
CS 246: TESTING
Reid Holmes

With content from:
Meghan Allen (CS 310 @ UBC)

Gail Alverson (CS 403 @ UWashington)

Thursday, 29 November, 12

•Differentiate various testing tactics

• Understand different levels of testing

• Be able to construct effective unit tests

• Understand how to apply various testing tools & techniques

LEARNING OUTCOMES

Thursday, 29 November, 12

 "Test early, test often, test automatically"
[Pragmatic Programmer]

INTRODUCTION

Thursday, 29 November, 12

 "Testing can show the presence, but not
the absences of errors"

[Dijkstra’s law]

INTRODUCTION

Thursday, 29 November, 12

 "Testing can show the presence, but not
the absences of errors"

[Dijkstra’s law]

 "If Debugging Is The Process Of
Removing Bugs, Then Programming Must

Be The Process Of Putting Them In."
[Dijkstra]

INTRODUCTION

Thursday, 29 November, 12

V & V
• Validation: “Did we build the right system?”

•Demonstrates that the system meets its requirements.

• Verification: “Did we build the system right?”

•Demonstrates that the behaviour is correct.

Thursday, 29 November, 12

TESTING TACTICS
• Black box testing:
• Tests parts of the system without knowledge of their

internal structure.
• Simulates a “customer” experience (at the API or UI level)
• Test as much specified behaviour as possible
•White-box testing:
• Tests the system with complete knowledge of its internals
• Test as much implemented behaviour as possible
• Static testing:
• Analyze the system without executing any code.
•Dynamic testing:
• Analyze the runtime behaviour of the system

Thursday, 29 November, 12

Black Box
(functional)

White Box
(structural)

Static

Dynamic

- requirements
validation

- lint
- Findbugs, Coverity, etc.

- system tests
- integration tests

- fuzz testing

- unit tests
- mutation testing

TESTING TACTICS

Thursday, 29 November, 12

TESTING PHILOSOPHIES
• There are no shortage of testing philosophies you can apply:
• Unit testing
• Integration testing
• System testing
• Regression testing
• Acceptance testing (not covered)
• Test-driven development (next class)

Thursday, 29 November, 12

UNIT TESTING
• Basic assumption of unit tests:
• “If the code doesn’t work on its own, it won’t work when

the system is deployed either”
• Tests exercise a specific module (function, method, etc.)
•Often employs equivalence class partitioning and boundary

testing

• Good unit tests:
• Clearly define initial conditions and expected behaviour
• Are specific: small granularity enables greater precision in

isolating faults

Thursday, 29 November, 12

EQUIVALENCE CLASS
PARTITIONING

• Group inputs into categories that will be handled similarly
• Tests should exercise inputs from only one partition at a time

[Meghan Allen]

Thursday, 29 November, 12

ECP EXAMPLE
• A system asks for user input between 100 and 999.
• Equivalence partitions:
• Less than 100
• 100 - 999
•More than 999
• Three reasonable tests:
• 50, 500, 1500

Thursday, 29 November, 12

BOUNDARY TESTING
• Tests three kinds of values for any input:
• Good values
• Reasonable but invalid values
• Unusual values
• e.g., getDaysInMonth(int month, int year):
• reasonable: 3, 2008; 2, 2002
• unreasonable: -1, MaxInt; MinInt, 0
• unusual: 2, 2100 (leap year)

• Boundary / equivalence class partitioning better than random
testing, but only as good as the values you test

Thursday, 29 November, 12

INTEGRATION TESTING
• Ensures that multiple units or subsystems can interoperate
• Integration is a major source of errors
• Three high-level approaches:
• big bang: no stubs, just wire it up and hope for the best
• bottom up: integrate upwards to increasingly large tests
• top down: test the UI and add layers to replace stubs
• Each has their tradeoffs:
• big bang: fast, but often doesn’t work
• bottom up: more focus on units, less on UI (client focus)
• top down: more UI focus but more infrastructure needed

Thursday, 29 November, 12

SYSTEM TESTING
• Tests the deployed version of the system
• Confirms the behaviour of the complete application
•Often focuses on non-functional properties:
• error recovery
• security
• stress / capacity / performance
• usability
• System tests are sometimes used as part of the acceptance

test process

Thursday, 29 November, 12

REGRESSION TESTING
• Ensures that the system’s behaviour hasn’t degraded
• Run a suite of tests against every version (or at some interval)
• Commit gatekeepers can make sure code does not make it

into the repository that causes new failures
• Expensive to manually perform but cheap with tooling

Thursday, 29 November, 12

TESTING TOOLS
•Writing, executing, and analyzing tests is laborious
• Several testing tools have been widely adopted in industry

Thursday, 29 November, 12

XUNIT
• Unit testing frameworks greatly ease test execution
• e.g., jUnit, nUnit, cppUnit, Google Test
•Will discuss Google Test, but they are all fairly similar
• Provide infrastructure for writing tests that can be

automatically executed
• Key static components:
• Test cases
• Assertions
• Test fixtures
• Test runner

Thursday, 29 November, 12

XUNIT TEST CASE
#include	
 <gtest/gtest.h>

//	
 TEST	
 macro	
 identifies	
 tests	
 (Google	
 Test	
 approach)
//	
 Annotations	
 or	
 naming	
 conventions	
 often	
 used	

TEST(MyTestSuitName,	
 MyTestCaseName)	
 {
	
 	
 	
 	
 int	
 actual	
 =	
 1;
	
 	
 	
 	
 EXPECT_GT(actual,	
 0);
	
 	
 	
 	
 EXPECT_EQ(1,	
 actual)	
 <<	
 "Should	
 be	
 equal	
 to	
 one";
}

Thursday, 29 November, 12

XUNIT ASSERTIONS
•Main assertions:
• ASSERT_TRUE(cond);
• ASSERT_FALSE(cond);
• ASSERT_EQ(expected, actual);
• ASSERT_NE(var1, var2);

•Non-fatal checking is also available:
• EXPECT_TRUE(cond);
• EXPECT_... (same as ASSERTs)

• Can print custom messages with EXPECT/ASSERT:
• EXPECT_EQ(x1, y1) << x1 << “ != ” << y1;

Thursday, 29 November, 12

XUNIT FIXTURES P1
class QueueTest : public ::testing::Test {
 protected:
 virtual void SetUp() {
 q1_.Enqueue(1);
 q2_.Enqueue(2);
 q2_.Enqueue(3);
 }

 // virtual void TearDown() {}

 Queue<int> q0_;
 Queue<int> q1_;
 Queue<int> q2_;
};

Thursday, 29 November, 12

XUNIT FIXTURES P2

class QueueTest : public ::testing::Test {
 ...
// setUp() called before each TEST_F
// tearDown() called after each TEST_F
TEST_F(QueueTest, IsEmptyInitially) {
 EXPECT_EQ(0, q0_.size());
}

};

Thursday, 29 November, 12

XUNIT RUNNER

#include "QueueTest.h"
#include "gtest/gtest.h"

int main(int argc, char **argv) {
 ::testing::InitGoogleTest(&argc, argv);
 return RUN_ALL_TESTS();
}

Thursday, 29 November, 12

MOCKING
• Sometimes parts of the system under test are:
• slow
• non-deterministic
• not built yet
•Mocking frameworks enable units to be tested without

activating their dependencies
•Mocks adhere to an interface but simulate behaviour
•Often referred to as “stubs”

Thursday, 29 November, 12

CONTINUOUS INTEGRATION

Thursday, 29 November, 12

COVERAGE

•When executing a test suite we can instrument the program
to get an idea of “how much” of the program has run.
• Statement coverage
• Branch coverage
• Path coverage
• Hitting a coverage “target” is not effective, but discovering

untested modules can be instructive

 "... fundamental law of bug finding is No
Check = No Bug"

[Coverity]

Thursday, 29 November, 12

CODE REVIEW
• Check the code with colleagues
• Learn from more senior developers / transfer knowledge to

more junior developers
•Many projects review _every_ patch e.g.,:
• Firefox
• Android
•Webkit
• Encourages iteration to improve quality
•Discourages hacky solutions

Thursday, 29 November, 12

CODE REVIEW

Thursday, 29 November, 12

