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Abstract

The Black-Scholes value and risk free portfolio for options that depend on two
underlying assets are defined by the solution of the B-S partial differential equation,
and its gradient . A finite volume, or finite element, method using an unstructured
mesh to discretize the underlying asset price region can be used to compute a piecewise
linear (pwlinear) approximation for the valuation. A gradient recovery method applied
to this computed valuation can be used to compute a pwlinear approximation to the
B-S delta hedging parameters.

In this paper, we discuss efficient unstructured mesh design for computing both of
these contributions to the B-S risk free portfolio function. Mesh designs are viewed as
determining sequences of meshes with increasingly accurate computed valuations and
deltas. We argue that meshes that provide quadratic convergence to zero of the errors
in the deltas are more efficient that meshes with lower convergence rates for these
errors. However, requiring quadratic convergence of the recovered gradient values of
a function places strong restrictions on the mesh design. We present computations
that demonstrate how meshes with suitably chosen uniform submeshes can produce
quadratic convergence of the deltas in a weighted error measure.

Keywords gradient recovery, finite volume method, finite element method, Black-
Scholes, efficiency

1 Introduction

The context of this paper is the computation of the Black-Scholes valuation and dynamic
hedging parameters for an option that depends on two underlying asserts (Chapter 11,
Wilmott, [24]). The prices for these assets will be denoted by S; and Sy and the pair will
often be written as column vector S. For a wide range of options, the valuation, V/(S,1),
can be specified as the solution of the Black-Scholes partial differential equation, (pde), in a
domain ¥ of the S plane for a time interval between the issuing date, ¢44,¢, and the expiry
date, tegp. As per the Black-Scholes theory, the dynamic hedging parameters, A(S,¢), are
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the spatial gradient of V', i.e. A(Sy,Ss,t) = gradsV(Si, Sq,t), considered to be a column
vector and the theoretically risk free portfolio function is P(S,t) = —V(S,t) + STA(S,t) ,
as introduced at (6) below.

The computation of the valuation and hedging parameters on an unstructured mesh for
Y. can be carried out in two stages:

l.a) the computation of a piecewise linear (pwlinear) approximation, V', of
the valuation using the finite element method (FEM) or finite volume

method (FVM)

1.b) the computation of approximate gradient values from a pwlinear function (1)
by a gradient recovery method. This produces A = grad®V as a post-
processing step following 1.a).

The use of the FEM/FVM methods' for computing V, approximately, on unstructured
meshes for general parabolic pdes is well established. The application of the FVM to op-
tion valuation is presented in Zvan, Forsyth and Vetzal, [26] and [27], and in Pooley et al.
[14]. The application of the FEM is presented in Forsyth, Vetzal and Zvan in [3]. A FEM
computation of the valuation function for the demonstration two factor European call of §4
is presented by Zhu and Stokes in [25]. An extensive review of gradient recovery techniques
and theory is presented by Lakhany, Marek and Whiteman, [10] ; see also Bank and Xu [1].
Two of the issues influenced by the mesh are:

a) the accuracy of the approximate values, and
b) the cost of their computation.

These two issues are in conflict in the sense that making the errors smaller invariably involves
larger meshes and hence larger computation costs. But how much bigger need the cost be
to accomplish a specified increase in accuracy? This is partly a question of mesh design
efficiency, which is the major focus of this paper.

1.1 Efficiency: unstructured and structured meshes

Efficiency is pursued differently with structured and unstructured discretizations, at least in
principle. Structured meshes have limited control over the location and hence the number of
vertices in the discretization. However, the computational cost per vertex can often be kept
low by exploiting the structure of the grid. Unstructured meshes have substantial flexibility
in locating vertices where they provide needed error control, but the corresponding methods
generally incur higher computational costs per vertex than well implemented structured mesh
based counterparts. So, to be efficient, unstructured meshes should be designed to use fewer

'While implementations differ between these two methodologies, the results computed by them are es-
sentially equivalent, in our view. See [8].



2. In this paper,

vertices by placing them only where they are effective in reducing errors
we assume that the size of the mesh, e.g. the number of vertices, adequately reflects the
contribution by meshing to the cost of the computation. lL.e. for two meshes that produce
acceptably accurate approximations, the smaller mesh is the more efficient one.

We look for accuracy in both the valuation function and the hedging parameters. The
pointwise error in the computed portfolio function, ETT(P)(S,t), combines the pointwise

errors in the valuation , Err(Y)(S,#), and the deltas, Err()(S,t), in a natural way
Err(P)(S,t) = —Err(v)(S,t) + STETT(A)(S,t) (2)

so Err(P)(S,t) is a useful measure of accuracy here. Control of Err()(S,t) is not sought
uniformly across . The extent of ¥ is typically governed by modeling boundary conditions
that apply in ranges of the S plane which have a very low probability of being visited by a
Black-Scholes price history; see (3) in §2. We assume that the accuracy requirements can be
relaxed in parts of ¥ that have a low probability of being visited so that mesh spacings, and
errors, can be larger there. In §4, an error weighting function that reflects this assumption
is introduced.

One might think that an efficient unstructured mesh would use just enough vertices,
strategically places, so that the contributions to Err") from Err("Y) and the two hedging
parameter errors, Err(®), would be roughly comparable and such that their combination in
(2), ignoring cancellations, meets the accuracy requirement on Err(P), T.e. one might think
that an efficient mesh can be devised that roughly balances Err(") and Err(®). Simple
realizations of this idea are confounded by the fact that Err(Y) and Err(®) are coupled by
the mesh and also by the observation that, generally, achieving accuracy in the approximation
of the derivative of a function is more costly than approximating the function itself. In §3, we
provide an overview of the substantial theory of convergence of approximate function values
and gradients for functions specified by pdes. This theory quantifies, for such functions, the
previous observation about gradient accuracy being more costly to attain than function value
accuracy. The overview provides some of the rationale for the meshing technique presented
in this paper.

The theory studies the convergence of a sequence of pwlinear approximate functions,
{V1, and recovered gradients, {grad® V)}, computed on a sequence of meshes {M;}. It
predicts the asymptotic behaviour of the errors in V) and grad® V) as j — oo, assuming
h(M;) — 0 for h(M;) = the longest triangle edge in AM;. These results, which we paraphrase
without full qualifications, are expressed in the usual asymptotic terminology; a sequence of
error sizes, or norms, {||Err9||}, converges to zero:

- linearly if ||ErrU)||/h(M;) is bounded  ;  ||Err0)|| = O(h(M;))
- quadratically if ||Err)||/h(M;)? is bounded  ;  ||Err@|| = O(h(M;)?)

2A separate and somewhat historical issue is that structured methods are simpler to program, at least
for simple problems. We assume that the difficulty in implementing the methods is no longer an issue.




- strictly linearly if the sequence converges linearly, but || Err()||/h(M;)'** is unbounded
for every 3 > 0

For sequences {M;} of general unstructured meshes, the theory predicts that the valuation
function errors, ErrV) converge quadratically to zero, but that the recovered gradient
errors, Err{®9) converge linearly. (Recall A = grad®V as per (1).) This prediction implies a
fundamental incompatibility between using general unstructured mesh generation techniques
and the tactic of seeking efficiency by balancing the contributions of Err(V+) and Err(®)
to Err(P9) If as predicted, ErrV9) converge quadratically and if Err(®9) exhibit strictly
linear convergence, then the hedging parameter error will dominate Err¥9) | for stringent
enough accuracy requirements, and the convergence of Err(P7) will be strictly linear.

For sequences of structured meshes, on the other hand, the theory predicts quadratic
convergence of both Err(V9) and Err(®9) | which would support the efficiency tactic of bal-
ancing the error contributions to Err™) and also ensure quadratic convergence of Err(F7),
Furthermore, the theory supports the prediction of localized superlinear convergence in the
following sense. Let 3; be a subdomain of ¥, and, for each M; of the mesh sequence, let
the restriction of M; to ¥; be uniform. Then the hedging errors, Err(29)(S,t), converge
superlinearly for § sufficiently interior to ¥;. It is this prediction of the theory that we
propose to exploit.

1.2 Outline of the paper

In §2, we review the specifications of the option valuation, the delta hedging parameters,
and the hedging portfolio for a generic two factor option by the Black-Scholes model. We
review the computation of these quantities for an unstructured mesh for 1.a), and gradient
recovery methods for 1.b). We then introduce weighted error measures for the computed
quantities.

In §3, we present an overview of, and references for, unstructured meshing and related
pwlinear approximation theory and practice as it relates to the option calculations of §2.
Using this, §3.2 presents the Delaunay refinement based meshing technique for option cal-
culations that is demonstrated in §4. In principle, this technique can produce sequences
of nested meshes, {M,}, for which the weighted pointwise errors of the computed portfo-
lio values show a strong form of quadratic convergence locally on uniform submeshes. A
computable characterization of the asymptotic form associated with this convergence is dis-
cussed. §4 demonstrates that this characterization is present in the values of the portfolio
function computed on three successive meshes of {M;}. Using this as empirical evidence of
the asymptotic behaviour of the weighted error, we extrapolate this error behaviour to the
rest of the mesh sequence and draw conclusions about the mesh efficiency of this approach.



2 Pricing, Hedging and Computation for the Black-
Scholes model

The contract for an option specifies the expiry date ¢ = t.,, of the option and its pay-offt value
at teyp in terms of the underlying asset prices S = (5, SZ)T at this time. The Black-Scholes
model assumes that the price histories of the underlying assets can be modeled as solutions
of the simple stochastic differential equations determined by a Weiner process, W;, as

dS, = ,LL,S,dt + O','S,’th for 1 = 1,2 (3)

In the use of this pricing model, the valuation function, V/(5,t) satisfies the partial differential
equation®

1 o’V 1 0*V 0*V ov av

—0V/)0t = ~0?S? — + —0252 — N Si——+rS——-rV (4
[0t = 50151557 + 3025 gz TS Siga et rSige trSige —rV (4)

for the contract at times ¢ < t¢,p, subject to
V(S teap) = Vpay (). ()

The significance of the parameters in (3) and (4) are discussed in Wilmott, [24], Chapter 11.

To complete the specification of V(S,t) from (5) and (4) for computation, it is necessary
to limit S to a finite domain . For this purpose, ‘boundary’ values of 57 and S, are
specified. The boundary values of S; are typically taken at extreme prices of the underlying
asset, 1.e. S; = 0 and S; = S’l-(large . So X is this square (or rectangular) solution domain
At the boundaries of ¥, conditions on V' are posed which are reasonable and which do not
inappropriately influence V in the ranges of 5; where the underlying asset price histories
evolve. See Zvan, Forsyth, and Vetzal, [26]. Equation (4) can be integrated backwards in
time to provide V/(S,1).

Figures 1 A and 1 B show the payoft and valuation function at ¢ = three months prior to
expiry for a European call on the maximum of two assets; see Stulz, [22]. This option is one
of two used in our demonstration computations of §4, where more details of its parameters
are given.

A hedging strategy is a tactic which can be adopted by the issuer for reducing the risk
incurred under the contract. In general, the risk depends on the actual price history, S(¢),
taken by the underlying assets, which is assumed to be an instance of the random processes of
(3). A class of simple dynamic hedging strategies involves maintaining a portfolio consisting
of the contract value, V(S5(¢),1), as a liability and holdings in the amounts A;(S(¢),t) of the
ith asset; i.e. holdings of assets worth STA(S(t),t) = S1(+)A1(S(#),t) + S2(¢)Ax(S(t),1).
Using the sign conventions of [24], this portfolio is described mathematically by

P(S,t) = —=V(S,t) + STA(S,1). (6)

3usually written in terms of a ‘backward’ time variable also designated ‘t’.
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Various choices for A;(S(¢),t) make different tactics within this general strategy. Under
the assumptions of the Black-Scholes theory, the choice of

Ai(S(t),1) = OV(S(t),1)/08; for i=1,2 (7)

will completely eliminate the risk to the issuer, regardless of the pricing history path, [24].
Figure 2A shows the portfolio function at ¢ = three months prior to t.., for Black-Scholes
hedging of the European call shown in Figure 1B.

2.1 Computing the model valuation and portfolio functions

Piecewise linear approximations for the valuation and portfolio functions can be computed
using the two stage computation (1) described in §1. Stage (1.a) can be accomplished by
the finite element or volume methods, integrating (4) backwards in time, using implicit time
stepping. References for such methods are given in §1.

For our purposes, the inputs to the method are: the mesh M, the Black-Scholes equation
parameters, the pay-off function, the length of the contract, the boundary conditions and,
possibly, additional constraints such as early exercise option. The output is an approximate
valuation function, V(S,t), that is piecewise linear over M. To distinguish it from the exact
solution of (4), we will denote the exact solution of the initial-boundary value problem for
(4) by V(ezact)(S #) for the rest of the paper. The demonstrations presented in this paper
use t = three months prior to tez.

The computation of the delta hedging parameters for stage (1.b) can be accomplished by
a gradient recovery technique. Consider a bivariate function, W) (S) and a piecewise
linear approximation, W(S), to W) which is defined using a mesh, M. grad W(S) is
a vector function which is piecewise constant on the triangles of M. A gradient recovery
technique post-processes the data of grad W(S) to extend its definition to all values of 5,
usually as a piecewise linear vector function. We denote the result of this post-processing by
grad® W(S), and we expect that it is a significantly better approximation to grad W(ezact)(S)
than grad W(S) is.

The method used in the demonstrations of this paper is a standard FEM gradient aver-
aging technique:

8.a) Let S®) be a vertex of mesh M. Let grad® W(S®)) be the simple average
of the constant values of the gradients grad W, for each triangle incident
on S
(8)

8.b) Let grad® W(S) be the piecewise linear vector interpolant of the
grad® W(S®) data on M
Gradient recovery methods and the theory of their error behaviour will be reviewed in
§3.1.2; we note here, however, that getting significant accuracy gains by this (or any other)
gradient recovery technique seems to be contingent on imposing some structure on the mesh,

M.



2.2 Meshing error definitions

Computing solutions of (4) involves two discretizations: the mesh discretization of ¥ and
the time stepping technique. In this paper, we are focusing on the former; so we will assume
that the time stepping errors are neglible, i.e. that very small time steps are used. Let w(S)
be a positive error weighting function. The role of w(S) is primarily to limit the domain
over which the error behaviour is to be studied. The weighted absolute meshing errors in
the value and hedging parameters are

ErrV(S,1) = w(S)(VEe(S,t) — V(S,1)) (9)
Err(A)(S,t) = w(S)(gradV(emCt)(S,t)—gradRV(S',t)).

These are pointwise errors in the underlying asset price variables S, as well as time. The
theory of error behaviour is developed for general pdes and not explicitly for weighted errors.
So when we review this theory, we will assume w(S) = 1. However, in the Black-Scholes
theory for the quantities that we are discussing, the underlying price histories are random
walks in the S plane based on (3). Since the boundaries of the computational domain are
deliberately set in regions of very low probability of encountering a price path, it is not
necessary to maintain uniform accuracy across the computational domain for most end uses
of the calculations. In §4, we demonstrate a choice of error weight function, w(S) which
limits the visualization of errors appropriately for each of the options presented.
As presented in (2), the weighted error in the portfolio function is

Err(P)(S,t) = —Err(V)(S,t) + STETT(A)(Svt)- (10)

From (10) we can see that Err(P)(S,¢) provides a natural way to look at balancing Err(V)
from stage 1.a) with Err(®) from stage 1.b) of (1). Note that controlling the absolute
portfolio error requires controlling the absolute error of the value function and controlling
the error in A; that is relative to the price, S; of the ith underlying asset.

3 Unstructured Meshing and Piecewise Linear Func-
tions

Some of the features of efficient meshes for these computations can be seen directly from
Figure 1 and Figure 2, at least in general qualitative terms.



11.a) There are large regions of ¥ in which the functions are essentially planar.
In these regions, accuracy can be obtained by relatively large triangles.

11.b) There are regions where a price history is unlikely to visit. We assume
that accuracy can be relaxed there, which means that large triangles can

be used. (11)

11.c) There are regions where the surfaces show significant curvature and price
histories are likely to visit. Small triangles are required for accuracy in this
zone.

Imagine that such a mesh has been generated which is reasonably efficient by virtue of
the distribution of triangle sizes that we have described, and that the valuation and portfolio
functions have been computed. If we now wish to increase the accuracy of our computation,
we would have to use smaller triangles in the small triangle zone, i.e. we would need a
second mesh that is larger than the first. How do the contributions of Err(Y) and Err(®)
to Err(P) change from the first mesh to the second? It is probably not possible to answer
this vague question for an arbitrary pair of meshes. However, there is a substantial theory of
pwlinear approximations which predicts that in general, using a finer unstructured mesh to
achieve more accuracy will likely result in the gradient error dominating the portfolio error.
We review this theory in §3.1.1. The theory of recovered gradient superlinear convergence
suggests a two part remedy for this potential imbalance, as we review in §3.1.2. We describe
how this remedy can be implemented for our option computations in §3.2.

3.1 Review of convergence theory

Convergence studies for FEM and FVM methods are usually based on a sequence of meshes
{M;} such that h(My) — 0 as k — oo where h(M},) = maxyen, (h(T)) and h(T) is the length
of a longest edge of triangle T'. Such a sequence is referred to as a convergent mesh sequence.
As the triangles of M}, get smaller with & — oo, their shape should not degenerate indefinitely
in the sense that there should be a bound on the smallest angle in any T in {My}. This is
guaranteed if the M} are created by quality mesh generation methods as described above.
In the convergence literature, this requirement is usually stated equivalently as requiring
an upper bound on the ratio of the circumcircle of T' to the shortest edge of T for all T
in {M}.}. Mesh sequences with this property are called quasi-uniform. We note that for a
quasi-uniform mesh sequence, the number of vertices in My, Ny (M}), grows asymptotically

like Nv(Mk) = O(h(Mk)_z)

3.1.1 A basic convergence rate estimate

Let W(ezact)(S) be a function with continuous second derivatives in ¥ and let {M,} be
a quasi-uniform sequence of meshes for ¥. Let W*)(S) be one of the common piecewise
linear approximations to W) on M. Le. W*)(S) could be computed by interpolation,
or least squares fitting, or numerical solution of a partial differential equation. There is



a comprehensive theory for the convergence of W) to W) two of the fundamental
features of it are:

a) the convergence of W*) to We=act) is quadratic in h(My), i.e.
Err™ = wlezac) _ k) — O(R?(My)) (12)

b) the convergence of the piecewise constant functions dW® /95, to W et 195, is
linear in h(My), i.e

Err?W/9S;i — aW(m“Ct)/@Sj — @W(k)/asj = O(h(My)) (13)

Precise statements of these features involve a variety of size measures for Err" and Err?W/9%
Rigorous statements of (13) are complicated by the fact that W) /3S; are, in general, only
pointwise defined in the interior of the triangles of the mesh.

The monograph [17] by Schatz, Thomée and Wendland provides a useful rigorous presen-
tation of this theory*. In particular, (12) and (13) hold in the L, norm when W{*a)(S)is
the solution of a parabolic pde in d dimensions at some fixed time level and W®) is the
corresponding approximate spatial profile computed by a FEM method using My; see [17],
Theorems 1.1, page 140, and 1.2, page 147.

The key aspect of these results for our purposes is that they suggest that the rate at
which the piecewise constant values of gradV(S,t) converge to gradV(<*s?)(S t) can be
significantly slower than the rate at which V(S,t) converges to V(¢*at) Consequently, if
gradV (S,t) were used for the deltas of the portfolio, (6), then the term STErr(®) of (10)
would dominate Err(P)_ at least for fine meshes. This suggests that a balance between the
errors in the terms of the portfolio function as described in §2.2 could not be achieved using
these delta values.

This imbalance between the convergence rates of W®*) and gradWW®) was observed in
stress analysis, and other applications that require gradient values early in the use of the
FEM. Computational techniques for improving the computation of approximate gradient
values has about a 35 year history. In particular, gradient averaging as presented at (8) has
been used with the FEM since 1974, [6]. But are they good enough to support a balance
of the value and delta errors in the portfolio computation? In the following subsection, we
summarize the theory for approximation properties of gradient recovery methods.

3.1.2 Gradient Recovery, superconvergence, and asymptotic error behaviour

One might hope that a gradient recovery technique, like the one described at (8), could be
found that would produce approximate gradient component functions that converge quadrat-
ically to the exact gradient components. Unfortunately, there is no established gradient

4In [17], page 9 and sequel, and other convergence literature, these convergence rates are combined into
the single expression

max|W (cet)(§) — W) (S)| + h(My)max||grad W) (S) — grad W*)(8)|| = O(h(M)?). (14)
E.g.see Corollary 1.2.2
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recovery scheme that is demonstrated to be quadratically convergent for a general sequence
of quasi-uniform meshes, {M;} as we have described above.

The theory of gradient recovery techniques has focused on demonstrating convergence
rates that are better then linear, i.e. Err9"@W = O(h'*?(My)) for some 3 between 0 and 1.
In appendix A, we argue that full quadratic convergence, 5 = 1, is necessary to get the error
balancing we seek. These methods do not apply to sequences of arbitrary quasi-uniform
sequences of unstructured meshes, however. In fact, in their most basic form they apply to
essentially structured meshes; i.e. meshes in which the two triangles that are incident on any
internal edge almost form a parallelogram. See the review [10], cited in the introduction. On
such meshes, gradient recovery methods may be viewed as generalizations of symmetric finite
difference methods. We know that these methods typically compute approximate gradient
values that are quadratically convergent. Consider the simple centered difference

517}1 W(S) — (W(Sl —|— h, 52) - W(Sl - h, Sg)/(Qh)
Using Taylor’s expansions, we can see that
oW (8)/3S, — & nW(S) = O(h*) (15)

if W (S)/dS7} is bounded. This simple observation has been generalized, albeit in a reduced
form, in [18], by Schatz, Sloan and Wahlbin. They show how local symmetry in the mesh
can be combined with gradient recovery to yield superconvergence. Their results are quite
general and technically complex to state with precision. They apply to a convergent sequence
of quasi-uniform meshes, {M;} which cover designated parts of ¥ with submeshes that have
forms of symmetry in the distribution of neighbouring vertices, including locally uniform
submeshes of uniform spacings h;. Pointwise superconvergent gradient error estimates are
presented for a class of gradient recovery methods that includes simple gradient averaging
at the vertices. These estimates apply, in particular, in the case of a sequence of meshes,
{M,} on ¥ which are locally uniform on a subdomain ¥; of ¥ as we describe below in §3.2.
They show that the recovered gradient error is O(h*/?) at points sufficiently interior to ¥;.
While this is local superconvergence resulting from local symmetry among the mesh vertices,
it is not the quadratic convergence that we observe in §4; it seems that the theory is too
pessimistic in its application to our computations.

3.2 Generating efficient meshes and identifying quadratic conver-
gence

We will demonstrate a simple class of meshes generated by Delaunay refinement that The
meshes to be used in our demonstrations are generated by Delaunay refinement, which is
a standard technique discussed in George and Borouchaki, [4]. The input to Delaunay
refinement is:

- a coarse Delaunay mesh on ¥,

11



- a distributed target size for triangles, sizeT ol(S). We will use the length of a longest
edge of T as its size measure, h(T') .

- a constant tolerance (lower bound) for the minimum angle of a triangle, angleT ol.

The result of a Delaunay refinement method is a CDT, M such that for every triangle, 7',
in M

a) h(T) ~ sizeT0l(Smiq), where Sy,;q is the midpoint of the longest edge of T,
b) the minimum angle of T is not less than angleTol.

Property b) of this description of the results is typically realizable for angleT ol up to 7 /6
radians = 30° degrees. Mesh generation methods that satisfy b) are often referred to as
‘quality” mesh generation methods. Quality Delaunay refinement methods have been de-
scribed by Rivara, Hitschfeld, and Simpson, in [15], by Ruppert [16] and by Shewchuk, [19]°.
support efficient computation and empirically exhibit locally quadratic convergence of the
portfolio values. We use the theory reviewed in the preceding subsections as guidance, but
this theory does not rigorously extend to the proposed meshes.

In §2.1 at (11), we noted several subregions in the underlying asset price region, ¥, which
had implications for mesh efficiency and computed solution accuracy. The subregion of ¥
for which V(”“Ct)(S, t) is expected to have significant second derivatives depends on ¢. Since
we want the simplicity of a static mesh, we will identify it with its widest extent, which
occurs at the issuing time of the option. Let ¥4 enclose this subregion, so that ¥ — ¥4 is
of type 11.a). Let ¥p be the type 11.b) zones in which accuracy is not a concern (i.e. low
probability of a price history). Then ¥; = ¥4 (X —Xp) is the subregion of ¥ in which small
mesh spacing is needed for accuracy generally, and mesh symmetry is needed for quadratic
convergence of grad®V(S,t). A mesh that is uniform in %, of triangle size h and appropriate
for numerically solving (4) in all of ¥ can be generated by Delaunay refinement using

sizeTol(x,y)(S) = h for Se€%, (16)
= H for Se¥-3%;
(17)

for H >> h. This approach can be extended to produce sequences of meshes {M,} that are
nested on X, by setting
sizeTol(z,y)(S) = h/2 for S €%, (18)
= H for Se¥-%;

and using M;_; as the initial mesh for refinement of M;. These meshes are nested in the
sense that if P, € M,;_1 N4, then P, € M;;,,n =0,1,2,.... From a theoretical view point,

5A URL for a freely distributed implementation by Shewchuk, named Triangle, is included with this
reference.
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the sequence of locally uniform, locally nested meshes just described are quasi-uniform as per
3.1 since they are produced by a quality mesh generation algorithm. We will demonstrate
that values and portfolios computed on ¥; will converge quadratically.

To empirically exhibit local quadratic convergence, we use long established ideas about
asymptotic error behaviour, e.g. Keller [9], page 78. We review this topic by returning to
the example (15) of centered differencing. Assuming that 9*W(5)/9S} is bounded, then the
Taylor’s expansion analysis of 9W (€20 /35, — §, ,W(S) can be extended to show

Erraw/asl(s, h) = owlerat) 195, — 51 aW(S) = o(S)h? + O(h?), (19)

where

H(S) =1/6 &P We=a(5)/553.

This form is familiar as the basis of extrapolation techniques for increasing accuracy or
estimating errors, cf. Morton and Mayers, §6.6 [13] or Keller, [9]. We will refer to the function
#(S) as the magnified error function®. If, in an interval 0 < i < h, the term denoted O(h?)
of (19) is indeed small relative to the principal error, ¢(S)h2, then Err®"/951(S h) is in the
asymptotic error region of h. For this range of values of h, the variation of Err®W/9%1 (S p)
with S is described by the magnified error function, ¢(.5) independent of h, and the size of
the error is scaled by h?%, to good approximation. Observe that for j = 0,1,2,...

Sy pjaiti W(S) = 81 paiW(S) = Err®1951(8 h/27) — Err®WI99 (g b /2741)
= GBI/ + O() (20)
= GS)BR /) + O(h?).
So, for h in the asymptotic error range,

OS) = A8 yaien W(S) = 811y2sW(S5))/(3h7) (21)

i.e. in the asymptotic error range the quantity on the right side of (21) is essentially inde-
pendent of A and j.

We can push this simple example further to explain our empirical tests presented in the
next section. Consider a horizontal line segment in the (S, S2) plane, R = {(S1, S2)]a < 51 <
b, Sy = constant}. An empirical test to indicate whether a value of h is in the asymptotic
error range for §; ,WW(S) for S € R would be to compute

¢0(5) = 4(d1,n2W(S) — 614 (S))/(317), (22)

and

¢B(S) = 16(81,n/aW(S) = 1,12V (8))/ (317). (23)
If pc(S) =~ ¢p(S) for S € R, then we would conclude that, locally in R

- h is in the asymptotic error range,

5This is the name introduced by Henrici, 1962, §2.2-6 [5]
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Plotting mesh and weighting function contours: Digital put
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Figure 3: Digital put option portfolio and mesh showing region ¥,

- 8 sW(S) converges quadratically to AW (5)/0S;,
- Err®WI9Si (b S) x ¢ (S)h'? for b < h.

Of course, these are empirical conclusions, not mathematical facts.

In §4, we apply these ideas to the weighted option value and portfolio errors, ETT(V)(S, t)
and Err(®) (S, t) of (9). Le. we hypothesize a magnified error function, 1»(V)(S, ) such that
for mesh sequence {M,} of (18),

Err¥)(8) = M8, 1) k2 + O(h?) for S € 3y, (24)

and similarly for Err(®)(S,t). We provide empirical evidence to support this hypothesis by
computing the analogues of (22) and (23) and observing that they are approximately the
same. Recently, Ma, Mao, and Zhou, [11], have validated error expansions like (24) for the
FEM and FVM. They consider variable coefficient elliptic pdes and families of piecewise uni-
form triangular meshes parameterized by a uniform refinement parameter, k. In particular,
quadratic error expansions are established for recovered gradients.

4 Demonstrations

In this section, we demonstrate the error behaviour for computing the valuation and port-
folio functions of a European call, and a digital put, on the maximum of two assets, using
the simple uniform core meshing strategy described in §3.2. The primary computational
difference between these two options is that the payoff function for the call option is continu-
ous, with discontinuities in its gradient, while the payoft for the digital put is discontinuous.
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Consequently, the hedging parameters, and the portfolio function, become unbounded as the
option expiry time is approached. For times prior to expiry, the portfolio function is math-
ematically well defined, which we compute. The general character of this portfolio is shown
in Figure 3 A. The fluctuations of this function make it a useful test for the computation of
hedging parameters, even if it is not a practical vehicle for risk reduction.

After describing some details of these two options, in §4.1, we demonstrate magnified
error functions for the errors in these option functions in the subdomain ¥; of uniform mesh
spacings described by (17). This is the evidence that, internal to ¥, we have quadratic
convergence of the computed valuation and portfolio functions, on mesh sequences, {M;}
generated as per §3.3. In §4.2, we use these magnified error functions to discuss the degree
of balance achieved between the weighted valuation errors and the hedging parameter errors
using this class of meshes.

The demonstrations impose two different payoffs for the same model of underlying as-
sets. The asset parameters for the Black-Scholes model (4) are o; = 0.2 for ¢ = 1,2; their
correlation coeficient is p = 0.5 and the risk free interest rate is r = 5 % = .05. The strike
price for each is $100 and ¥ is the square {0 < S; < 200 |¢ = 1,2}. The payoff for the call
option is piecewise linear V. (S) = Max (0,5; — K, Sy — K) and the discontinuous payoff
for the digital put is Vipue = —1 if max(5i,S2) < 100, = 0 otherwise.

The different payoffs for these two options lead to different subregions, 3 in which small
uniform triangles are used, as discussed in §3.2. The general character of the call option
valuation function is shown in Figure 1 B of §2. The regions of the (51, 52) plane in which
grad V 1is essentially constant are

grad V(S,t) =~ (0,0) for 0 < Sp << K, k=1,2
grad V(S,t) =~ (1,0) for §; >> K, S, < S ,and
grad V(S,t) =~ (0,1) for S, >> K, S; < S,.

¢

There are three relatively narrow ‘gradient transition’ zones separating these regions in which
grad V(S,t) varies significantly with S. We assume that the purpose of the computation
is pricing and portfolio management for histories of the underlying asset values that are
not highly improbable. Hence accuracy is also not required in the three extremes of the
transition zones; i.e. S — 0, S, near K; S, — 0, S near K; and S; — oo, 51 &~ 53 These
zones have dynamic width; at the contract expiry time they shrink to zero width and they
grow in size as t moves to earlier times. As mentioned above, we define the zones to have
their widest extent, which occurs at issuing time. So, for the call option, we identify the
subdomain of ¥ where small triangles are needed for accuracy, as

Y, = (85 <5 < 11550 < S, < 115) (25)
U(85 < Sy < 115;50 < S; < 115)
U([S1 — S| /v/2 < 22;85 < S < 130; 5, < 130).

A coarse version of the mesh for the call demonstration is shown in Figure 2 B, superimposed
on this mesh are the contours of the error weighting function, w(S) discussed further below.
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The payoft for the digital put of our second demonstration is discontinuous on the two
line segments 0 < 51 < K, S = Kand 0 < 53 < K, S; = K. So, as can be seen from Figure
3 A, this option has transition zones centered on these two line segments. Consequently, we
have defined ¥; as an L-shaped subregion

S =(33<8 <120;73< 5, <129)U(33<8,<129;73< 5, <129).  (26)

4.1 Estimating the magnified error functions and visualization

Our claim to quadratic convergence in 3; is based on the similarity of estimates for the
magnified error functions based on halving the mesh spacings in ;. The basic idea of this
comparison was discussed using an elementary example at (22) and (23). One estimate for a
magnified error function compares data computed using a uniform mesh on ¥; of spacing h
with data computed on a similar mesh with spacing /2. A comparison of two such estimates
can be made using three nested meshes with spacings h, h/2 and h/4. Consequently, the
data for the call and the digital put options are computed on three nested meshes using (18)
with a basic spacing parameter, h, of (16) set to a basic mesh spacing hy, a coarse spacing,
he = 2hy, and a fine spacing, hy = hy/2. We will also index the computed values and the
errors for each mesh by j = ¢, b, f for ‘coarse’, ‘basic’ and ‘fine’. E.g. V{/)(S) is the valuation
function computed on the fine mesh; P®)(S) is the portfolio computed on the basic mesh;
Err(V¥(S) is the valuation error on the basic mesh and Err(P¢)(S) is the portfolio error on
the coarse mesh. The mesh sizes are given in Table (1.

mesh index call digital put
T h, | no. of vertices || h, | no. of vertices
coarse 3.0 1959 4 1741
basic 1.5 7234 2 6844
fine .75 27363 1 26071

Table 1: Mesh Sizes

The coarse mesh for an option is also used for plotting the data surfaces in the figures for
that option. The data computed using a finer mesh is adequately represented visually using
the coarse mesh nodal values and this provides efficiency in data presentation. Consequently,
all data for each option appears plotted on the coarse mesh, although it may have been
computed using a finer mesh. E.g. Figure 3 A, shows the values of P® displayed on the
mesh with uniform spacing k. shown in Figure 3 B.

We are primarily concerned with the error behaviour in ¥;; the weighting function,
w(9), introduced in (9) is the mechanism for limiting our view of the errors over all of ¥ .
One choice of w(9) for this purpose could have been the characteristic function of ¥4, i.e.
w(S) =1for S € ¥ and w(S) = 0 otherwise. It seems to us more informative to define
w(S) to be proportional to the probability density for a price path visiting S if it started
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Figure 4: Call option valuation magnified error function estimates

near the double strike price (K, K'). Our choice of weighing function, then, is a two asset log
normal probability density function renormalized to have value 1 at the double strike price.

Details are given in Appendix B. A comparison of the contours of w(S) with ¥; for each
case 1s shown in Figures 2 B and 3 B .

The asymptotic error theory reviewed in §3.3 refers to a mesh sequence, {M;} for j =
0,1, ... where M, is characterized by a mesh spacing parameter, h;. The corresponding
sequence of valuation errors, {Err(V+)}, exhibits a strong form of quadratic convergence if
(24) holds, i.e. there is a magnified error function, 1»()(S), such that

ErrV)(8) = ()2 + O(hI).

If Err(V9)(S) is the weighted error, w(S)(V ) — V7) and hg is in its asymptotic range,
and h; = ho/2’ then (24) implies that the computable quantity

¥ w(S)(VY = VU(8))/(3h8) = ¢7(S) (27)

is approximately independent of j. Conversely, if the functions ;bgﬁ )(S) are essentially
independent of j, for 7 = 1,2,...,.J, it i1s strong empirical evidence for the asymptotic
behaviour (24). This observation applies also to the portfolio function.

To relate this theory to our demonstration, we identify hg ~ h., hy >~ hy and hy ~ hy
and we compute and display

$5(S) = 4w(S)(V® —V)/(3h2) (28)
bl (S) = dw(S)(VY = V) /(3R). (29)

17



Magnified Error in portfolio
coarse mesh

Magnified Error in portfolio
base mesh

27

=
Z77

\“V

AN 0.01 R :
AR < y A\
] | | SN N
\ . 0— Jk\w-,-uuﬂﬂﬁghm
VAN N8\
= -0.005 - A
-0.01—
-0.015
40
120 ! 100 120 !
s s
. P ., (Pb)
A . 77b€5t (S) B ' 771)657: (S>

Figure 5: Call option portfolio magnified error function estimates

They are presented in Figures 4A and B. The size and features of ng’c) and ;bésv;b) are
essentially the same, which is the support for our claim of the presence of a magnified error
function for Err(V)(S). Figure 5 compares ngt’c)(S) on the left with 1/)22’6)(5) on the right”.
Again, the similarity of the two estimates in ¥y provide strong evidence of the presence of a
magnified error function ¢(FP)(S). In both Figures 4 and 5, some irregular differences in the
distribution of error can be seen at the unstructured part of the mesh adjacent to ¥, The
fact that these irregularities are not consistent in the two surfaces is evidence against the
hypothesis of a magnified error function that extends outside ¥;.

The apparent presence of a magnified error function for V' (S,¢) in ¥; empirically implies
quadratic convergence of Err(V)(S) to zero for § € ;. This asymptotic behaviour of the
error can be anticipated as a minor strengthening of the prediction of the general theory of
convergence reviewed in §3.1.1 that Err(v’j)(S’) converges to zero quadratically on all of ¥
for a convergent sequence of quasi-uniform meshes, {M;}. This general convergence theory
predicts only linear convergence of Err™) to zero on ¥ for these general mesh sequences.
The more specific theory on meshes with localized symmetry properies and the use of gradient
recovery reviewed in §3.1.2 predicts superlinear convergence of Err(™7) in the interior of ¥;.
On this basis, the presence of a magnified error function for Err(f) at least in the interior
of ¥; could have been anticipated.

The errors for the digital put option exhibit similar behaviour. In Figures 6 A and B, we
show ;bgt’b) and 1/)£Z’b) for this option. @bg;c) and ;bgic) are essentially the same, respectively;

"The viewpoint in these figures is from deep in the first quadrant, i.e. from (Syjew, Sview) for large Syiew,
to show the surface features above the double strike price, which would be hidden if the view point were the
same as used for Figure 4.
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Figure 6: Put option magnified error function estimates
option | min(yy”) | max(ire,”) || min(ey”) | min(ve”) || [ oo/ Il loc
call -.0004 .0020 -.0035 .0151 7.5
digital put -.0024 0 -0152 .0160 6.667

Table 2: Extremes of magnified error functions

they are not displayed. The apparent presence of magnified error functions for the valuation
and portfolio on the digital put again empirically indicates quadratic convergence of the
weighted errors on ;.

The portfolio errors for the digital put near the boundary between the unstructured
mesh and ¥; shows an interesting regular behaviour, which is suppressed in Figure 6B by
the weighting function. It can be seen in Figure 7, which shows —(P)(§)—P®)(S)), i.e. the
unweighted, unscaled difference = (basic - fine) mesh portfolio values. This difference is an
estimate of the negative of the portfolio error on the basic mesh. Large spikes occur at the
truncated ends of the gradient transition zones for the put option discussed above, see (26)
for ;. The negative error estimate is displayed to simplify the orientation of the surface for
the viewer; 1.e. the spikes are upwards. These error spikes induce a sharp gradient in the
error surface in ¥; near its boundary. This appears to be a form of error boundary layer
near this part of the boundary of ¥;. We recall that the theory of §3.1.2 predicts quadratic
convergence of the recovered gradient values only at points sufficiently interior to ¥;. We
speculate that the error behaviour close to the spikes at the ends of the truncated transition
zones 1llustrates that, indeed, practical quadratic convergence does not necessarily extend in
Y1 uniformly to its boundary.

In Table 2, we list the extreme values of the magnified error functions, estimated using
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Figure 7: Difference between basic and fine portfolio values displayed on plotting mesh.
Note error behaviour at uniform core - unstructured mesh boundary.

the basic mesh, for the two options demonstrated. The table introduces the maximum
norm, ||t||e = maxsex [¢(5)]. If the errors follow the asymptotic behaviour of (24), then
[|ErrP)|| s = [|0P)]|oh? and we can expect that for a given mesh of the class with uniform
mesh spacing A in ¥

1B |oo /[|Err¥ |loo 2 19 |oo/ 119 oo. (30)

Note that the right hand side of (30) is independent of A; 50 751 = ||| /|| |0 could be
viewed as a ratio quantifying the degree of balance between these errors that can be obtained
using this type of mesh. As the table shows, 4 &~ 7 for these two options. From the point
of view of the size of the computations required to reach a prescribed error tolerance, errTol,
this ratio implies that if a particular mesh of this type produces ||Err(Y)|| of size errTol,
then a mesh that is about 7 times as big is required to ensure || Err(P)||, & errTol, regardless
of the size of errTol. This follows because the maximum weighted error is proportional to
h? and the size of the mesh is proportional to h=2.

5 Summary and Future Directions

We have proposed a simple technique for the design of efficient meshes to support the nu-
merical evaluation in the two factor domain ¥ of the Black-Scholes valuation function and
risk free portfolio function for two factor options. The computations can be viewed as occur-
ring in two stages; the computation of a pwlinear approximation to the valuation function,
and the computation of a pair of pwlinear approximate deltas using gradient recovery (§2).
The error in the computed portfolio function has contributions from both the error in the
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valuation function and in the deltas, (§2.2). It provides a natural summary of the errors in
the two stages of the computation.

The general qualitative premises for the efficiency of unstructured meshing for these
computations are that

a) accuracy is not required uniformly throughout ¥,  and,

b) within the region where accuracy is required, there are zones where attaining accuracy
requires small mesh spacing. We have designated the subdomain comprising these
zones by .

The meshing technique presented covers ¥; with a square grid of vertices spaced h apart
horizontally, and a general Delaunay unstructured mesh on ¥ — 3.

What is the basis for claiming that this technique is efficient? The common measure
of mesh efficiency is the size of the mesh required to meet a given error requirement. The
theoretical arguments that are reviewed in §3 are based on the asymptotic behaviour of
the valuation and portfolio function errors, and the mesh sizes, for a convergent sequence of
meshes {M;}. Appendix A presents an argument to support the claim that any method such
that the errors converge to zero quadratically will be more efficient than any method with
linear convergence®, for stringent enough error requirements. While quadratic convergence
of the valuation function errors is generally assured for arbitrary sequences {M,}, only
linear convergence of the portfolio function errors is predicted. The theory does predict that
superlinear convergence for the portfolio function approximations can be obtained for the
interior of subdomains, like Y1, which have uniformly distributed vertices, or have similarly
symmetric placements of vertices. The significant restrictions on meshes that seem to be
required in order to realize quadratic convergence of the approximate portfolio values reflects
the general observation that computing approximate derivatives is typically more difficult
that computing function approximations in numerical computation.

In §4, we have demonstrated the error behaviour of the valuation and portfolio functions
for two types of options on the maximum of two assets, a call and a digital put computed
using the meshes of §4. In particular, the computations demonstrate quadratic convergence
of the weighted error for both computed functions on the interior of 3; for each option.

These errors show a strong asymptotic form of quadratic convergence in ;. In this form,
the pointwise error, Err(S), follows a relatively smooth distribution, ¢ (5), referred to as
the magnified error functio, and the size of the error is scaled by h?, i.e. Err(S) = ¢(S5)h%
§4 provides empirical evidence for the presence of magnified error functions, ("), for the
valuation error and ©(¥) for the portfolio error. This is the basis for our claim for quadratic
convergence of both these errors in ¥, and for the efficiency of this meshing tactic. Of course,
it takes a larger mesh to achieve the same level of accuracy in the portfolio function than is
required for the valuation function alone. The estimated sizes of the (") and () indicate
that the mesh would need to be about 7 times larger, at least for the options that were
examined. Note that this multiple is independent of the accuracy sought.

8or superlinear convergence with rate 8 < 1
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5.1 Further Directions

Within the scope of unstructured meshes and piecewise polynomial approximation, our ap-
proach to efficient computation of the quantities described above has been a conservative one,
based on a single tool, i.e. local quadratic convergence of the hedging parameters. Meshing
techniques are highly developed, however and we now comment on how further efficiencies
could be sought.

The paper describes construction of static meshes. However, we know that the small
mesh spacing zones for option valuations are dynamic, even for the simplest vanilla options.
Dynamic meshing for computing the value and portfolio functions for one factor options have
been studied by Huen, [7].

Two more aggressive strategies for mesh efficiency, static or dynamic, are the use of
anisotropic meshing and adaptive techniques. Both of these strategies are well established
for efficient computation of function values, but less well established for efficiency in the
computation of recovered gradient values. Our demonstration has been limited to isotropic
meshes, i.e. meshes for which the triangles are ‘well shaped’ so that they have essentially one
length scale. As Figures 2B and 3B show, all the triangles in the meshes that we generate
have the same shape, 1.e. they are isosceles right angle triangles. This class of meshes is
discussed further in Simpson, [21]. This triangle shape is efficient if the error associated with
a mesh edge does not vary significantly with the direction of the edge. For the option data
calculated here, the errors associated with an edge depend strongly on the direction of the
edge in some parts of the small mesh spacing zones. In these parts of the mesh, it would be
more efficient to use mesh spacings that vary with the directions of error dependence, i.e.
anisotropic meshes, see Simpson, [20], George and Borouchaki, [4].

In unstructured meshing research, efficiency has been, and continues to be, sought from
adaptive meshing, a large topic that we do not review. See Verfurth, [23] and Morin et al,
[12]. For computing solutions of pdes, these techniques usually sense solution features near
each mesh vertex and use the flexibility of unstructured meshes to add or remove vertices in
the vicinity of the vertex under examination. In the case that the driving solution feature is a
measure of local solution error, the method has been extensively studied and demonstrated.
The adaptive meshes provide quadratic convergence of the function errors, quite generally. It
is less well developed for controlling gradient error. As we have noted, the goal of quadratic
convergence of the gradient error places structural as well as size requirements on the mesh.
This suggests that the flexibility to make local mesh modifications to control errors is reduced.
Buss and Simpson [2] have shown that there are difficulties in devising refinement techniques
that are both local and respect structural properties required in the mesh.

A final comment: we have assumed the use of piecewise linear approximation for the
computations under discussion. At least for the relatively smooth surfaces of many two-
factor options, piecewise quadratic approximations, or higher orders, can be expected to be
more efficient.
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Appendix A: Efficiency of meshes
with gradient quadratic convergence of the portfolio errors

Consider two computational schemes for approximately evaluating the portfolio function,
each having its own class of meshes. For one of them, the errors for a convergent sequence
of meshes converge quadratically in some measure, i.e. ||[Err@|| = O(h?). The other has
superlinear convergence of fractional order 0 < 8 < 1, i.e. ||Err0)|| = O(h;"”g). Intuitively,
it is probably convincing that the quadratically convergent method will be more efficient that
the superlinear convergent one; in this appendix we provide some details for an argument
based on asymptotic error behaviour to support this claim. Our discussion relies heavily on
standard assumptions of asymptotic discretization error behaviour.

We compare two computational schemes using meshes generated as described in §3 and
gradient recovery techniques as described in §3.1.2. We will designate the computational
schemes by A and B. For each scheme, we consider a convergent quasi-uniform sequence of
meshes generated by quality mesh generation as described in §3, {M A} for A and {M By}
for B. By virtue of the quality mesh generation techniques,

N(MA) = O(h(MAR)™2); N(MBy) = O(h(MB)™2). (31)

We extend the error definitions of §2.2; let Err(®) (M Ay) = maxseara, (|Err®) (S, 1)]), for
the max described at (14), and similarly for Err(Y)(M By). For a summary of the portfolio
function error on mesh M Ay, let

Err®)(MAg) = max(|ErrY)(8,8)] + |STEr2)(S,1))).

The only explicit difference between schemes A and B is that scheme B is assumed to result
in quadratic gradient superconvergence i.e.

Err®)(MBy,) = O(h(MBy)?). (32)

Scheme A is assumed to result in gradient superconvergence with rate 3 < 1 and this rate

is sharp , i.e. Err(®)(MAL) = O(h(MA)'*? | and
ETT(A)(MAk)/h(MAk)Z is unbounded as k& — oo. (33)

We now argue that the theory predicts scheme B to be more efficient than scheme A.
(12) implies that

ErrM(MAL) = O(h(MAR)?) and ErrY)(MBy) = O(h(M By)?).

From (33), we conclude that the gradient error, Err(®) (M Ay), eventually dominates Err(®) (M Ay)
as k — oo. In fact, combining (31) with (33), we have

N(MAk)/Err(P)(MAk) is unbounded as k — oo. (34)
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However, from (32), we conclude that the gradient error, Err(®) (M By), does not dominate
Err(P)(MBy) as k — oo and we can expect

Err P (MBy) < Bre")(MBy) + max(S|)(Brr® (MBy)) = O(h(MB.)?)

and consequently

N(MBk)/Err(P)(MBk) is bounded as & — oo. (35)

We continue to assume that the portfolio errors follow the monotone behaviour of the
asymptotic error estimates. Let us pick a small error tolerance, pTol, for the portfolio error,
and let k4(pTol) and kp(pTol) be mesh sequence indices such that

Err(P)(MAkA(pTOl)) ~ pTol and Err(P)(MBkB(pTol)) ~ pTol.

Since we have effectively normalized the error size, scheme B will be more efficient than

scheme A if N(M By, (pror)) < N(M Ay, (yrony). From (34) and (35), we can conclude that

N(M Ay, proty) BErr™) (M By proty) - N(MAg, po71))
N(MBkB(pTol))ETT(P) (MAkA(pTol)) N(MBkB(pTol))

(36)

is unbounded as pTol — 0. Consequently, even allowing for all the unknown constants of
this argument, scheme B is more efficient than scheme A for small enough pT'ol by virtue of
the quadratic gradient recovery of scheme B.
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Appendix B: The two asset lognormal probability density function

The weighting function, w(5), used in the presentation of error data in §4 is derived from
the two asset lognormal probability density function. This probability density function can
be expressed using the stochastic differential equation parameters introduced at (3). The
following description is patterned on Wilmott, [24], pages 159, and 171. Consider a two asset
random process following (3) that starts at (51,52) = (K, K) at forward time ¢, < 0, which
is some time prior to the issuing time of our options, at ts4,+ = 0. The probability density
function for this process in S space is

G(S1, 8a,t) = exp(—z) /(010227 (t — 1,)51.55(1 — pi,))

where
z = [Ojl, 052]2_1 l o ]
(&%)
= af+a — pigoray/(1—pi,)
and

ap = (log(K/Sk) + (p — 02/2)(t —t,)) for k=1,2

T 1 P12 . Z]_1 _ 1 _p172/(1 - p%,Z)
P2 1 ’ _PLZ/(l - P%,z) 1

Our weighting function is ¢(S1, Sa,0) normalized to 1 at (K, K), i.e.
w(S) = qb(Sh 52, 0)/@([(, IX’, 0)

A selection of five contours of w(S) at levels, .9, .5, .1, .01, .001, are shown in Figures 2B and
3b , indicating how this function weights the errors. The numerical values of the parameters
for w(S) have been chosen for each option to give a somewhat broader density function that
would result from the parameters given in §4 for the option calculations. They are listed in
the following table.

opfor k=1,2 | pp for k=1,2 | p12 | —t5 (days)
call 0.3 .04 .25 3
digital put 0.7 .04 25 9
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