Today’s Plan

1. LLVM case study (Laura)
2. Audacity case study (Wei)
3. Discussion in your project groups
4. Discussion with the group beside you
Survey

- How many people have finished CS 444?
- How many people are currently in CS 444?
- How many people have heard of LLVM?
Ideal Compiler Architecture

C source code → C front end → IR → Optimizer → IR → X86 machine code
Haskell source code → Haskell front end
Fortran source code → Fortran front end

X86 back end
PowerPC back end
ARM back end

X86 machine code
PowerPC machine code
ARM machine code
Does Anyone Use This Architecture?

- Sort of...
 1. Java and .NET have well defined bytecode
 2. GCC supports many languages and target architectures but lacks clean interfaces
Language agnostic compiler infrastructure
Uses ideal architecture: IR is the only interface to the optimizer
Acronym is meaningless
Example of LLVM IR

unsigned add1(unsigned a, unsigned b) {
 return a+b;
}

define i32 @add1(i32 %a, i32 %b) {
 entry:
 %tmp1 = add i32 %a, %b
 ret i32 %tmp1
 }

Adding a New Optimization Pass

- LLVM is written in C++
- Every optimization is a subclass of the Pass class
- Just make a new class!
What Lessons Can We Learn?

- Clean architecture: not just for academics
- Modularity makes it easier to:
 - Add or rewrite components
 - Test components
 - Reduce your workload by reusing components
Applying The Lessons to Your Project

- Have you thought about your architecture yet?
- Is it modular?