s /46! 1ES PN

Reid Holmes

With content from:
Meeeln AllEn (ES ST
Gall Alverson (CS 403 @ UWashington)

LEARNING OUTCOMES

» Differentiate various testing tactics
» Understand different levels of testing
* Be able to construct effective unit tests

» Understand how to apply various testing tools & techniques

Thursday, 29 November, 12

INTRODUCTION

"Test early, test often, test automatically"

[Pragmatic Programmer]

L eee—— |

INTRODUCTION

"Testing can show the presence, but not
the absences of errors”

[Dijkstra’s law]

INTRODUCTION

"Testing can show the presence, but not
the absences of errors”

[Dijkstra’s law]

"It Debugging Is The Process Of

Removing Bugs, Then Programming Must

Be

he Process Of Putting

hem In."
[Dijkstra]

Thursday, 29 November, 12

V&V

» Validation:“"Did we build the right system?”
- Demonstrates that the system meets Its requirements.
* Verification: "Did we build the system right?”

* Demonstrates that the behaviour Is correct.

Thursday, 29 November, 12

0ES [ING TACHES

» Black box testing:

» lests parts of the system without knowledge of their
internal structure.

» Simulates a “customer” experience (at the APl or Ul level)
» lest as much specified behaviour as possible

- W

nite-box testing:
es

s the system with complete knowledge of its internals

e

L as much implemented behaviour as possible

» Static testing:
» Analyze the system without executing any code.

* Dynamic testing:
* Analyze the runtime behaviour of the system

Thursday, 29 November, 12

Static

Dynamic - integration tests

0ES [ING TACHES

Black Box White Box
(functional) (structural)

- requirements - lint
validation - Findbugs, Covertty, etc.

= SySliea eSS e

| - mutation test
- fuzz testing e

Thursday, 29 November, 12

TESTING PHILOSOPHIES

* There are no shortage of testing philosophies you can apply:
» Unit testing

* Integration testing

* System testing

* Regression testing

@& bidnce testing (not covered)

» lest-driven development (next class)

UNIT TESTING

» Basic assumption of unit tests:

« "If the code doesn't work on 1ts own, it won't work when
the system Is deployed either”

- lests exercise a specific module (function, method, etc.)

- Often employs equivalence class partitioning and boundary
testing

- Good untt tests:
» Clearly define inrtial conditions and expected behaviour

» Are specific: small granularity enables greater precision in
isolating faults

Thursday, 29 November, 12

FQUIVALENCE CLASS
PARTITIONING

» Group Inputs into categories that will be handled similarly

» lests should exercise inputs from only one partition at a time

Failures are sparse in

. ... but dense in some
the space of possible

parts of the space

B Failure (valuable test case)

[J No failure inputs ...

e= 00 00 O0/00i100 ao0oiag DDG/CTﬁDD o0 0o
S O0 OO0 O0|00|100 OO0 OoOoj0o O 000000 ao
:tA O0 00100 00|00 a0 OO/meme 00 00 00|00 a0
-;-35 O0 0000 00100 OO0 O0O0omO00o 00 00|00 OO0
= [y :

2 31; O0 00|00 00|00 OO0 o000 ao 00 00|00 a0
¢ & |00 0000000000 0000 00 OO0 00|00 ao
%’g O0 00100 00|00 a0 00100 0o 00 00|00 OO0
0 — 100 00|00 00|00 a0 O00yj00 00 00 00|00 Ao
(&)

g OO0 00|00 Ogiaoo oo ooioo ao OO0 00 00 Ao
- O0 00100 00|00 a0 OO0100 ao 00 00 00 A0
o e

'—

If we systematically test some [Meghan Allen]
cases from each part, we will
include the dense parts

Thursday, 29 November, 12

EC P EXAMPEE

* A system asks for user input between |00 and 999.

* Equivalence partitions:

 Less than 100
79
* More than 999

* [hree reasonable tests:
S nsS00 1500

Thursday, 29 November, 12

BOUNDARY TESTING

» lests three kinds of values for any input:
» Good values

 Reasonable but invalid values

* Unusual values
* e.g, getDaysInMonth(int month, int year):
* reasonable: 3, 2008: 2, 2002

e unreasonable: - |, MaxInt: Minint, O

» unusual: 2, 2100 (leap year)

» Boundary / equivalence class partitioning better than random
testing, but only as good as the values you test

Thursday, 29 November, 12

INTEGRATION TESTING

* Ensures that multiple units or subsystems can interoperate
* Integration Is a major source of errors

* [hree high-level approaches:

* big bang: no stubs, just wire it up and hope for the best
* bottom up: Integrate upwards to increasingly large tests
» top down: test the Ul and add layers to replace stubs

* Fach has thelr tradeoffs:

* big bang: fast, but often doesn't work
* bottom up: more focus on units, less on Ul (client focus)

» top down: more Ul focus but more infrastructure needed

Thursday, 29 November, 12

SYSTEM TESTING

» lests the deployed version of the system
» Confirms the behaviour of the complete application
- Often focuses on non-functional properties:

B EefEcovery.

g —allrity/

» stress / capacity / performance

* usability

* System tests are sometimes used as part of the acceptance
[lEEEDrOCESS

Thursday, 29 November, 12

REGRESSION TESTING

* Ensures that the system’'s behaviour hasn't degraded

* Run a suite of tests against every version (or at some interval)

» Commit gatekeepers can make sure code does not make It
into the repository that causes new fallures

* Expensive to manually perform but cheap with tooling

Thursday, 29 November, 12

TESTING TOOLS

* Writing, executing, and analyzing tests Is laborious

» Several testing tools have been widely adopted in industry

xUNI T

» Unit testing frameworks greatly ease test execution
* e.g, |Unit, nUnit, cppUnit, Google Test
» Wil discuss Google Test, but they are all fairly similar

* Provide Iinfrastructure for writing tests that can be
automatically executec =

: v \ m X x "
vefCompierTe: | Por I I runnest ol

ey Static components: - [

- . [nunittest. SimplevulcanTest.Add : Cxpected Failure
stSendHeader (org. apache.cactus. sample 1 expected i<6n
= | Ut was i<

1nun1ttest.Sﬁnole\u!canTest D1 deByZero yst

1ttest, SimpleVulcanTest . Equals E

s >
. y2 eByZerocExc
Y Inun ' : Fa Integer)
est cases R
| but was i<1¥»
nusittest. SimpleVulcanTest . LaxpectAnixception ! Lxpected: Invaiid

* Assertions ~jp— o

at org.gpache.cactus.sample. TestSampl
at org.gpache.cacts. AbstractWebSerw
at org.apache.cactus. AbstractWebSerw
at org.apache.cacus, server ADSIr actvye
at org.apache.cactus, server Abstr actwe
at org.gpache.cactus.server ADStractWe fo faied |
at org.apache.cactus, server Abstr actWe

= at org.gpache.cactus. server ServietTest v

< >
Package Explorer JUnit

« Jest fixtures

* |est runner

Thursday, 29 November, 12

XUNIT TEST CASE

#include <gtest/gtest.h>

// TEST macro identifies tests (Google Test approach)
// Annotations or naming conventions often used

TEST(MyTestSuitName, MyTestCaseName) {
int actual = 1;
EXPECT _GT(actual, 90);
EXPECT_EQ(1, actual) << "Should be equal to one";

Thursday, 29 November, 12

UNIT ASSERTIONS

 Maln assertions:

2= USERT TRUE(cond);
=SS ERTFALSE(cond);
= ASSERT_EQ(expected, actual);

eSS ERIEINIE(C varl, varl);

* Non-fatal checking Is also available:
= CECIFRUE(cond);
B FEE L (same as ASSERTS)

» Can print custom messages with EX
== EO] vl << x| <<*

FECIASSERT

:”<<>/|;

Thursday, 29 November, 12

UNIT FIXTURES P

class QueueTest : public ::testing::Test {
protected:
virtual void SetUp() {
gl_.Enqueue(l);
gZ_.Enqueue(2);
gZ2_.Enqueue(3);

¥

// virtual void TearDown() {}

Queue<int> q@_;
Queue<int> ql_;
Queue<int> qg2_;

i

Thursday, 29 November, 12

UNIT FIXTURES P2

class QueueTest : public ::testing::Test {

// setUp() called before each TEST_F

// tearDown() called after each TEST_F

TEST_F(QueueTest, IsEmptyInitially) {
EXPECT_EQ(Q, g@_.s1ze());

}
s

Thursday, 29 November, 12

xUNIT RUNNER

#include "QueueTest.h"
#1nclude "gtest/gtest.h”

int main(int argc, char **argv) 1
. :testing: :Ini1tGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

$

Thursday, 29 November, 12

MOCKING

* Sometimes parts of the system under test are:
* slow
* non-deterministic
* not bullt yet

» Mocking frameworks enable units to be tested without
activating their dependencies

* Mocks adhere to an interface but simulate behaviour

« Often referred to as ‘‘stubs”

Thursday, 29 November, 12

CONTINUOUS INTEGRATION

oo uana vt saang .
building building ETA in building
idle ~ 14 mins ~ 5 mins ~ 23 mins building building < 1 min idle
at 11:59 <1imin at 11:50 at 12:07 <1min :tz::::: 2 pending S pending
3 pending 3 pending 1 pending
- #_:-‘- % m % @%wwwww
perf-tests uploading perf-tests layout-tests compiling jscore-tests updating API tests API tests
running hyout-tut- release.zip running running stdio running ri35746 running running
stdio resuits.zip stdio stdio stdio stdio stdio stdio
=
Build 7949

Thursday, 29 November, 12

COVERAGE

"... fundamental law of bug finding is No
Check = No Bug"

[Coverity]

L ee—

- When executing a test suite we can instrument the program
to get an idea of "how much™ of the program has run.

» Statement coverage

* Branch coverage

* Path coverage

» Hitting a coverage “target’ Is not effective, but discovering
untested modules can be Instructive

Thursday, 29 November, 12

CODE REVIEW

» Check the code with colleagues

* Learn from more senior developers / transfer knowledge to
more junior developers

B A Prelects review _every patch e.9.;

—~

S hlicoX

« Android
* Webkit

* Encourages rteration to improve quality

» Discourages hacky solutions

Thursday, 29 November, 12

CODE REVIEW

