 0.50 0.25 0.54 0.77 0.52 0.63 0.68 0.65|0.08 0.11 0.11 0.09| 0.52 0.39 0.40
HFD  0.45 0.09 0.65 0.92 0.04 0.10 0.80 0.81 0.09|0.78 0.54 0.86 0.73| 0.69 0.47 0.64
— LH-2.0 0.23 0.07 0.23 0.29 0.05 0.06 0.21 0.28 0.05]0.67 0.46 0.71 0.61| 0.69 0.45 0.57
"~ LH-1.4 0.23 0.09 0.35 0.40 0.00 0.07 0.31 0.35 0.06|0.65 0.46 0.59 0.59|0.69 0.45 0.58
ACL 0.23 0.07 0.22 0.25 0.04 0.05 0.17 0.20 0.04]0.64 0.43 0.70 0.57| 0.69 0.44 0.57




