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Hypergraph modelling is everywhere

Hypergraphs generalize graphs by allowing a hyperedge to consist
of multiple nodes that capture higher-order relations in the data.

E-commerce
Nodes are products or webpages
Several products can be purchased at once

O O  Several webpages are visited during the same session

Collaboration
Nodes are authors

A group of authors collaborate on a paper/project

. Nodes are species
Multiple species interact according to their roles in the food chain

@ "\ Ecology




Diffusion algorithms are everywhere (for graphs)

on a graph is the process of spreading a given initial mass from
some seed node(s) to neighbor nodes using the edges of the graph.

Applications include recommendation systems, node ranking, community
detection, social and biological network analysis, etc.
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However ... hypergraph diffusion has been significantly less explored:
EXxisting methods either do not have a tight theoretical implication, or do not
model complex high-order relations, or are not scalable.




This work

We propose the first local diffusion method that

e Achieves stronger theoretical guarantees for the local hypergraph
clustering problem:;

e Applies to a substantially richer class of higher-order relations with only a
submodularity assumption;

e Permits computationally efficient algorithms.
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Higher-order relations: hyperedge cut perspective

There are distinct ways to cut a 4-node hyperedge.

How do we treat




Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

_V‘:e({Vz})

We({ Vs Vo 1)

w, (11, V31)

w,(8) specifies the cost of
splitting e into S and e\ S.



Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

Unit: the cost of cutting a hyperedge is
always 1, i.e, w,(5) = 1

_V‘:e({"z}) =1

.m./e.(.{vl, V1) =1

We({vla VB}) =1

w,(8) specifies the cost of
splitting e into S and e\ S.



Higher-order relations: hyperedge cut perspective
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Unit: the cost of cutting a hyperedge is
always 1, i.e., w,(5) = 1.

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,

e, w,(S) =f(min{ |S],|e\S|})



Higher-order relations: hyperedge cut perspective

Distinct ways to cut a 4-node hyperedge may have different costs.

S| () = 1

''''' W, (v 1)) = 0

®

w,(1vy, Va)) =2

w,(S) speci

les the cost of

splitting e In

0 S and e\S.

Unit: the cost of cutting a hyperedge is

always 1, i.e, w,(5) = 1.

Cardinality-based: the cost of cutting a
hyperedge depends on the number of
nodes in either side of the hyperedge,

e, w,(S) =f(min{ |S],|e\S

[ 1),
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Higher-order relations: hyperedge cut perspective

Preys

O (V2 f@ @\
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Predators

A food network can be mapped into a hypergraph by taking each network
pattern on the left as a hyperedge on the right. This network pattern
captures carbon flow from two preys (vy, V,) to two predators (v3, V).




Higher-order relations: hyperedge cut perspective
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The cut-cost w,({v{, v, }) = w,({v3, v4}) = 0 encourages separation of predators and preys.



Higher-order relations: hyperedge cut perspective

Preys
(U ©
'A w({v, v} =0
@ Predators @ w,({1v{, Va}) = 2

The cut-cost w,({v{, v, }) = w,({v3, v4}) = 0 encourages separation of predators and preys.
The cut-cost w,({v{, v3}) = w,({v,, v4}) = 2 discourages grouping of predators and preys.



Higher-order relations: hyperedge cut perspective

_W_e({Vz}) = 1
w (v, v, =0
Predators w,({vy, 3}) =2

The cut-cost w,({v{, v, }) = w,({v3, v4}) = 0 encourages separation of predators and preys.

The cut-cost w,({v{, v3}) = w,({v,, v4}) = 2 discourages grouping of predators and preys.

The cut-cos

w,({vi}) = w,(In}) =w,(1v3}) = w,({v,}) = 1 assigns less penalty for separating

a single noc

e. It also makes w, : 2° = R a submodular function.



Higher-order relations: hyperedge flow perspective
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Flow on a graph edge Flow on a hyperedge

For each hyperedge e, we define a vector r, that specities the flow values.
E.g., r,(vy) =1, r,(v,) = — 6. Flow conservation: entries in r, sums to 0.



Higher-order relations: hyperedge flow perspective

Flow on

vy sends 2 uni
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Flow on a hyperedge

1V} sends 1 unit of

mass to {Vz, V3, V4}

{V, } receives 6 units of mass from {vy, vs, v,}

V1, Va} sends 4 uni

s of mass to { vy, v, }

1V, vy} receives 5 L

nits of mass from {vs, v,}



Higher-order relations: hyperedge flow perspective
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Flows on graph Flows on hypergraph

A natural generalization of network flows.

Flow conservation: numbers within the same hyperedge sum to O.
We impose additional constraints on the hypergraph flow values so that they can reflect
higher-order relations.



Higher-order relations: duality between flow & cut perspectives

+1 —6
@
« W, is a set function 2° —- R e 1, is avectorin | e
« w,(S) specifies the cut-cost of . 1, specifies the flow over e
splitting e into S and e\ S . 7, liesin|R,(B,)

e W, IS submodular Cone generated by the

base polytope of w,



Hyper-Flow Diffusion: definition and notation

Consider a hypergraph H = (V, E)

. A € R specifies initial mass on nodes.
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Hyper-Flow Diffusion: definition and notation

Consider a hypergraph H = (V, E)

* Each node has capacity equal to its degree a(ve) = 1
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Hyper-Flow Diffusion: definition and notation

Consider a hypergraph H = (V, E)

« A setof flow routings r,, ¢ € E, is feasible if
m(v) < d(v), Vv




Hyper-Flow Diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #,-norm cost.

1
min — Z gbez +<— ¢, is magnitude of flow (discussed later)
= 2 eekl

m(v) < d(v),Vv «— Capacity constraint forces diffusion of initial mass

Z r,(v) = 0,Ve «—— Flow conservation on a hyperedge

vee
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Hyper-Flow Diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #,-norm cost.

min — Z b? +<— ¢, is magnitude of flow
>0 2
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/ l
I\/Iagritude e S R‘V‘ pe(S) S w (S)VS cV, pe(V) We(V)}

of flow The pbase polytope for w,




Hyper-Flow Diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #,-norm cost.

1
min — Z b? +<— ¢, is magnitude of flow
$20 2 eekl

m(v) < d(v),Vv «— Capacity constraint forces diffusion of initial mass

r, € ¢,B,,Ve  <«— Flow constraint encodes high-order relations



Hyper-Flow Diffusion: formulations

Given H = (V, ), cut-costs w, for e € L, initial mass A, our diffusion
problem finds feasible flow routings with minimum #,-norm cost.

-or computational efficiency reasons
«— we introduce a hyper-parameter 6 > 0

m(v) < d(v)+od(v)z(v), Vv

r,€ ¢,B,,Ve



Hyper-Flow Diffusion: formulations

m(v) < d(v)+o6d(v)z(v), Vv

r,€ ¢,B,,Ve

A

1 | O
S min — — > d ‘+(d-A)
The dual problem is  min 2;,5]‘;@) + 2% (VxX(1)? + (d — A)x

Quadratic form w.r.t. Nonlinear hypergraph Laplacian operator
Reduces to x! Lx for standard graphs

1. (x) := ma;(peTx s the Lovasz extension of w,
pee e



Hyper-Flow Diffusion: formulations

The dual problem is min —Zf(X)2 +— Z:d(V)X(V)2 +(d— A)'x

>0
A veV

x(v) measures the (scaled) excess mass on node v after diffusion



Hyper-Flow Diffusion: local clustering

Given a set of seed node(s) S, find a low-conductance cluster C around .

Conductance of target cluster C

2o WelO) where vol(C) = ¥ d(v)
PC) = e v Z

Assign initial mass so supp(A) = §.

1
Assumption 1 (overlap): vol(S N C) > pvol(S), vol(S N C) > avol(C), a, f > for some ¢
log? vol(C)
Assumption 2 (parameter): 0 < ¢ < pO(C)/3

Sweep-cut on optimal dual solution x returns a cluster C satisfying

D(C) < O(/D(0))



Hyper-Flow Diffusion: local clustering

Given a set of seed node(s) S, find a low-conductance cluster C around .

Conductance of target cluster C

2iecr We(C) where vol(C) == ¥ d(v)
O(C) = min {vol(C), vol(V\C)} gg

Assign initial mass so supp(A) = S.

|
Assumption 1 (overlap): vol(S N C) > pvol(S), vol(SN C) > avol(C), a, f > for some ¢
log’ vol(C)

Assumption 2 (parameter): 0 < o < O(C)/3

Sweep-cut on optimal dual solution x returns a cluster C satisfying

~ ~ The first result that is
O(C) <|O(H/D(C))| independent of hyperedge size

N general



Hyper-Flow Diffusion: algorithm
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We solve an equivalent primal reformulation via alternating minimization.

The algorithm only touches a small part of the hypergraph.
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ed by the algorithm on 3 different
ch consists of 2.2 million nodes.

Proving the worst-case running time is strongly-local is an open problem.



Hyper-Flow Diffusion: empirical results

Cardinality-based k-uniform hypergraph stochastic block model:
Boundary hyperedges appear with different probabillities according to

the cardinality of hyperedge cut.
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We consider g; > g, 2 ¢s. Under this generative setting, one shoulo
naturally explore cardinality-based cut-cost for clustering.

All our experiments use a single seed node to recover the target



Hyper-Flow Diffusion: empirical results
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| His a strongly-local hypergraph diffusion method based on graph reduction.
 ACL Is a heuristic method that uses PageRank on star expansion.
* HFD Is the only method that directly works on original hypergraph.
 U-* means the method uses unit cut-cost; C-* means the method uses cardinality cut-cost.
e For each method, C-* is better than U-".

 There is a significant performance drop for C-LH at k = 4.




Hyper-Flow Diffusion: empirical results

Node-ranking and and local clustering results on a Florida Bay food network.

Top-2 node-ranking results Clustering F1

Method Query: Raptors Query: Gray Snapper Prod. Low High

U-HFD Epiphytic Gastropods, Detriti. Gastropods Meiofauna, Epiphytic Gastropods 0.69 0.47 0.64
C-HFD Epiphytic Gastropods, Detriti. Gastropods Meiofauna, Epiphytic Gastropods 0.67 0.47 0.64

S-HFD Gruiformes, Small Shorebirds Snook, Mackerel 0.69 0.62 0.84
a ‘\ ) e S-HFD uses specialized submodular cut-cost
@ “@ shown on the left.
...... S ) =1 » The example shows that general submodular cut-
""" W ({vy,vy}) = 0 cost can be necessary.
@ « HFD is the only local diffusion method that works
< ) with general submodular cut-costs.




Hyper-Flow Diffusion: empirical results

. oca
on a

| clustering
hypergraph

CONs’

ructed from

Amazon product
reviews data

Nodes are products

Hyper

edges are

products purchased

at the same time

Clusters are products
belonging to the same
product category

Cluster

Metric Seed Method 1 2 3 12 15 17 18 24 25

U-HFD 0.17 0.11 0.12 0.16 0.36 025 0.17 0.14 0.28

. & ULH-20 042 050 025 044 0.74 044 0.57 0.58 0.61

Q 2 U-LH-14 033 044 025 036 081 040 051 0.54 0.59

= ACL 042 0.50 0.25 0.54 0.77 0.52 0.63 0.68 0.65
)

g o UHFD 005 010 0.12 0.3 020 0.16 0.14 0.11 0.32

O S U-LH-20 0.05 0.15 0.15 021 045 045 026 0.18 0.53

= U-LH-14 0.05 0.13 0.15 0.15 035 033 0.19 0.14 0.47

>  ACL 0.05 027 0.16 027 056 053 033 0.30 0.59

U-HFD 045 0.09 0.65 0.92 0.04 0.10 0.80 0.81 0.09

= U-LH-2.0 023 0.07 023 029 0.05 0.06 021 0.28 0.05

o 2 U-LH-14 023 0.09 035 040 0.00 0.07 031 0.35 0.06

S ACL 0.23 0.07 0.22 025 0.04 0.05 0.17 020 0.04

= o UHFD 049 050 069 098 0.19 036 091 0.89 0.33

S U-LH-20 059 042 0.73 0.77 022 025 0.65 0.62 0.17

= U-LH-14 052 045 0.73 090 027 029 0.79 0.77 0.20

>  ACL 059 025 0.70 0.64 020 0.19 051 049 0.14



Hyper-Flow Diffusion: empirical results

L ocal clustering

on a hypergrapn
constructed from
Microsoft academic
coauthorthip data

Nodes are papers

Hyperedges are
papers having at least

a common coauthor

Clusters are papers
published at similar
VENUES

Metric Method

Cluster

Data ML TCS CV

U-HFD  0.03 0.06 0.06 0.03
2 U-LH-2.0 0.07 0.09 0.10 0.07
3  U-LH-14 0.7 0.08 0.09 0.07

ACL 0.08 0.11 0.11 0.09
» VUHFD 078 0.54 0.86 0.73
S U-LH-2.0 0.67 0.46 0.71 0.61
% U-LH-14 0.65 046 0.59 0.59
= ACL 0.64 0.43 0.70 0.57



Hyper-Flow Diffusion: empirical results

Nodes are hotel accommodations

Hyperedges are accommodations
viewed by the same user In a

Local clustering on a
hypergraph constructed from
travel metasearch data

(F1 scores)

browsing session

Clusters are accommodations
located in the same country/territory

Method South Korea Iceland Puerto Rico Crimea Vietnam Hong Kong Malta Guatemala Ukraine Estonia,

U-HFD 0.75 0.99 0.89 0.85 0.28 0.82 0.98 0.94 0.60 0.94
C-HFD 0.76 0.99 0.95 0.94 0.32 0.80 0.98 0.97 0.68 0.94
U-LH-2.0 0.70 0.86 0.79 0.70 0.24 0.92 0.88 0.82 0.50 0.90
C-LH-2.0 0.73 0.90 0.84 0.78 0.27 0.94 0.96 0.88 0.51 0.83
U-LH-14 0.69 0.84 0.80 0.7 0.28 0.87 0.92 0.83 0.47 0.90
C-LH-1.4 0.71 0.88 0.84 0.78 0.27 0.88 0.93 0.8 0.50 0.85
ACL 0.65 0.84 0.75 0.68 0.23 0.90 0.83 0.69 0.50 0.88




Hyper-Flow Diffusion: empirical results

For more experiments and details on both synthetic and real datasets:
Please see our paper Local Hyper-Flow Diffusion, NeurlPS 2021

Julia implementation HFD on GitHubO



Thank you!



