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•Differentiate various testing tactics

• Understand different levels of testing

• Be able to construct effective unit tests

• Understand how to apply various testing tools & techniques

LEARNING OUTCOMES
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 "Test early, test often, test automatically"
[Pragmatic Programmer]

INTRODUCTION
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 "Testing can show the presence, but not 
the absences of errors"

[Dijkstra’s law]

INTRODUCTION
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 "Testing can show the presence, but not 
the absences of errors"

[Dijkstra’s law]

 "If Debugging Is The Process Of 
Removing Bugs, Then Programming Must 

Be The Process Of Putting Them In."
[Dijkstra]

INTRODUCTION
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V & V
• Validation: “Did we build the right system?”

•Demonstrates that the system meets its requirements.

• Verification: “Did we build the system right?”

•Demonstrates that the behaviour is correct.
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TESTING TACTICS
• Black box testing: 
• Tests parts of the system without knowledge of their 

internal structure.
• Simulates a “customer” experience (at the API or UI level)
• Test as much specified behaviour as possible
•White-box testing:
• Tests the system with complete knowledge of its internals
• Test as much implemented behaviour as possible
• Static testing:
• Analyze the system without executing any code.
•Dynamic testing:
• Analyze the runtime behaviour of the system
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Black Box
(functional)

White Box
(structural)

Static

Dynamic

- requirements 
validation

- lint
- Findbugs, Coverity, etc.

- system tests
- integration tests

- fuzz testing

- unit tests
- mutation testing

TESTING TACTICS
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TESTING PHILOSOPHIES
• There are no shortage of testing philosophies you can apply:
• Unit testing
• Integration testing
• System testing
• Regression testing
• Acceptance testing (not covered)
• Test-driven development (next class)
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UNIT TESTING
• Basic assumption of unit tests:
• “If the code doesn’t work on its own, it won’t work when 

the system is deployed either”
• Tests exercise a specific module (function, method, etc.)
•Often employs equivalence class partitioning and boundary 

testing

• Good unit tests:
• Clearly define initial conditions and expected behaviour
• Are specific: small granularity enables greater precision in 

isolating faults
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EQUIVALENCE CLASS 
PARTITIONING

• Group inputs into categories that will be handled similarly
• Tests should exercise inputs from only one partition at a time

[Meghan Allen]
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ECP EXAMPLE
• A system asks for user input between 100 and 999.
• Equivalence partitions:
• Less than 100
• 100 - 999
•More than 999
• Three reasonable tests:
• 50, 500, 1500
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BOUNDARY TESTING
• Tests three kinds of values for any input:
• Good values
• Reasonable but invalid values
• Unusual values
• e.g., getDaysInMonth(int month, int year):
• reasonable: 3, 2008; 2, 2002
• unreasonable: -1, MaxInt; MinInt, 0
• unusual: 2, 2100 (leap year)

• Boundary / equivalence class partitioning better than random 
testing, but only as good as the values you test
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INTEGRATION TESTING
• Ensures that multiple units or subsystems can interoperate
• Integration is a major source of errors
• Three high-level approaches:
• big bang: no stubs, just wire it up and hope for the best
• bottom up: integrate upwards to increasingly large tests
• top down: test the UI and add layers to replace stubs
• Each has their tradeoffs:
• big bang: fast, but often doesn’t work
• bottom up: more focus on units, less on UI (client focus)
• top down: more UI focus but more infrastructure needed
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SYSTEM TESTING
• Tests the deployed version of the system
• Confirms the behaviour of the complete application
•Often focuses on non-functional properties:
• error recovery
• security
• stress / capacity / performance
• usability
• System tests are sometimes used as part of the acceptance 

test process
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REGRESSION TESTING
• Ensures that the system’s behaviour hasn’t degraded
• Run a suite of tests against every version (or at some interval)
• Commit gatekeepers can make sure code does not make it 

into the repository that causes new failures
• Expensive to manually perform but cheap with tooling
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TESTING TOOLS
•Writing, executing, and analyzing tests is laborious
• Several testing tools have been widely adopted in industry
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XUNIT
• Unit testing frameworks greatly ease test execution
• e.g., jUnit, nUnit, cppUnit, Google Test
•Will discuss Google Test, but they are all fairly similar
• Provide infrastructure for writing tests that can be 

automatically executed
• Key static components:
• Test cases
• Assertions
• Test fixtures
• Test runner
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XUNIT TEST CASE
#include	
  <gtest/gtest.h>

//	
  TEST	
  macro	
  identifies	
  tests	
  (Google	
  Test	
  approach)
//	
  Annotations	
  or	
  naming	
  conventions	
  often	
  used	
  

TEST(MyTestSuitName,	
  MyTestCaseName)	
  {
	
  	
  	
  	
  int	
  actual	
  =	
  1;
	
  	
  	
  	
  EXPECT_GT(actual,	
  0);
	
  	
  	
  	
  EXPECT_EQ(1,	
  actual)	
  <<	
  "Should	
  be	
  equal	
  to	
  one";
}
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XUNIT ASSERTIONS
•Main assertions:
• ASSERT_TRUE( cond );
• ASSERT_FALSE( cond );
• ASSERT_EQ( expected, actual );
• ASSERT_NE( var1, var2 );

•Non-fatal checking is also available:
• EXPECT_TRUE( cond );
• EXPECT_... (same as ASSERTs)

• Can print custom messages with EXPECT/ASSERT:
• EXPECT_EQ(x1, y1) << x1 << “ != ” << y1;
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XUNIT FIXTURES P1
class QueueTest : public ::testing::Test {
 protected:
  virtual void SetUp() {
    q1_.Enqueue(1);
    q2_.Enqueue(2);
    q2_.Enqueue(3);
  }

  // virtual void TearDown() {}

  Queue<int> q0_;
  Queue<int> q1_;
  Queue<int> q2_;
};

Thursday, 29 November, 12



XUNIT FIXTURES P2

class QueueTest : public ::testing::Test {
  ...
// setUp() called before each TEST_F
// tearDown() called after each TEST_F
TEST_F(QueueTest, IsEmptyInitially) {
  EXPECT_EQ(0, q0_.size());
}

};
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XUNIT RUNNER

#include "QueueTest.h"
#include "gtest/gtest.h"

int main(int argc, char **argv) {
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}
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MOCKING
• Sometimes parts of the system under test are:
• slow
• non-deterministic
• not built yet
•Mocking frameworks enable units to be tested without 

activating their dependencies
•Mocks adhere to an interface but simulate behaviour
•Often referred to as “stubs”
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CONTINUOUS INTEGRATION
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COVERAGE

•When executing a test suite we can instrument the program 
to get an idea of “how much” of the program has run.
• Statement coverage
• Branch coverage
• Path coverage
• Hitting a coverage “target” is not effective, but discovering 

untested modules can be instructive

 "... fundamental law of bug finding is No 
Check = No Bug"

[Coverity]
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CODE REVIEW
• Check the code with colleagues
• Learn from more senior developers / transfer knowledge to 

more junior developers
•Many projects review _every_ patch e.g.,:
• Firefox
• Android
•Webkit
• Encourages iteration to improve quality
•Discourages hacky solutions
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CODE REVIEW

Thursday, 29 November, 12


