
Material and some slide content from:
- Krzysztof Czarnecki
- Ian Sommerville

Process & Version Control
Reid Holmes



5

LIGHTWEIGHT VS. 
HEAVYWEIGHT PROCESSES

Document driven
Elaborate workflow definitions

Many different roles
Many checkpoints

High management overhead
Highly bureaucratic

Focus on working code
rather than documentation

Focus on direct communication
(between developers and

between developers and the customer)
Low management overhead

Heavyweight
e.g., V-Process

Customizable
Framework
e.g., Rational

Unified
Process (RUP)

Agile (Lightweight)
e.g., eXtreme

Programming (XP)



WATERFALL



SPIRAL

[Bohem 1986]



AGILEMANIFESTO.ORG

19



22

EXTREME PROGRAMMING 
(XP)

Characteristics

• Evolutionary development

• Collection of 12 “Best Practices”

• Focus on working code that 
implements customer needs 
(rather than documents)

• Testing is a crucial element of the 
process

Write tests

Planning

Test

Pair Programming
+ Refactoring

Integration

Min.
daily

Every 2-3
weeks

Release



23

XP VALUES

• Five principle values:

– Communication:

– Simplicity: do the simplest thing that could work

– Feedback: from the code (tests), customer (colocation), and team (planning)

– Courage: be willing to iterate and throw away what doesn’t work

– Respect: think of your team



23

XP PRACTICES (I)
• The planning game

– Stakeholder meeting to plan the next iteration

– Business people decide on business value of features

– Developers on the technical risk of features and predicted effort per feature

• Small releases

– Start with the smallest useful feature set; release early and often, adding a few 
features each time



24

XP PRACTICES (II)
• Simple Design

– Always use the simplest possible design that gets the job done (runs the tests and 
states intentions of the programmer)

– No speculative generality

• Testing

– Test-first: write test, then implement it

– Programmers write unit tests and customers write acceptance tests

• Refactoring

– Refactoring is done continuously; the code is always kept clean



25

XP PRACTICES (III)
• Pair programming
– All production code written by two programmers

– One programmer is thinking about implementing the current method, the other 
is thinking strategically about the whole system

– Pairs are put together dynamically

– http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware.PDF

• Collective code ownership
– Any programmer that sees an opportunity to add value to any portion of the 

code is required to do so at any time

• Continuous integration
– Use of version and configuration management (e.g., CVS)

– All changes are integrated into the code-base at least daily

– The tests have to run 100% before and after the integration



26

XP PRACTICES (IV)
• 40-h week

– Programmers go home on time

– Overtime is a symptom of a serious problem

– No errors by tired developers; better motivated developers

• On-site customer

– Development team has continuous access to a real life customer/user

• Coding standards

– Everyone codes to the same standards

– Ideally, you should not be able to tell by looking at it who has written a specific 
piece of code



27

XP ADVANTAGES
• Integrated, simple concept

• Low management overhead (no complicated procedures to follow, 
no documentation to maintain, direct communication, pair 
programming)

• Continuous risk management (early feedback from the customer)

• Continuous effort estimation

• Emphasis on testing; tests help in evolution and maintenance



28

XP DISADVANTAGES
• Appropriate for small teams (up to 10 developers) only (does 

not scale)

• Large development groups may require more structures and 
documents

• If maintainers are not the people that developed the code, 
good documentation is necessary

• Generic design may be necessary to enable expected future 
development



SCRUM
• “Scrum is not an acronym. It’s an event in the game of rugby where like-minded 

people get together and politely discuss ownership of a ball.”

• Rugby metaphor introduced by Takeuchi and Nonaka in their 1986 paper The New 
New Product Development Game that reported on innovative processes being 
used by big companies for new product development (e.g., cars, cameras, copiers.)

• Video: Ken Schwaber, Google Tech Talks

– http://video.google.ca/videoplay?docid=-7230144396191025011&q=agile+development

– Intro (2m00s to 9m27s).

30

©Todd Veldhuizen 2008



SCRUM PROCESS



SOFTWARE DEVELOPMENT 
SCRUM

• A collection of practices, reacting against high-formality 
processes

• Key ideas:

–Timeboxes with deliverables

–Small, self-managed, cross-functional teams of 3-9 people

–Daily meetings

–Achieve quality through transparency and monitoring, rather 
than processes 31

©Todd Veldhuizen 2008



SCRUM MEETINGS
• Daily, less than 15 minutes

• Each team member asked

–What have you done since last meeting?

–What has impeded your work?

–What will you do next?

• Try to resolve impediments quickly, or schedule smaller 
meetings immediately following

32

©Todd Veldhuizen 2008



SCRUM SPRINT
• A short development interval, e.g. 3 weeks

• Well-defined goal: what’s going to be implemented, what’s going to 
be demoed at the end of the spring

• Keep track of Backlog

– Prioritized list of work to be done (features, stories, requirements)

– Rough estimate of ideal number of days required to implement each item

– Before each sprint, a planning session is held to decide what items from the 
backlog will be addressed by the sprint

33

©Todd Veldhuizen 2008



END OF SPRINT
• End of sprint:

–Demo

–Collect feedback

–Discuss performance, process

–Plan next sprint

34

©Todd Veldhuizen 2008



TDD
•Write tests before code

• Code is complete when tests pass

• This might sound crazy, but if you try 
it I bet you would be surprised by 
how nice this feels in practice

• Encourages ‘testable’ code

• Validates APIs before they are 
written



TOOLS
• Agile methods rely heavily on tools:

• version control

• automated test suites

• continuous integration

• refactoring

• The key agile guys were also great builders, which is why these 
tools are so prevalent today



VERSION CONTROL
• Enable teams to work together effectively by enabling changes 

to files to be easily shared among the team

• Permit development to ‘roll back’ to a past version if a poor 
change is made.

• Allow developers to try ‘risky’ changes in their own 
development space without putting the code base in peril

• Two flavours:

• CVCS: (centralized)

•DVCS: (distributed)



CVCS

[http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/]

http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/
http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/


KEY TERMS (CVCS)
• Repository: data store containing controlled resources

• Checkout: download a repository

• Add: put a file in a repository

• Commit: update file(s) in the repo

• Update: retrieve remote changes from repo

• Revision: what version a file is (e.g., v23)

• Tag: put a logical name on a specific revision

• Branch: create an independent copy for some special purpose



CVCS
• Shortcomings:

• Branches / tags are heavyweight (e.g., copies)

•Online operations only

•Merging challenging

• Benefits:

• Simple

• Constraints keep you from getting into trouble



DVCS

[http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/]

http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/
http://betterexplained.com/articles/intro-to-distributed-version-control-illustrated/


[http://nvie.com/posts/a-successful-git-branching-model/]

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/


DVCS
• Benefits of DVCS:

•No central repository

• Each ‘working copy’ contains entire change history

•Offline commits (all operations are local)

• Lightweight branching / tagging. Easy merging.

•Downsides of DVCS:

• Systems give you more than enough flexibility to get 
yourself in trouble.



DVCS TERMINOLOGY
• Repository: every working copy contains the complete repo

• Clone: create a local repo from a remote one

• Commit: add changes to local repo

• Push: send local changes (can be many) to remote repo

• Pull: download remote changes to local repo



GITHUB / BITBUCKET
“SOCIAL CODING”

•DVCSs offer a lot of flexibility but make it harder to keep 
track of what is happening in a project

• Github / Bitbucket greatly simplify working with DVCSs

• Visible public forks

• Pull requests

• Integrated issue tracking

• Code reviews



GITHUB - PUBLIC BRANCHES



GITHUB - REVIEW SUPPORT


