
Hyper-Flow Diffusion
Kimon Fountoulakis1, Pan Li2, Shenghao Yang1

1University of Waterloo 2Purdue University

Hypergraph modelling are everywhere
Hypergraphs generalize graphs by allowing a hyperedge to consist
of multiple nodes that capture higher-order relations in the data.

E-commerce
Nodes are products or webpages
Several products can be purchased at once
Several webpages are visited during the same session

Collaboration
Nodes are authors

A group of authors collaborate on a paper/project

Ecology
Nodes are species
Multiple species interact according to their roles in the food chain

Diffusion algorithms are everywhere (for graphs)

4.2 million results

Diffusion algorithms are everywhere (for graphs)

4.2 million results
Diffusion on a graph is the process of spreading a given initial mass from
some seed node(s) to neighbor nodes using the edges of the graph.

Applications include recommendation systems, node ranking, community
detection, social and biological network analysis, etc.

1 2 3

Diffusion algorithms are everywhere (for graphs)

4.2 million results

Hypergraph diffusion has been significantly less explored:
Existing methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.

Our motivation

Hypergraph diffusion has been significantly less explored:
Existing methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.

We propose the first local diffusion method that

•Achieves stronger theoretical guarantees for the local hypergraph
clustering problem;

•Applies to a substantially richer class of higher-order relations with
only a submodularity assumption;

•Permits computational efficient algorithms.

Our motivation

We propose the first local diffusion method that

•Achieves stronger theoretical guarantees for the local hypergraph
clustering problem;

•Applies to a substantially richer class of higher-order relations with
only a submodularity assumption;

•Permits computational efficient algorithms.

Hypergraph diffusion has been significantly less explored:
Existing methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.

Connection to a nonlinear hypergraph Laplacian operator
will become clear later

Higher-order relations: hyperedge cut perspective

How do we treat differently from ?

v1 v2

v3 v4

v1 v2

v3 v4

There are distinct ways to cut a 4-node hyperedge.

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2})

we({v1, v2})

we({v1, v3})

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

Unit: the cost of cutting a hyperedge is
always 1, i.e., we(S) = 1

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2}) = 1

we({v1, v2}) = 1

we({v1, v3}) = 1

Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

v1 v2

v3 v4

Unit: the cost of cutting a hyperedge is
always 1, i.e., .

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,
i.e., .

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

 specifies the cost of
splitting into and .
we(S)

e S e∖S

we({v2}) = 1

we({v1, v2}) = 2

we({v1, v3}) = 2

Higher-order relations: hyperedge cut perspective

Unit: the cost of cutting a hyperedge is
always 1, i.e., .

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,
i.e., .

Submodular: the costs of cutting a
hyperedge form a submodular function,
i.e., is a submodular set
function.

we(S) = 1

we(S) = f(min{ |S | , |e∖S |})

we : 2e → ℝ

Distinct ways to cut a 4-node hyperedge may have different costs.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

 specifies the cost of
splitting into and .
we(S)

e S e∖S

Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

v1 v2

v3 v4

+1

+2+3
−6

For each hyperedge , we have a vector specifying the flow values.
E.g., , . Flow conservation: entries in sums to 0.

e re
re(v1) = 1 re(v2) = − 6 re

Graph edge Hyperedge

Higher-order relations: hyperedge flow perspective

v1 v2
+2 −2

v1 v2

v3 v4

+1

+2+3
−6

For each hyperedge , we have a vector specifying the flow values.
E.g., , . Flow conservation: entries in sums to 0.
Additional constraints on can make the flow values respect higher-
order relations.

e re
re(v1) = 1 re(v2) = − 6 re

re

Graph edge Hyperedge

Higher-order relations: hyperedge flow perspective

Flows on graph Flows on hypergraph

v1

−3+3
v2

v4v3

+2 −2
+1

−1
v3v1

v2 v4

v5

v6

+3

+2

+1

−6

−2

0

+1

+1

A natural generalization of network flows.

Higher-order relations: primal-dual flow/cut connection

• is a set function on
• specifies the cut-cost of

splitting into and
• is submodular

we e
we(S)

e S e∖S
we

v1 v2

v3 v4

v1 v2

v3 v4

+1

+2+3
−6

• is a vector in
• specifies the flow over
• lies in

re ℝ|e|

re e
re ℝ+(Be)

Cone generated by the
base polytope of we

Hyper-flow diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

• specifies initial mass on nodes.Δ ∈ ℝ|V|
+

Δ(v7) = 5

Consider a hypergraph H = (V, E)

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

+1

−1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

Δ ∈ ℝ|V|
+

re e ∈ E

Hyper-flow diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

Hyper-flow diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

• Each node has capacity equal to its degree

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

d(v6) = 1

Hyper-flow diffusion: definition and notation

v1 v2

v3 v4

v5

v6

v7

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

Consider a hypergraph H = (V, E)

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

• Each node has capacity equal to its degree

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

m(v6) = 2

d(v6) = 1

Hyper-flow diffusion: definition and notation

Consider a hypergraph H = (V, E) v1 v2

v3 v4

v5

v6

v7

• specifies initial mass on nodes
• , , specifies the flow routings

•
 specifies net mass on nodes

• Each node has capacity equal to its degree
• A set of flow routings , , is feasible if

Δ ∈ ℝ|V|
+

re e ∈ E
m := Δ − ∑

e∈E

re

re e ∈ E
m(v) ≤ d(v), ∀v

Δ(v7) = 5

+4
−2

−2

m(v7) = 1

+1

−1

m(v5) = 1

m(v6) = 2

d(v6) = 1

Hyper-flow diffusion: definition and notation

Hyper-flow diffusion: formulations

min
1
2 ∑

e∈E

ϕ2
e

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

Capacity constraint forces diffusion of initial mass

Flow conservation on a hyperedge

 is magnitude of flow (discussed later)ϕe

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

Hyper-flow diffusion: formulations

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

re ∈ ϕeBe, ∀e

Flow conservation does not model nontrivial
higher-order relations

Capacity constraint forces diffusion of initial mass

 is magnitude of flow (discussed later)ϕe

New constraint that reflects higher-order relations

min
1
2 ∑

e∈E

ϕ2
e

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

Hyper-flow diffusion: formulations
Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

m(v) ≤ d(v), ∀v

∑
v∈e

re(v) = 0,∀e

re ∈ ϕeBe, ∀e New constraint that reflects higher-order relations

Capacity constraint forces diffusion of initial mass

Be = {ρe ∈ ℝ|V| : ρe(S) ≤ we(S)∀S ⊆ V, ρe(V) = we(V)}
The base polytope for we

Magnitude
of flow

Flow conservation does not model nontrivial
higher-order relations

 is magnitude of flowϕemin
1
2 ∑

e∈E

ϕ2
e

Hyper-flow diffusion: formulations

m(v) ≤ d(v), ∀v

re ∈ ϕeBe, ∀e

Capacity constraint forces diffusion of initial mass

Flow constraint encodes high-order relations

 is magnitude of flowϕemin
1
2 ∑

e∈E

ϕ2
e

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

Hyper-flow diffusion: formulations

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+
σ
2 ∑

v∈V

d(v)z2
v

+σd(v)zv , ∀v

For computational efficiency reasons
we introduce a hyper-parameter σ ≥ 0

min
1
2 ∑

e∈E

ϕ2
e

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

Hyper-flow diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
2 ∑

v∈V

d(v)x2
v + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+σd(v)zv , ∀v

For computational efficiency reasons
we introduce a hyper-parameter σ ≥ 0

The dual problem is

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator
Reduces to for standard graphsxTLx

 is the Lovasz extension of fe(x) := max
ρe∈Be

ρT
e x we

+
σ
2 ∑

v∈V

d(v)z2
vmin

1
2 ∑

e∈E

ϕ2
e

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

Hyper-flow diffusion: formulations

min
x≥0

1
2 ∑

e∈E

fe(x)2 +
σ
2 ∑

v∈V

d(v)x2
v + (d − Δ)Tx

m(v) ≤ d(v)

re ∈ ϕeBe, ∀e

+σd(v)zv , ∀v

For computational efficiency reasons
we introduce a hyper-parameter σ ≥ 0

The dual problem is

We use the dual solution for node ranking and clustering x

+
σ
2 ∑

v∈V

d(v)z2
vmin

1
2 ∑

e∈E

ϕ2
e

Given , cut-costs for , initial mass , our diffusion
problem finds feasible flow routings with minimum -norm cost.

H = (V, E) we e ∈ E Δ
ℓ2

Hyper-flow diffusion: local clustering guarantee

Conductance of target cluster C

Seed set .S := supp(Δ)

The output cluster satisfiesC̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where vol(C) := ∑v∈C

d(v)

Φ(C̃) ≤ 𝒪̃(Φ(C))

vol(S ∩ C) ≥ βvol(S)
vol(S ∩ C) ≥ αvol(C)

α, β ≥
1

logt vol(C)
for some tAssumption 1 (sufficient overlap):

Assumption 2: 0 ≤ σ ≤ βΦ(C)/3

Hyper-flow diffusion: local clustering guarantee

Conductance of target cluster C

Seed set .S := supp(Δ)

The output cluster satisfiesC̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where vol(C) := ∑v∈C

d(v)

Φ(C̃) ≤ 𝒪̃(Φ(C))

vol(S ∩ C) ≥ βvol(S)
vol(S ∩ C) ≥ αvol(C)

α, β ≥
1

logt vol(C)
for some tAssumption 1 (sufficient overlap):

Assumption 2: 0 ≤ σ ≤ βΦ(C)/3
The first result that is
independent of hyperedge
size in general

Hyper-flow diffusion: local clustering guarantee

Conductance of target cluster C

Seed set .S := supp(Δ)

The output cluster satisfiesC̃

Φ(C) =
∑e∈E we(C)

min {vol(C), vol(V∖C)}
where vol(C) := ∑v∈C

d(v)

Φ(C̃) ≤ 𝒪̃(Φ(C))

vol(S ∩ C) ≥ βvol(S)
vol(S ∩ C) ≥ αvol(C)

α, β ≥
1

logt vol(C)
for some tAssumption 1 (sufficient overlap):

Assumption 2: 0 ≤ σ ≤ βΦ(C)/3
The first result that is
independent of hyperedge
size in general

An important part of the proof builds on a generalized
Rayleigh quotient lower bound for hypergraphs

Hyper-flow diffusion: algorithm

We solve an equivalent primal reformulation via alternating minimization.
The algorithm only touches a small part of the hypergraph.

The figures show the number of nodes touched by the algorithm on 3
different clusters in the Amazon-reviews dataset, which consists of 2.2
million nodes.

no

nz
er

os

Iteration Iteration Iteration

Hyper-flow diffusion: empirical results

Cardinality-based -uniform stochastic block model:
Boundary hyperedges appear with different probabilities according to
the cardinality of hyperedge cut.

k

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

v1 v2

v3 v6

v5

v4

q1 q2 q3

We consider . Under this generative setting, one should
naturally explore cardinality-based cut-cost for clustering.

q1 ≫ q2 ≥ q3

Hyper-flow diffusion: empirical results

k = 3 k = 4 k = 5 k = 6
1.0

1.2

1.4

1.6

1.8

©
(Ĉ

)/
©

(C
)

U-HFD

C-HFD

U-LH

C-LH

ACL

k = 3 k = 4 k = 5 k = 6
0.80

0.84

0.86

0.92

0.96

1.00

F
1

sc
or

e

U-HFD

C-HFD

U-LH

C-LH

ACL

U-* means unit cut-cost; C-* means cardinality-based cut-cost.
For each method, C-* is better than U-*.
There is a significant performance drop for C-LH at .k = 4

Lower is better Higher is better

Hyper-flow diffusion: empirical results

F1 scores for local clustering on a real hypergraph constructed from
travel metasearch data.

Hyper-flow diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network.

we({v2}) = 1

we({v1, v2}) = 0

we({v1, v3}) = 2

v1 v2

v3 v4

S-HFD uses specialized submodular cut-cost
shown on the left.
The example shows that general submodular
cut-cost can be necessary.

Thank you!

Hyper-flow diffusion: more empirical results

Conductance and F1 results for local clustering on real hypergraphs.
Unit cut-cost is used in these experiments.

