
The MSR Cookbook
Mining a Decade of Research

Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko, Wei Wang, Reid Holmes, Michael W. Godfrey
Software Architecture Group

David R. Cheriton School of Computer Science
University of Waterloo, Canada

{hhemmati, snadi, obaysal, okononen, w65wang, rtholmes, migod}@uwaterloo.ca

Abstract—The Mining Software Repositories (MSR) research
community has grown significantly since the first MSR workshop
was held in 2004. As the community continues to broaden its
scope and deepens its expertise, it is worthwhile to reflect on the
best practices that our community has developed over the past
decade of research. We identify these best practices by surveying
past MSR conferences and workshops. To that end, we review
all 117 full papers published in the MSR proceedings between
2004 and 2012. We extract 268 comments from these papers, and
categorize them using a grounded theory methodology. From this
evaluation, four high-level themes were identified: data acquisi-
tion and preparation, synthesis, analysis, and sharing/replication.
Within each theme we identify several common recommendations,
and also examine how these recommendations have evolved over
the past decade. In an effort to make this survey a living artifact,
we also provide a public forum that contains the extracted
recommendations in the hopes that the MSR community can
engage in a continuing discussion on our evolving best practices.

I. INTRODUCTION

Mining Software Repositories (MSR) research focuses
on analyzing various data sources that describe software
systems and their development in order to provide actionable
recommendations [27]. Since 2004, the MSR conference and
workshop series has been a primary venue for publishing such
studies, and the success of MSR has continued to attract new
researchers, ideas, and applications. This year (2013) marks a
milestone in MSR history as we come to the end of a decade
of research in this area. In this paper, we take this opportunity
to reflect on the territory we have covered, and some of the
research best practices we have developed as a community.

Performing MSR research is often challenging as it involves
dealing with a myriad of different development artifacts, tools,
and analysis techniques, some of which have been adapted
from other research areas of computer science. The broad scope
and evolving technical landscape can be daunting not only to
researchers who are new to the field, but also to experienced
researchers who may have to work with new types of data or
analysis techniques. In practice, guidelines for MSR research
have often been communicated verbally during many of the
community gatherings (e.g., PASED [1]) or are learned at
the cost of blood, sweat, and tears. To help new researchers
enter the MSR community, and to reflect on the experience
of existing researchers, we codify a set of guidelines, tips,
and recommendations based on previous MSR successes. In

this paper, we aim to provide these set of best practices and
recommendations in what we call the MSR cookbook.

To create this cookbook, we analyze the past decade of MSR
publications; we summarize the experiences and accomplish-
ments of research in this field, so that new researchers may
learn from the past and avoid “re-inventing the wheel”. In this
paper, our goal is to be as unbiased as possible by developing
the cookbook from recommendations extracted from the entire
MSR research community, rather than a single researcher or
group’s ideas. To accomplish this, we review all 117 full papers
published in MSR conferences and workshops between 2004–
2012. During this process, we extract 268 comments from the
papers. Comments describe information directly provided by the
authors of the paper about a particular topic. The comments are
subsequently categorized using an open coding approach [42],
and are then grouped into four high-level themes that can
be coincidentally mapped into the typical MSR process: data
acquisition and preparation, synthesis, analysis, and sharing
and replication. Finally, the top recommendations (i.e., those
suggested in several papers) from each category are reported
and discussed.

Recommendations in the Data Acquisition and Preparation
theme (seven out of 16 recommendations) are mostly related to
how and what to extract from software development artifacts
including source code, source control management systems
(SCMs), issue tracking systems, mailing lists, and textual data,
in addition to how this data should be preprocessed before it
can be used. The Synthesis theme includes four key recommen-
dations regarding collinearity, text mining, clustering, classifi-
cation, and prediction techniques. The Analysis theme contains
four recommendations on performing statistical analysis and
evaluation of the synthesis approaches. Finally, the Sharing
and Replication theme only contains one recommendation for
improving the reproducibility of the MSR studies.

Surveying past work in a research area to extract the
state of the art is not something new. Such surveys typically
provide a summary of what has been accompanied with some
quantitative analysis of the different topics and trend analyses.
Our work here takes a different approach by creating a working
cookbook that can be continually used and updated as the
MSR community matures and advances. To this end, we also
provide an online version of the cookbook as a forum [2]. Our
hope is that the MSR community continually contributes to the

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

343



Fig. 1. Steps of a typical MSR process.

Cookbook forum to make it an up-to-date collaborative learning
environment for all researchers in the field. We also provide the
raw extracted data along with the original classifications [3],
for the sake of reproducibility.

The rest of this paper is organized as follows. Section II
describes our review process, and how we extract the data from
the reviewed papers. We then explain the 16 recommendations
in Sections III-VI according to the four themes we extracted.
We describe the evolution of these themes in Section VII.
Section VIII then provides some quantitative analysis of the
tools used or developed by the MSR community. The Cookbook
forum is then described in Section IX and related work is
discussed in Section X. Finally, Section XI discusses limitations
of this study and Section XII concludes the paper.

II. OUR REVIEW PROCESS

Our ultimate goal is to develop a list of recommendations
based on best practices of the MSR community that can help
newcomers conduct rigorous research more effectively. In this
section, we first describe the raw data we obtained from MSR
proceedings, and how a preliminary set of recommendations
were extracted from it. We then discuss our heuristics for
selecting the recommendations that appear in our final list.
Finally, we describe our categorization process.

A. Data Description

Since its inception in 2004, the MSR conference and
workshop series has published 270 papers, including 117 full
papers, 26 position papers, 67 short/poster/lightning papers,
and 60 challenge papers.1 Four of the authors of this paper
carefully read all 117 full papers from MSR 2005 to 2012, and
extracted a total of 268 comments from them; comments were
selected if they appeared to be generalizable observations or
recommendations about doing work in the field, and if they
appeared to be supported by evidence in the paper. We also
extracted the names of any tools that were developed or used
in the studies.

B. Criteria for Selecting Recommendations

As mentioned above, we decided to consider only full papers
from the MSR canon in our analysis; limiting ourselves to full
papers allows us to focus on more established work, likely

1To better foster discussions, only shorter papers were solicited for the first
year of the conference; since we decided to study only full length research
papers, we did not analyze any papers from MSR 2004.

with more convincing evidence. Also, while there is much
work in the field published at other venues, we decided study
only papers from the MSR conference series proceedings; this
defines a simple and obvious scope for the study, and at a
tractable size.

Due to the large number of comments extracted from
our review process, we devised a further heuristic to aid in
deciding on recommendations were most important: A key
recommendation should be supported by evidence from at least
five papers. This heuristic is based on the assumption that if
more papers are providing a specific recommendation then
it is likely to be stronger and more useful to the research
community. Extracting unbiased recommendations from the
papers can be challenging. While each paper may offer several
contributions to the MSR community, our approach focuses
on extracting generalizable sound recommendations from it.

C. Open Coding Approach
We now move to categorizing the extracted recommendations.

Two authors of this paper who were not heavily involved in
the extraction process performed two sessions of card sorting,
a grounded theory approach [42]. This analysis design was
chosen to make the categorization and extraction as independent
from each other as possible.

Our open card sort revealed 28 categories. We then formed
high-level themes by merging related categories. Perhaps
unsurprisingly, we found that the themes we formed coincided
with the steps of a typical MSR process: 1) Data acquisition
and preparation, 2) Synthesis, 3) Analysis, and 4) Sharing
and replication. Figure 1 shows the steps of a typical MSR
process. It starts with extracting raw data from several kinds of
development artifact repositories, such as source code, SCM,
bug tracking issues, mailing lists, etc. This is usually followed
by a data modelling phase where some preparation of the
raw data and linking data from different repositories may be
required. The next step is applying a mining/learning technique
such as clustering or regression. Finally, an analysis and
interpretation of the results is required to make the conclusions.

Our first theme relates to the first two steps in Figure 1,
while the second and third themes are a strong match for the
third and fourth steps of MSR process, respectively. The last
theme does not directly match with any steps in this process.
However, it relates to the entire process when viewed as a
whole since MSR researchers are encouraged to share their
data and results.

344



D. Representation of Results

In the next four sections (Sections III-VI), we discuss the
most common recommendations — those that have five or more
supporting papers — from each theme, supported by examples
from the original papers. For each theme, we discuss the
comments we extracted for the top recommendations. For each
recommendation, we indicate its theme by a letter: D for Data
acquisition and preparation, S for Synthesis, A for Analysis,
and R for sharing and Replication. We also created a synthetic
quote that succinctly described the recommendation; we report
the synthetic quote as well as the number of comments and
papers for each recommendation in box format after each
discussion. It is important to note that the comment and paper
count is for the entire recommendation and any given paper
might not map exactly to the synthetic quote.

III. THEME 1: DATA ACQUISITION AND PREPARATION

This theme gains the most attention from researchers. We
extracted 180 related comments, which is 67% of the total
extracted comments (268). In the rest of this section, we report
the most common recommendations. Some concern only a
single, specific repository kind — such as source code, issue
tracking, or communication artifacts — while others are more
general and address themes or techniques — such as processing
text and modelling developers — that may apply to several
repository kinds.

A. Source Code

Source code is king; it is the most important of all
software development artifacts. Researchers mine source code
repositories for different purposes such as source code evolution
analysis [48], code search, fault prediction, etc. Source code
is usually stored in a Source Control Management (SCM)
system. Researchers first need to extract code artifacts from
such SCMs. We extract 22 comments relating to extracting
data from SCMs. The high number of related comments was
expected since SCMs are one of the most mined repositories in
the field. The comments range from tips on how to extract data
from a specific SCM system such as CVS (e.g., using “sliding
window” and the commit time for grouping CVS commits [18],
[41]) and GIT (e.g., observing that “implicit” branches can
create ordering confusion [12]) to general points that can be
applied to all SCMs.

One common observation which is applicable to all SCMs
is the importance of understanding the project, its domain, and
the underlying development process when extracting commit
data, and being wary when making general assumptions. For
example, the person who commits a change is not necessarily
the one who created it [5], or the fact that not all change-sets
imply strong interdependences among the involved files [57].
In addition, determining the true time of a change — i.e.,
when it was made — is often subtle and difficult, and the
assumption that “commit time is the same as change time” is
often wrong [28], [51]. Another common mistake is assuming
that all co-changes are symmetric. In reality, if X and Y are
changed together, changing X may imply changing Y but not

vice versa. Therefore, understanding the sequence or ordering
of changed files is important [33]. Finally, one should be careful
that commit comments are sometimes used for communication
rather than the description of the change. Additionally, many
projects have an initial period of transition in their SCM system,
which may generate noise in the data [15].�
�

�
�

D1: SCM repositories contain a variety of noise; vali-
dation of heuristics and assumptions is essential.

[22 comments from 17 papers]

Source code analysis often requires matching two pieces
of code in the data extraction and preparation phase. The
required precision of the matching algorithm may be loose
(e.g., type 3 code clone detection) or tight (e.g., looking for
a specific library version in a repository [20]), depending on
the application. For simple cases, this can easily be done
through the Unix diff command. However, for sophisticated
analyses, researchers often suggest extracting Abstract Syntax
Trees (ASTs) [45] or Control Flow Graphs (CFGs) instead [36].
Matching techniques based on AST or CFG produce matches
at fine-grained levels but are applicable only to complete and
parsable programs; additionally, such fine-grained analysis is
computationally expensive, and hard to scale up. Therefore
researchers must carefully consider the trade-offs between the
desired granularity, the required application, and the cost and
complexity of the extraction process [36].�

�

�

�
D2: The choice of code extraction approach (simple
diff, building AST or CFG, etc.) is often heavily
influenced by analysis cost.

[10 comments from 8 papers]

B. Issues and Patches

Bug prediction was one of the earliest research topics to be
explored widely and in depth in MSR. However, surprisingly,
we found relatively few explicit comments on mining bug
and patch data; one possible explanation for this is that the
topic and practices are well understood already, requiring
relatively little advice for newcomers. A few comments
(6) that we found interesting are again related to stating
incorrect assumptions during data extraction. For example,
several papers mentioned the importance of distinguishing
between committers and submitters of the patch [61]. When
determining the person who fixes an issue, researchers need
to be aware that the ASSIGNED TO field in issue tracking
systems might be set to a default email address [5]. When
mining a bug repository, one should first understand how the
system works. For example, in Bugzilla some fields such as
bug Report time or History-related time do not
necessarily correspond to the actual time [64]. In addition, it is
crucial for reproducibility to clearly define your heuristics and
assumptions when describing your work. For example, when
detecting if a patch has been accepted, what would you do
if the directory of the patch was changed or renamed [61]?
Different studies may define different heuristics, which may
in turn affect the obtained results.

345



Another comment related to issues and patches suggests to
carefully define and extract the data set you are planning to
work with. For example, when predicting bug resolution time or
when selecting bugs for validation from a bug repository, one
should consider only issues whose resolution is set to FIXED
or CLOSED, as this avoids issues that are under development
or are duplicates [60], [43].�
�

�
�

D3: When working with issue trackers, it is often best
to only consider closed and fixed issues.

[6 comments from 5 papers]

C. Communication Artifacts

Developers often discuss different topics on mailing lists,
and may belong to several social networks. This provides an
opportunity for MSR researchers to mine social characteristics
of developers and relate them to the characteristics of the
software products and processes. Extracting such characteristics
is a difficult task, and there are several comments from the
papers on how and what to mine from these repositories. For
instance, preprocessing email data (e.g., removing attachments,
duplicate messages, and quoted replies, converting HTML
emails to plain text, and extracting email header information) is
suggested by several papers [31], [50]. It is also recommended
that researchers study only emails with replies, since there is
no guarantee that an email with no reply was actually read by
any developers [46]. In addition, to avoid merging messages
from two separate discussions that happen to have the same
subject, using a sliding time window is recommended [31].�
�

�
�

D4: Social communication data requires extensive pre-
processing before it can be used.

[10 comments from 8 papers]

D. Text Mining

A large portion of software data is textual, and exploring such
data requires significant preprocessing together with specialized
analysis techniques usually borrowed from Natural Language
Processing (NLP) research.

When dealing with mining textual data, it is often suggested
to remove stop-words [40], [60], punctuation, and meaningless
keywords. Additionally, it is advised to split compound
words [49], [40], [63] and perform word stemming [8], [38].
For example, if your data set contains source code, characters
related to the syntax of the programming language and non-
alphabetic symbols (numbers, punctuation, special characters,
etc.) are to be removed. Programming language keywords such
as IF and WHILE are also to be removed, and identifier names
need to be split into multiple parts based on common naming
conventions. Removal of common English-language stop words
and applying word stemming are highly recommended to
remove noise in data. Finally, in some cases, the vocabulary
of the resulting corpus is further pruned by removing words
that occur in over 80% of the documents or under 20% of
the documents [59], [62]. Alternatively, log weight functions
are sometimes used to lessen the effect of a single term being
repeated often in a corpus [24]. Depending on the context,

you may then need to create various indices: a standard term
index including all terms, a stop-index which excludes stop
words, a stem-index with stemming applied, and a synonym-
index [24] that aggregates synonyms for semantic analysis [24],
[39]. Depending on the technique used and the analysis applied,
normalization and smoothing may also be applied [49], [57].�
�

�
�

D5: Plain text requires splitting, stemming, normalization
and smoothing before analysis.

[24 comments from 16 papers]

In the context of text mining, one often needs to match
words (e.g., for mapping identifiers of two versions of a
file [22]). To reduce the number of false positives, researchers
suggest different approaches. For example, using a normalized
Levenshtein distance and an identifier type checking [49],
or using a Vector Space Model with a Cosine similarity
function [16]. Before looking for similar words (pairwise
comparison), one could also put all documents into clusters,
where they have at least one common word, and then perform
a search within these clusters [63]. And no matter which search
technique is used, one should always report possible bias (e.g.,
the choice of keywords when filtering bug reports) [6] and
manually validate a subset of the outcome [19].�
�

�
�

D6: Text analyses should be manually verified (e.g.,
sampled) in addition to regular bias reporting.

[9 comments from 7 papers]

E. Modelling Developers

One important aspect of many MSR studies — with 13
comments from 9 papers — is studying developers and their
behaviour. This is usually accompanied by establishing the
impact of their practices on code style and quality.

The first step in this type of analysis is identifying individ-
ual developers by mapping them to actual people. Before
performing any analysis on the data set, it is necessary
to merge multiple online identities that correspond to the
same person [16], [53], [64]. This can be done, for example,
by performing account aliasing when determining individual
developers making commits to the source code repository [11]
or by merging multiple email addresses that belong to the
same person [9], [31]. Aliasing is even more challenging when
people are in more than one repository under study [53]. For
example, a user might have different authentication credentials
for code and bug repositories [58], [64]. Manual validation is
necessary for confirming such aliasing [10].

In some situations, an MSR researcher requires more detailed
knowledge about developers than just knowing their identity;
for example, one might wish to know what organization the
developers work in and where they are geographically located.
Combining data from multiple repositories (e.g., email domain
address, social networking sites, blogs, presentations, company
sites, web articles, and SCM history [11]) is required for such
analysis since relying on one source of data may lead to
inaccurate results [54]. In addition, when locating a developer
who contributes code modifications, the fact that the developer

346



works for a particular organization does not mean that the
organization itself is a formal contributor [11].

MSR researchers often try to model developers based on their
experience and expertise. This cannot be accurately derived
solely from expertise information in the developers’ profiles,
because they are rarely updated [43]. Their experience on a
project can perhaps more accurately be defined as the time
that has passed since their first commit to the project [23].
In addition, their expertise on a context, e.g., a bug report,
can be modelled as the lexical similarity of their vocabulary
(source code contributions) to the context, e.g., the content
of the bug reports [40]. However, one should be aware that
making commits to certain types of files does not necessarily
mean that the developer has expertise in the corresponding area,
since the commits could be deferred from other developers [34].
Furthermore, one needs to account for developers who made a
few changes at one point in time, and are no longer active [43].�
�

�
�

D7: Multiple online personas can cause individuals to
be represented as multiple people.

[13 comments from 9 papers]

IV. THEME 2: SYNTHESIS

This theme summarizes the recommendations around the
synthesis theme of an MSR research process (33 comments).
The synthesis usually involves clustering, classification, predic-
tion, or other machine learning algorithms that is applied on
the “cleaned-up” data that is the output of the data acquisition
and preparation phase.

The first step, which must be done with caution, is designing
a proper synthesis model. For example, one popular comment
about designing prediction models concerns removing collinear-
ity among the predictors [10], [55], [11]. Another important
comment is including time decay into the prediction models
(e.g., old modifications to a file and old bugs are likely to have
no effect on new futures) [19], [57]. In addition, when building
a regression model, one must ensure that the independent
and control variables are not skewed. If they are, one should
perform a logarithm transformation on these variables before
using them in the regression model [11].�
�

�
�

S1: Be careful to remove collinearities and deal with
skewness when synthesizing models from data.

[22 comments from 17 papers]

Another design related common recommendation concerns
parameter settings. Many synthesis techniques have several
parameters that need to be set. For example, to find the optimal
number of topics in topic modelling synthesis technique,
researchers have suggested a fixed number, a range, or a number
based on the input data size, but they also suggest sensitivity
analysis [17], [29], [59].�
�

�
�

S2: Carefully tuning parameters and performing sensi-
tivity analysis can improve the modelling process.

[6 comments from 5 papers]

As expected, many papers suggest using different machine
learning algorithms that they have found effective in their

experiments and contexts. However, when choosing a classifier,
it should be noted that complex ones are not necessarily
better; one should experiment with several classifiers for a
given problem and context. Sometime the readability and
interpretability of the approach becomes more important since
the difference in performance of different complex classifiers is
minor [25]. For example, the simple Decision Tree classifier is
suggested as a machine learning algorithm as it explicitly shows
the major factors that affect a developer’s decision to contribute,
while other machine learning approaches produce black box
models that do not explain their classification decisions [31].�
�

�
�

S3: Simple analyses often outperform their complex
counterparts.

[6 comments from 5 papers]

Regression analysis is one of the most famous prediction
models that are used in the synthesis phase of MSR research.
When applying a regression model, one should be aware of
its assumptions, namely: 1) constant variance, 2) zero mean
error, and 3) independence of independent parameters. When
using regression strictly for descriptive and prediction purposes,
these assumptions are less important since the regression will
still result in an unbiased estimate between the dependent and
independent variables. However, when inference based on the
obtained regression models is made (e.g., conclusions about
the slope or the significance of the entire model itself), these
assumptions must be verified [25].�
�

�
�

S4: Be aware of the assumptions made by regression
analyses.

[10 comments from 8 papers]

V. THEME 3: ANALYSIS

Analyzing the results of the synthesis phase and interpreting
them (with 40 comments) may be seen as the most important
phase of the MSR research, since the research conclusions
are the direct output of this phase. Using manual verification,
rigorous statistics, and visualizations are key to success.

Automated approaches and heuristics can go wrong. If we
base our entire research on such heuristics, the outcome might
be very inaccurate and misleading. MSR researchers suggest
manually inspecting the outcome of automated algorithms. For
example, a keyword-based approach for bug report identifi-
cation [6] and clustering of bug types [65] requires manual
verification of the outcome. Otherwise, if the keywords or the
search are not suitable for a project, the entire analysis and
conclusions are doubtful. Mapping different repositories, also,
requires manual inspection, since it is mostly done through the
use of heuristics [9], [11], [56].

However, manual inspection of every single output is not
feasible. Therefore, sampling and verification approaches are
suggested by researchers [30]. For example, one can validate a
mapping or classification algorithm by reporting its precision
and recall on a randomly sampled data set that is manually
verified [23]. The best way of manual verification is performing
it by the actual user (e.g., developers), who are expert in

347



the field [24], [40]. If this is not possible, then at least
somebody outside the research group should perform the
manual verification [14]. It is also suggested that rigorous
inspection and testing is applied to the source code and scripts
that implement the analysis approach since wrong output might
not necessarily be due to poor heuristics, but simply due to
defective implementations [44]. Finally, researchers suggest
normalization in many scenarios. For example, when studying
some phenomena concerning browsers or operating systems,
you may normalize the data per browser/operating system by
its average market share [7].�



�
	A1: Manual verification of all outputs is required.

[20 comments from 16 papers]

Before using sophisticated evaluation approaches and statis-
tical tests, there are many cases where one can simply look
at the correlations between the output values and the best (or
actual) values. For example, one can examine the correlation
between the number of predicted bugs per file vs. the actual
number of bugs per file. A correlation function that does not
make any assumptions about the distribution of the data is
usually suggested. For example, Spearman rank correlation
may be preferred over Pearson correlation when performing
rank correlation.�
�

�
�

A2: Correlation analysis can be used to quickly check
initial hypotheses about a set of data.

[12 comments from 9 papers]

Prediction models and classifiers are among the most used
synthesis techniques in MSR. Therefore, researchers often need
to evaluate the effectiveness of these techniques in their studies.
Reporting precision and recall is probably the most common
approach in this type of research, which is also suggested
by many MSR papers [23], [38]. However, there are also
other ways that may provide better performance indicators
or compliments in some contexts. For example, reporting
the “average absolute residual” (the difference between the
predicted and the actual effort for a task) in the context of effort
prediction [60]. Sometimes, a full confusion matrix is more
informative than reporting only the precision and recall [47].
Area under curve (AUC) is also a robust measure to assess
and compare the performance of classifiers [26]. For example,
using “accuracy” as a measure of prediction is problematic
in heavily skewed distributions since it does not relate the
prediction to the probability distribution of the classes, but
AUC is insensitive to probability distributions [21].�

�

�

�
A3: While precision and recall are valuable measures,
be aware that other indicators may be more appropriate
in a given context.

[12 comments from 10 papers]

In many situations, a proposed approach (e.g., a classifier)
may be superior to the baselines for some input data but not
for others. In addition, an MSR technique may be randomized
in the nature that results in potentially different outcome per
run of the technique on the same input data. Therefore, when

comparing various techniques or data groups, it is essential
to report statistical significance of the differences [17], [64].
There are many tests that are suggested for different scenarios.
The most suggested case is using non-parametric tests when the
normality of the data is unknown [13], [35]. In addition, when
the data is skewed, researchers suggest reporting other stats
(e.g., median) than the average (mean) of the data, which can
be very misleading [26]. In many situation (e.g., when working
with extracted metrics), one needs to deal with missing data,
especially when applying statistical tests [54]. Researchers
suggested different techniques, such as list-wise removal or
mean data replacement [55], that can be applicable in different
situations.

Looking at statistical significance is necessary to show that
the difference between two techniques or two data sets is not
due to chance. However, the statistical significance does not say
anything about how much the better technique is improving the
baseline. In other words, the practical difference is unknown.
To report the practical difference, researchers suggest reporting
the effect size, e.g., a Cohen’s d effect size measure [16].
The more common recommendation is simply visualizing the
results. Researchers use several types of plots to visualize
the practical differences between the tested techniques. In
addition, visualization is a useful tool when the study is not
simply comparing the effectiveness of two approaches. For
example, when studying software evolution [33] or developers’
behaviour [23], visualizing SCMs, bug tracking systems, and
mailing list data may be more helpful.�

�

�

�
A4: While applying rigorous statistical analyses is
important, consider practical differences when drawing
conclusions.

[16 comments from 15 papers]

VI. THEME 4: SHARING AND REPLICATION

The final — and often ignored — phase (with only 15
comments) of rigorous MSR research is sharing the data and
tools to allow for external validation and replication studies. By
nature, most MSR research consists of empirical studies that
report on applying some techniques on certain data sources.
Such a single study, alone, will not provide convincing evidence
that the results are generalizable to any other, even similar,
data sources.

Researchers suggest making replication studies more com-
mon in MSR by providing as much as information about the
described analysis as possible. For example, it is suggested
that the MSR community should have a SourceForge-like
website that keeps track of each paper’s data and tools to avoid
broken URLs since researchers may not regularly maintain their
websites [52]. Regarding data, it is suggested that one should
provide both raw and processed data since replication may be
needed on any of the two sources [52]. Even if research tools
are made available for external use, in practice they can be
immature, buggy, hard-to-install, and hard-to-learn for external
users. In the early stages of MSR, researchers tend to develop
more in-house tools even for basic tasks, but nowadays the

348



TABLE I
NUMBER OF COMMENTS EXTRACTED FROM MSR FULL PAPERS OVER THE

EIGHT YEARS EXAMINED, CATEGORIZED BY THEME.

Year Theme 1 Theme 2 Theme 3 Theme 4 Total per year

2005 8 0 0 1 9
2006 14 1 4 0 19
2007 23 5 3 0 31
2008 10 2 1 2 15
2009 28 1 4 1 34
2010 27 7 10 7 51
2011 45 9 8 3 65
2012 25 8 10 1 44

Total 180 33 40 15 268

Fig. 2. Evolution of themes. Theme 1: Data Acquisition and Preparation,
Theme 2: Synthesis, Theme 3: Analysis, Theme 4: Sharing and Replication.

goal is using more standard tools for basic tasks, at least. In
section VIII, we report the tools that are provided or used in
the MSR community and provide more discussion around this
issue.�
�

�
�

R1. Sharing data, tools, and techniques helps push the
community forward and is just Good ScienceTM.

[11 comments from 5 papers]

VII. THE EVOLUTION OF RECOMMENDATIONS

Table I shows the number of comments extracted for each
theme per year. The most visible observation is the dominance
of Theme 1 (Data Acquisition and Preparation) comments
when compared to other themes. However, if we look at
their evolution, we can see that the relative percentage of
the comments in Theme 1 has steadily dropped, from 8/9=89%
of the entire comments in 2005 to only 25/44=57% in 2012.
In contrast, Theme 2 (Synthesis) and Theme 3 (Analysis) are
receiving more attention in recent years. In Figure 2, we study
the same evolution but with respect to the the number of papers
suggesting a recommendation from a theme, rather than the
comment-level analysis in Table I. Interestingly, we can see that
the increase in Theme 2 (Synthesis) and Theme 3 (Analysis)
is more apparent when we look at distinct papers. For the first

Fig. 3. Evolution of top recommendations. Top recommendations are those
with at least five supporting papers in a singe year.

time, in 2012, the number of papers providing suggestions
related to Theme 1 (Data Acquisition and Preparation) drops
to only five papers, which is fewer than the number of papers
providing comments related to Theme 2 (8) and Theme 3 (12).
This suggests that the extraction and preparation of data, which
was a primary challenge in the past, is perhaps becoming less
of a roadblock as researchers have developed mature tools and
techniques for these tasks. This allows researchers to focus their
energy on more interesting synthesis and analysis techniques
and approaches. Finally, we note that Theme 4 (Sharing and
Replication) has always been under-represented relative to the
others.

To get more insight on the distribution and evolution
of recommendations over the years, we look at the top
recommendations from our list more carefully in Figure 3. The
top recommendations are defined as those with at least five
distinct supporting papers that occur in the same year. These
top recommendations are: 1) D1: SCM repositories contain
a variety of noise; validation of heuristics and assumptions
is essential, 2) S1: Be careful to remove collinearities and
deal with skewness when synthesizing models from data), A1:
Manual verification of all outputs is required, 3) A3: While
precision and recall are valuable measures, be aware that other
indicators may be more appropriate in a given context, and 4)
A4: While applying rigorous statistical analyses is important,
consider practical differences when drawing conclusions.

The figure shows the distribution of the number of supporting
papers per each of the top five recommendations, over the
years. The first observation is the dominance of the Theme
2 (Analysis), with three recommendations among top five.
Looking at each recommendation, we realize the constant
increase in the number of papers related to A1 and A4, both of
which are related to the fact that we need stronger evidence to
support MSR research by making sure the automated techniques
are valid and the improvements are practically significant.

349



TABLE II
SUMMARY OF TOOLS USED IN EACH THEME.

Theme Groups # Distinct Tools # Papers

Data Acquisition and Preparation

Source Code Analysis 21 25
Cloning 2 6

Text XML Data 2 2
Bug Repositories 1 1
Mail Repositories 4 4
Code Repositories 13 16

Linking Diff. Repositories 8 9
Bug Analysis 1 1

Synthesis Recommenders/Decision Trees 6 9
Classification 4 6

Analysis Statistical Analysis & Visualization 5 9

Sharing – 1 1

Total 68 89

In summary, both theme-level and recommendation-level
trend analysis suggests that MSR research is maturing as a field;
it appears to be shifting from considering only data extraction
with limited automated analysis toward deeper analysis of the
results and seeking practical use.

VIII. THE TOOLS OF MSR

To improve the practicality of our cookbook, we extracted
the names and descriptions of the tools used by researchers
from the canon of MSR papers we studied. We found a
mix of “homebrew” tools specially created and tuned for
the research at hand together with well known tools from
other areas of computer science that were adapted for use
within an MSR context. We believe reporting and summarizing
this technical dimension of the work can complement the top
recommendations list and help newcomers make used of the
collective experiences of the MSR community.

Tools, however, can be hard to extract and categorize.
Researchers do not always report all the tools they have used
and/or developed. For example, we know from experience that
the GNU R language and environment is very widely used
by the community, yet only some of the papers (5) explicitly
mention the use of this tool. Table II summarizes the tools
mentioned in the 117 full papers. The number of distinct tools
used in each group is reported in addition to the number of
papers that use such a tool. A total of 68 tools are reported in
the table, with 66 of them being distinct. This is as a result of
the tool Weka appearing in both the “recommenders/decision
trees” group as well as the “classification” group. The majority
of tools are developed to support tasks associated with data
acquisition and preparation. Among these tools, 21 of them
aim to assist with source code extraction. The full version of
the table which includes the name of the tool, as well as the
reference to the original paper is available online [3].

IX. THE MSR COOKBOOK: AN ONLINE FORUM FOR MSR
RECOMMENDATIONS

Surveying published literature is an effective approach for
extracting recommendations based on best practices. However,

it is limited to a static document (the survey article), which
becomes outdated over time. Surveys are also subjective: even
if the data collection process is systematic and the criteria are
well documented, the choices are still made by the authors
based on their expertise, preferences, and even biases. To
help overcome these limitations, we provide an online version
of the recommendations in the format of a forum: the MSR
Cookbook [2]. The forum is initially populated with the top
recommendation list provided in this paper, and is open to the
public. Researchers can not only contribute by commenting
on the existing posts, but may also add new recommendations
based on their own findings. The ultimate goal is having the
forum as a live version of this paper, where people can discuss
recommendations to reduce any potential biases and provide a
collaborative learning environment.

X. RELATED WORK

There are several articles that provide guidelines in software
engineering, some of which are applicable to a range of research
studies. For example, Kitchenham et al. [37] provide a set
of guidelines on empirical research in software engineering.
Although these types of guidelines are very useful, they are
often too generic to be immediately useful and may require
tailoring to a specific context. For example, Ali et al. [4] have
provided a systematic review and a set of guidelines inspired
from generic guidelines and best practices in the specific field
of search-based test case generation.

Another type of guideline is purely driven by authors’
expertise. For example, in the field of MSR, Bird et al. [12]
propose a set of guidelines on using the GIT source code
management system based on their experience. In a broader
sense, researchers sometimes provide the guidelines in the
format of a road ahead [27] based on their personal experience
and studying other literature. In a slightly different setting,
Robles [52], provided a set of guidelines on the replicability
of the MSR papers, which is driven from a survey of MSR
paper (2004-2009).

Surveys and reviews are also popular but are mainly used
for categorization and trend analysis. For example, Zannier et

350



al. [66] have done a trend analysis by quantitative analysis of
empirical studies in the International Conference on Software
Engineering (ICSE). In the context of MSR, Kagdi et al. [32]
have published a survey of all MSR related research before
2006. In this paper, however, we take a different path. We
are more interested in providing guidelines and best practices
but with the approach of surveying, which is less subjective
than the common form of reporting own experience. Therefore,
we review published MSR full papers and derive our top
recommendations based on such raw data, which basically
formed our cookbook.

XI. THREATS TO VALIDITY

The main threats to the validity of this study arise from the
nature of our survey where we go beyond counting papers
and tools, seeking to provide a set of best practices. There
is some subjectivity that goes into such a process. However,
to avoid any bias arising from that, we document the criteria
we use to select the recommendations in Section II. We also
reduce potential bias in categorization by separating the data
extraction team from the card sort team. Finally, we provide the
MSR Cookbook forum as an interface for improving the top
recommendation list by the community itself. Since any survey
runs the risk of not properly reporting the original authors’
point of view, having an online forum allows these authors
to easily point out such issues and correct any misinterpreted
information. We also share our raw data (extracted comments
and tools) to provide a means for replication and verification.

XII. CONCLUSION

After a decade of the MSR conference and workshop
series, we believe that taking a moment to reflect on the
best practices of our community can help both newcomers
and experienced researchers alike. We have extracted 268
comments from the 117 full papers published in MSR since
2004. Applying an open card sort for categorization of the
comments resulted in four themes of recommendations, namely:
data acquisition and preparation, synthesis, analysis, and
sharing/replication. In this paper we reported the most common
recommendations among these 117 papers. The evolution
analysis of the recommendations showed that although data
acquisition and preparation is clearly an important part of
most MSR projects, their prevalence is decreasing while
recommendations about synthesis and analysis are increasing.
We consider that this is a sign of the relative maturity of the data
acquisition and preparation, which has shifted the attention of
researchers toward more thorough analysis and interpretations.
Finally, we provide an online version of this cookbook as a
forum to make the MSR community engaged and active on
providing explicit recommendations, and contributing to the
follow-up discussions.

REFERENCES

[1] Pased - canadian summer school on practical analyses of software
engineering data. http://pased.soccerlab.polymtl.ca/, 2011.

[2] Msr cookbook forum. http://swag.cs.uwaterloo.ca/~okononen/msr, 2013.

[3] Msr cookbook raw data. http://swag.uwaterloo.ca/~okononen/msr/
MSRCookBookRawData.xlsx, 2013.

[4] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur
Panesar-Walawege. A systematic review of the application and empirical
investigation of search-based test case generation. IEEE Trans. Software
Eng., 36(6):742–762, 2010.

[5] John Anvik and Gail C. Murphy. Determining implementation expertise
from bug reports. In International Workshop on Mining Software
Repositories (MSR), page 2, 2007.

[6] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and
Stefano Zacchiroli. Why do software packages conflict? In International
Working Conference on Mining Software Repositories (MSR), pages
141–150, 2012.

[7] Olga Baysal, Reid Holmes, and Michael W. Godfrey. Mining usage
data and development artifacts. In International Working Conference on
Mining Software Repositories (MSR), pages 98–107, 2012.

[8] Olga Baysal and Andrew J. Malton. Correlating social interactions to
release history during software evolution. In International Workshop on
Mining Software Repositories (MSR), page 7, 2007.

[9] Christian Bird, Alex Gourley, Premkumar T. Devanbu, Michael Gertz,
and Anand Swaminathan. Mining email social networks. In International
Workshop on Mining Software Repositories (MSR), pages 137–143, 2006.

[10] Christian Bird, Alex Gourley, Premkumar T. Devanbu, Anand Swami-
nathan, and Greta Hsu. Open borders? immigration in open source
projects. In International Workshop on Mining Software Repositories
(MSR), page 6, 2007.

[11] Christian Bird and Nachiappan Nagappan. Who? where? what?
examining distributed development in two large open source projects.
In International Working Conference on Mining Software Repositories
(MSR), pages 237–246, 2012.

[12] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.
Germán, and Premkumar T. Devanbu. The promises and perils of mining
git. In International Working Conference on Mining Software Repositories
(MSR), pages 1–10, 2009.

[13] Alexander W. J. Bradley and Gail C. Murphy. Supporting software
history exploration. In International Working Conference on Mining
Software Repositories (MSR), pages 193–202, 2011.

[14] Marcel Bruch, Mira Mezini, and Martin Monperrus. Mining subclassing
directives to improve framework reuse. In International Working
Conference on Mining Software Repositories (MSR), pages 141–150,
2010.

[15] Gerardo Canfora and Luigi Cerulo. Fine grained indexing of software
repositories to support impact analysis. In International Workshop on
Mining Software Repositories (MSR), pages 105–111, 2006.

[16] Gerardo Canfora, Luigi Cerulo, Marta Cimitile, and Massimiliano Di
Penta. Social interactions around cross-system bug fixings: the case of
freebsd and openbsd. In International Working Conference on Mining
Software Repositories (MSR), pages 143–152, 2011.

[17] Tse-Hsun Chen, Stephen W. Thomas, Meiyappan Nagappan, and
Ahmed E. Hassan. Explaining software defects using topic models.
In International Working Conference on Mining Software Repositories
(MSR), pages 189–198, 2012.

[18] Marco D’Ambros, Michele Lanza, and Mircea Lungu. The evolution
radar: visualizing integrated logical coupling information. In International
Workshop on Mining Software Repositories (MSR), pages 26–32, 2006.

[19] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive
comparison of bug prediction approaches. In International Working
Conference on Mining Software Repositories (MSR), pages 31–41, 2010.

[20] Julius Davies, Daniel M. German, Michael W. Godfrey, and Abram
Hindle. Software Bertillonage: Finding the provenance of an entity. In
Proc. of the 8th Working Conference on Mining Software Repositories,
MSR ’11, pages 183–192, New York, NY, USA, 2011. ACM.

[21] Jayalath Ekanayake, Jonas Tappolet, Harald Gall, and Abraham Bernstein.
Tracking concept drift of software projects using defect prediction quality.
In International Working Conference on Mining Software Repositories
(MSR), pages 51–60, 2009.

[22] Laleh Mousavi Eshkevari, Venera Arnaoudova, Massimiliano Di Penta,
Rocco Oliveto, Yann-Gaël Guéhéneuc, and Giuliano Antoniol. An
exploratory study of identifier renamings. In International Working
Conference on Mining Software Repositories (MSR), pages 33–42, 2011.

[23] Jon Eyolfson, Lin Tan, and Patrick Lam. Do time of day and developer
experience affect commit bugginess. In International Working Conference
on Mining Software Repositories (MSR), pages 153–162, 2011.

351



[24] Michael Gegick, Pete Rotella, and Tao Xie. Identifying security bug
reports via text mining: An industrial case study. In International Working
Conference on Mining Software Repositories (MSR), pages 11–20, 2010.

[25] Emanuel Giger, Martin Pinzger, and Harald Gall. Comparing fine-grained
source code changes and code churn for bug prediction. In International
Working Conference on Mining Software Repositories (MSR), pages
83–92, 2011.

[26] Emanuel Giger, Martin Pinzger, and Harald C. Gall. Can we predict
types of code changes? an empirical analysis. In International Working
Conference on Mining Software Repositories (MSR), pages 217–226,
2012.

[27] Ahmed E. Hassan. The road ahead for mining software repositories
(msr), 2008.

[28] Lile Hattori and Michele Lanza. Mining the history of synchronous
changes to refine code ownership. In International Working Conference
on Mining Software Repositories (MSR), pages 141–150, 2009.

[29] Abram Hindle, Neil A. Ernst, Michael W. Godfrey, and John Mylopoulos.
Automated topic naming to support cross-project analysis of software
maintenance activities. In International Working Conference on Mining
Software Repositories (MSR), pages 163–172, 2011.

[30] Abram Hindle, Daniel M. Germán, and Richard C. Holt. What do large
commits tell us?: a taxonomical study of large commits. In International
Working Conference on Mining Software Repositories (MSR), pages
99–108, 2008.

[31] Walid M. Ibrahim, Nicolas Bettenburg, Emad Shihab, Bram Adams, and
Ahmed E. Hassan. Should i contribute to this discussion? In International
Working Conference on Mining Software Repositories (MSR), pages 181–
190, 2010.

[32] Huzefa H. Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey
and taxonomy of approaches for mining software repositories (msr) in
the context of software evolution. Journal of Software Maintenance,
19(2):77–131, 2007.

[33] Huzefa H. Kagdi, Shehnaaz Yusuf, and Jonathan I. Maletic. Mining
sequences of changed-files from version histories. In International
Workshop on Mining Software Repositories (MSR), pages 47–53, 2006.

[34] Siim Karus and Harald Gall. A study of language usage evolution in
open source software. In International Working Conference on Mining
Software Repositories (MSR), pages 13–22, 2011.

[35] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do
faster releases improve software quality? an empirical case study of
mozilla firefox. In International Working Conference on Mining Software
Repositories (MSR), pages 179–188, 2012.

[36] Miryung Kim and David Notkin. Program element matching for multi-
version program analyses. In International Workshop on Mining Software
Repositories (MSR), pages 58–64, 2006.

[37] Barbara Kitchenham, Shari Lawrence Pfleeger, Lesley Pickard, Peter
Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg.
Preliminary guidelines for empirical research in software engineering.
IEEE Trans. Software Eng., 28(8):721–734, 2002.

[38] Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart Goethals.
Predicting the severity of a reported bug. In International Working
Conference on Mining Software Repositories (MSR), pages 1–10, 2010.

[39] Walid Maalej and Hans-Jörg Happel. From work to word: How do
software developers describe their work? In International Working
Conference on Mining Software Repositories (MSR), pages 121–130,
2009.

[40] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning
bug reports using a vocabulary-based expertise model of developers.
In International Working Conference on Mining Software Repositories
(MSR), pages 131–140, 2009.

[41] Keir Mierle, Kevin Laven, Sam T. Roweis, and Greg Wilson. Mining
student cvs repositories for performance indicators. In International
Workshop on Mining Software Repositories (MSR), 2005.

[42] M.B. Miles and A.M. Huberman. Qualitative Data Analysis: An
Expanded Sourcebook. SAGE Publications, 1994.

[43] Shawn Minto and Gail C. Murphy. Recommending emergent teams. In
International Workshop on Mining Software Repositories (MSR), page 5,
2007.

[44] Shuuji Morisaki, Akito Monden, Tomoko Matsumura, Haruaki Tamada,
and Ken ichi Matsumoto. Defect data analysis based on extended
association rule mining. In International Workshop on Mining Software
Repositories (MSR), page 3, 2007.

[45] Iulian Neamtiu, Jeffrey S. Foster, and Michael W. Hicks. Understanding

source code evolution using abstract syntax tree matching. In Interna-
tional Workshop on Mining Software Repositories (MSR), 2005.

[46] Roozbeh Nia, Christian Bird, Premkumar T. Devanbu, and Vladimir
Filkov. Validity of network analyses in open source projects. In
International Working Conference on Mining Software Repositories
(MSR), pages 201–209, 2010.

[47] Ariadi Nugroho, Michel R. V. Chaudron, and Erik Arisholm. Assessing
uml design metrics for predicting fault-prone classes in a java system.
In International Working Conference on Mining Software Repositories
(MSR), pages 21–30, 2010.

[48] Chris Parnin and Carsten Görg. Improving change descriptions with
change contexts. In International Working Conference on Mining Software
Repositories (MSR), pages 51–60, 2008.

[49] Shivani Rao and Avinash C. Kak. Retrieval from software libraries
for bug localization: a comparative study of generic and composite
text models. In International Working Conference on Mining Software
Repositories (MSR), pages 43–52, 2011.

[50] Peter C. Rigby and Ahmed E. Hassan. What can oss mailing lists tell
us? a preliminary psychometric text analysis of the apache developer
mailing list. In International Workshop on Mining Software Repositories
(MSR), page 23, 2007.

[51] Romain Robbes. Mining a change-based software repository. In
International Workshop on Mining Software Repositories (MSR), page 15,
2007.

[52] Gregorio Robles. Replicating international working conference on mining
software repositories (msr): A study of the potential replicability of
papers published in the mining software repositories (msr) proceedings.
In International Working Conference on Mining Software Repositories
(MSR), pages 171–180, 2010.

[53] Gregorio Robles and Jesús M. González-Barahona. Developer identifica-
tion methods for integrated data from various sources. In International
Workshop on Mining Software Repositories (MSR), 2005.

[54] Gregorio Robles and Jesús M. González-Barahona. Geographic location
of developers at sourceforge. In International Workshop on Mining
Software Repositories (MSR), pages 144–150, 2006.

[55] Pete Rotella and Sunita Chulani. Analysis of customer satisfaction
survey data. In International Working Conference on Mining Software
Repositories (MSR), pages 88–97, 2012.

[56] Vibha Singhal Sinha, Senthil Mani, and Saurabh Sinha. Entering the
circle of trust: developer initiation as committers in open-source projects.
In International Working Conference on Mining Software Repositories
(MSR), pages 133–142, 2011.

[57] Bunyamin Sisman and Avinash C. Kak. Incorporating version histories
in information retrieval based bug localization. In International Working
Conference on Mining Software Repositories (MSR), pages 50–59, 2012.

[58] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? In International Workshop on Mining Software
Repositories (MSR), 2005.

[59] Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea
Blostein. Modeling the evolution of topics in source code histories.
In International Working Conference on Mining Software Repositories
(MSR), pages 173–182, 2011.

[60] Cathrin Weiß, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller.
How long will it take to fix this bug? In International Workshop on
Mining Software Repositories (MSR), page 1, 2007.

[61] Peter Weißgerber, Daniel Neu, and Stephan Diehl. Small patches get in!
In International Working Conference on Mining Software Repositories
(MSR), pages 67–76, 2008.

[62] Peter Weißgerber, Mathias Pohl, and Michael Burch. Visual data
mining in software archives to detect how developers work together. In
International Workshop on Mining Software Repositories (MSR), page 9,
2007.

[63] Jinqiu Yang and Lin Tan. Inferring semantically related words from
software context. In International Working Conference on Mining
Software Repositories (MSR), pages 161–170, 2012.

[64] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. Security versus
performance bugs: a case study on firefox. In International Working
Conference on Mining Software Repositories (MSR), pages 93–102, 2011.

[65] Shahed Zaman, Bram Adams, and Ahmed E. Hassan. A qualitative study
on performance bugs. In International Working Conference on Mining
Software Repositories (MSR), pages 199–208, 2012.

[66] Carmen Zannier, Grigori Melnik, and Frank Maurer. On the success of
empirical studies in the international conference on software engineering.
In ICSE, pages 341–350, 2006.

352


