
HYDROZOA: DYNAMIC HYBRID-PARALLEL DNN TRAINING ON SERVERLESS
CONTAINERS

Runsheng Benson Guo 1 Victor Guo 1 Antonio Kim 1 Joshua Hildred 1 Khuzaima Daudjee 1

ABSTRACT
Deep Neural Networks (DNNs) are often trained in parallel on a cluster of virtual machines (VMs) so as to
reduce training time. However, this requires explicit cluster management, which is cumbersome and often results
in costly overprovisioning of resources. Training DNNs on serverless compute is an attractive alternative that
is receiving growing interest. In a serverless environment, users do not need to handle cluster management
and can scale compute resources at a fine-grained level while paying for resources only when actively used.
Despite these potential benefits, existing serverless systems for DNN training are ineffective because they are
limited to CPU-based training and bottlenecked by expensive distributed communication. We present Hydrozoa, a
system that trains DNNs on serverless containers with a hybrid-parallel architecture that flexibly combines data-
and model-parallelism. Hydrozoa supports GPU-based training and leverages hybrid-parallelism and serverless
resource scaling to achieve up to 155.5× and 5.4× higher throughput-per-dollar compared to existing serverless
and VM-based training systems. Hydrozoa also allows users to implement dynamic worker-scaling policies during
training. We show that dynamic worker scaling improves statistical training efficiency and reduces training costs.

1 INTRODUCTION

Deep Neural Networks (DNNs) are used to solve problems
in many different domains including image classification
(He et al., 2016; Simonyan & Zisserman, 2015a), natural
language processing (Collobert & Weston, 2008; Vaswani
et al., 2017), self-driving cars (Luo et al., 2020; Yang et al.,
2020), and query optimization (Krishnan et al., 2018; Mar-
cus et al., 2019; Guo & Daudjee, 2020). State-of-the-art
DNNs have progressively increased in both size and com-
plexity, requiring more computational resources and time
to train. Consequently, distributed training schemes such as
data-parallelism and model-parallelism are popularly em-
ployed. In data-parallelism, workers train the model in
parallel across partitions of the data, whereas in model-
parallelism, the model is partitioned across workers (Huang
et al., 2019). The effectiveness of each method depends on
the model and the compute resources available. For exam-
ple, (pipelined) model-parallelism can be effective for reduc-
ing communication overhead over data-parallelism when
training large DNN models. However, model-parallelism
is difficult to scale since it relies on an effective model
partition.

1Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada. Correspondence to: Runsheng Benson Guo
<r9guo@uwaterloo.ca>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

While distributed training can significantly reduce training
time (Goyal et al., 2017), running such a task remains a chal-
lenge for many users. Distributed training is traditionally
designed to run on a cluster of machines. Typically, virtual
machines (VMs) from infrastructure-as-a-service (IaaS) are
used for convenience over physical machines. However,
this VM-based approach still requires configuring and man-
aging a cluster in addition to deploying the training jobs.
Cluster management is a time-consuming task, especially
if resources need to be adjusted for different jobs. Often,
clusters are suboptimally allocated and underutilized (De-
limitrou & Kozyrakis, 2014), resulting in a waste of money
on unused resources.

In the serverless computing paradigm, customers run pro-
gram logic on cloud-managed servers. In contrast to VM-
based approaches, users do not need to deal with the com-
plexity of deploying, managing, and scaling their own
servers. Code is automatically deployed and cluster re-
sources are de-provisioned when execution finishes. De-
velopers can scale serverless applications elastically while
allocating resources at a fine-grained level to match resource
requirements. Moreover, serverless services bill for only the
time spent running program logic, which is cost-efficient
compared to reserving a cluster that could be idle or under-
utilized for long periods of time.

Several systems have been developed for DNN training that
take advantage of the elasticity, pricing model, and sim-
plified management of serverless function platforms like

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

AWS Lambda (lam, 2021), Google Cloud Functions (clo,
2021), and Azure Functions (azu, 2021). These systems
train DNNs with data-parallelism, and demonstrate bene-
fits in cost and training time over VM-based approaches
using CPU-based training (Carreira et al., 2019; Feng et al.,
2018; Wang et al., 2019). Serverless functions, however,
are designed to be lightweight with limited computational
power, memory and storage, and hence cannot be provi-
sioned with GPUs. In addition, serverless functions cannot
directly communicate with each other relying instead on an
external storage channel for indirect communication, which
incurs higher latencies. These limitations are problematic
for DNN training, which is greatly accelerated by GPU-
based computing and relies on frequent communication
between workers. Consequently, state-of-the-art serverless
systems for DNN training are still an order of magnitude
slower than GPU-based training on VMs (Jiang et al., 2021).

In light of these concerns, we designed Hydrozoa, a server-
less DNN training system that addresses the shortcomings of
both VM-based and serverless systems. Hydrozoa achieves
this by being the first system to combine serverless compute,
hybrid-parallelism, and dynamic worker scaling:

(i) Serverless Containers: Training tasks in Hydrozoa
are packaged as containers instead of functions. Con-
tainers are executed serverlessly on Azure Container
Instances (aci, 2021). Like serverless functions, server-
less containers can be scaled at a fine-grained level but
importantly, they can be provisioned with significantly
more compute resources including GPUs. Serverless
containers can communicate directly with each other,
thereby reducing communication costs.

(ii) Hybrid-Parallel Training: Hydrozoa supports data-
parallel, model-parallel and hybrid-parallel training
that flexibly combines data- and model-parallelism
(Narayanan et al., 2019; Park et al., 2020). Hydro-
zoa employs a novel planner to optimize the degree
of data- and model-parallelism to reap the benefits of
both approaches. The planner includes a partitioning
algorithm that automatically partitions a DNN model
across workers for efficient model-parallel training.

(iii) Dynamic Worker Scaling: Hydrozoa leverages the
elasticity of serverless compute to dynamically adjust
the number of workers during training. Users can spec-
ify policies in Hydrozoa to control worker scaling be-
haviour to achieve high parallelism without sacrificing
model convergence properties.

These three orthogonal components have limitations when
used in isolation but when combined, effectively comple-
ment each other. Distributed communication between server-
less resources can bottleneck training but this is mitigated in

Hydrozoa with hybrid-parallelism, which reduces commu-
nication during training. Existing hybrid-parallel systems
(Narayanan et al., 2019; Park et al., 2020) deployed on
VM clusters are prone to resource over-provisioning, since
tasks have specialized functionality with different resource
requirements while VMs come in coarse-grained sizes. Hy-
drozoa avoids this shortcoming by right-sizing granularly-
scalable serverless resources for each task. Dynamic worker
scaling (Devarakonda et al., 2017; McCandlish et al., 2018)
has been explored as a means to improve statistical train-
ing efficiency. However, existing methods are inefficient
because they are deployed on fixed-size clusters that are
over-provisioned to accommodate the maximum number of
workers needed during training. Hydrozoa benefits from
additional cost savings by dynamically scaling serverless
resources in accordance with the number of workers that are
actively training.

However, existing implementations of the aforementioned
components cannot be trivially combined. For example,
existing distributed training logic in MXNet and Pytorch as-
sume the cluster size is fixed, and cannot handle workers on
serverless compute dynamically joining and leaving during
training. Likewise, existing hybrid-parallel implementations
are built on top of these training libraries and are incompati-
ble with serverless compute. Hydrozoa implements custom
distributed training logic on top of MXNet that seamlessly
integrates all three components.

Our experiments demonstrate that Hydrozoa delivers sig-
nificant performance gains over both existing serverless
approaches and industrial-strength VM-based training by
Azure ML and SageMaker. Hydrozoa trains models with up
to 38.1× higher throughput than existing serverless systems
and 2.7× higher than VM-based systems while incurring a
fraction of the cost and handling all cluster management.

2 BACKGROUND

This section describes the common approaches for paral-
lelizing DNN training and the effect of batch size on training.
We also present an overview of the benefits and challenges
of DNN training in different cloud environments.

2.1 Data-Parallelism & Effect of Batch Size

Data-parallelism distributes training by placing a copy of
the DNN on each worker, which computes model updates
on its own subset of the training data. Workers synchronize
model updates after every iteration of training, using either
parameter servers (Li et al., 2014) or allreduce (Sergeev &
Balso, 2018).

The global batch size of inputs processed during every iter-
ation scales linearly with the number of workers. A larger
batch size enables training with more workers in parallel

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

and hence leads to shorter training times to process the same
number of input examples. However, it has been shown
that larger batch sizes result in statistically inefficient train-
ing (Goyal et al., 2017). A larger batch size requires more
epochs of training to reach a given accuracy and converges
to a lower final accuracy. Adjusting the batch size during
training can preserve the statistical efficiency of small batch
sizes while achieving the training speed of large batch sizes
(Devarakonda et al., 2017; Mai et al., 2020; McCandlish
et al., 2018). For example, AdaBatch (Devarakonda et al.,
2017) starts at a small batch size and gradually increases
the batch size on a fixed schedule. KungFu (Mai et al.,
2020) enables users to implement such strategies by dy-
namically adjusting the number of workers to maintain the
desired batch size. However, it assumes a fixed size cluster
of machines that must be over-provisioned to accommodate
the maximum number of workers required during training.
Hydrozoa avoids paying for idle resources by dynamically
scaling compute to match real-time resource requirements.

2.2 Model-Parallelism

In model-parallelism, the model is partitioned into shards.
Each worker is assigned a shard and handles the compu-
tation for that shard. Model-parallelism requires prudent
partitioning of the DNN to ensure that the partition splits the
computational work evenly while minimizing cross-worker
communication. While there are an exponential number of
partitions to consider and selecting an effective partition
is challenging, model-parallelism generally requires much
less data to be sent across workers than in data-parallelism
(Narayanan et al., 2019).

2.3 DNN Training on Clusters

Data- and model-parallelism are effective for speeding up
DNN training on a cluster of machines (Goyal et al., 2017;
Narayanan et al., 2019). However, using clusters comes
with challenges in management and code deployment. Users
must decide what type of resources and how many to pro-
vision. Moreover, cluster resources need to be scaled to
accommodate changes in training workload. This requires
significant effort and is ameliorated in practice by spend-
ing extra money to over-provision resources so as to satisfy
peak usage. Drivers and libraries need to be installed and
machines need to be configured to communicate with each
other prior to deploying code. These challenges detract
deep learning practitioners from the task at hand and waste
money on underutilized resources.

2.4 DNN Training on Serverless Functions

Training in a serverless environment confers several bene-
fits. Serverless functions abstract away the complexity of
managing machines and deploying code. Functions can be

GPUs Direct
Comunication

Fine-Grained
Scaling

Pay
Per-Use

Management
Free

VM (IaaS) D D
VM (MLaaS) D D D D
Serverless Functions D D D
Serverless Containers D D D D D

Table 1. Platform comparison for DNN training.

scaled without explicit cluster management. Resources can
be adjusted individually per-function and at a fine-grained
level to fit the requirements of the workload at hand. More-
over, the customer pays for compute resources only when
they are actively being used.

Existing Serverless Approaches There have been several
systems developed for DNN training using serverless func-
tions (e.g. (Feng et al., 2018; Carreira et al., 2019)). All
of these proposals distribute training with data-parallelism.
Because serverless functions cannot communicate with each
other directly, existing approaches pass data indirectly using
an external storage service like AWS S3 (Jiang et al., 2021).
Since there is an extra hop required for serverless com-
munication, communication remains a bottleneck for these
approaches. Furthermore, serverless function platforms im-
pose strict resource limits on memory, CPU, storage, and
cannot use GPUs. Jiang et al. reports that existing serverless
systems are unable to compete with VM-based training with
GPUs in both performance and cost.

2.5 DNN Training on MLaaS

ML-as-a-service (MLaaS) provides a Cloud suite of
industrial-strength tools for building machine learning
pipelines. In particular, Azure ML (aml, 2021) and AWS
SageMaker (sm, 2021) offer services for DNN training on
a cloud-managed cluster of VMs. Users benefit from the
convenience of serverless computing while also enjoying
the performance of VM-based training. However, users are
still susceptible to over-provisioning resources on MLaaS.
Resources cannot be scaled dynamically, and must be pro-
visioned in coarse-grained increments of a VM size, which
come in limited configurations and are unlikely to fit the
specific resource requirements of the workload at hand. For
example, the AWS p2.xlarge VM offers 1 K80 GPU and 61
GB RAM. The next size up is p2.8xlarge, with 8 K80 GPUs
and 488 GB RAM. It is highly unlikely either of these VMs
match the resource requirements of a training job, resulting
in users paying for extra resources they do not need.

3 HYDROZOA DESIGN

Hydrozoa trains DNN models with hybrid-parallelism and
dynamic worker scaling on top of serverless containers.
With this architecture, Hydrozoa is able to avoid the tradi-
tional pitfalls of serverless DNN training, including ineffi-

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

cient communication and limited compute resources. At the
same time, it leverages the benefits of serverless computing:
fine-grained scalability, zero cluster management overhead,
and a pay-per-use billing model. The rest of this section
describes the main components of Hydrozoa’s design.

3.1 Serverless Containers

Containers run applications in a virtual environment, pack-
aged with their libraries and dependencies. Azure Container
Instances (ACI) (aci, 2021) is a platform that allows users to
execute containers in a serverless fashion, much like server-
less functions. A user submits a container along with a set
of resource requests, and ACI will provision the requested
resources and manage the execution of the container on
those resources. Users are charged based on the GPU, CPU
and memory resources used for the execution of the con-
tainer on a per second basis. Hence, ACI enables code to
be executed serverlessly with as much ease, scalability and
cost-efficiency as serverless functions. Moreover, ACI does
not have the same stringent start-up requirements as server-
less functions, and can be configured with both GPUs and a
public IP for communication. We refer to this approach as
serverless containers. Hydrozoa is built on top of serverless
containers in ACI. We next describe why this design choice
is particularly suitable for DNN training.

GPU Compute DNN training is much faster on GPUs
compared to CPUs since DNN computations are highly par-
allelizable, making it a highly suitable workload for exploit-
ing the high compute throughput and memory bandwidth
in GPUs. Serverless containers in ACI can be provisioned
with GPUs.

Direct Communication Serverless function platforms do
not support direct communication between functions. Func-
tions must rely on external storage systems such as S3 to
indirectly exchange information, which incurs significant
latency. This is problematic for distributed DNN training,
which requires frequent communication between workers.
This is not an issue in ACI, since containers can communi-
cate with each other directly through public IP addresses.

Fine-Grained Scaling In ACI, containers can be provi-
sioned resources at a fine-grained level. Memory can be
configured in GB increments; GPUs and vCPUs can be
scaled independently. Hydrozoa right-sizes resource alloca-
tions to fit the specific compute requirements of each job,
saving costs by avoiding resource over-provisioning.

Pay-Per-Use ACI charges for resources only while they
are in use, and on a per-second basis. On the other hand,
VMs reserved on IaaS are billed regardless of whether or
not they are actively being used, and often on a per-hour

Figure 1. Hybrid-Parallelism in Hydrozoa

basis. The pay-per-use billing model provides yet another
avenue in which costs can be cut.

Management Free Training DNNs on IaaS requires pro-
visioning and configuring VMs, launching the distributed
tasks, and deprovisioning the VMs when done. This process
is time-consuming and prone to human error, especially
when launching multiple training jobs or scaling resources
on-the-fly. Hydrozoa automates this process on ACI.

Table 1 summarizes the availability of these features across
different platforms. Serverless containers is the only plat-
form that supports all of the features.

3.2 Hybrid-Parallelism

Hydrozoa trains DNNs with hybrid-parallelism – a combina-
tion of data- and model-parallelism. Figure 1 illustrates this
training architecture on a model partitioned into 3 shards.
Workers 1-1, 1-2, and 1-3 are each responsible for training
one model shard. They form a worker group, training one
copy of the model with model-parallelism. Data-parallelism
is then added on top of model-parallelism by instantiating
multiple such worker groups. Workers training the same
shard across different worker groups synchronize model
updates with each other using allreduce (Sergeev & Balso,
2018). The parallelism strategy in Figure 1 corresponds
to 2× data-parallelism applied on top of 3-shard model-
parallelism. We denote this as 2×3 for short and use this
notation in the rest of this paper. Since model-parallelism is
a special case of hybrid-parallelism where there is no data-
parallelism, and vice-versa, Hydrozoa is also able to train
models with pure data-parallelism or model-parallelism. Hy-
drozoa’s planner optimizes the parallelism strategy for each
training job. Section 3.4 provides details on the planner.

Model Partitioning To perform model-parallel training,
Hydrozoa first partitions the layers of a model M into shards
p1, p2, . . . , pk such that evaluating the model is equivalent
to evaluating the composition of the shards. In other words,
M = pk ◦ . . . ◦ p2 ◦ p1. The model partition can have a
significant impact on the speed of model-parallel training.
However, finding an effective partition manually is difficult
since there are an exponential number of partitions to con-

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

sider. Moreover, the performance of a partition is dependent
on a variety of factors including hardware, networking, and
model architecture. As part of Hydrozoa’s planner, we de-
veloped a partitioning algorithm that produces partitions
optimized to run on a target environment. Details of this
algorithm are described in Section 3.3.

Pipelined Model-Parallelism When model-parallelism is
implemented naively, sequential dependencies in forward
and backward propagation permit only one worker to per-
form computation at a time. Instead, we use the pipeline-
parallelism approach that splits a minibatch of inputs into
(smaller) microbatches (Huang et al., 2019; Narayanan et al.,
2019), then pipeline microbatches across the workers. We
further optimize the pipeline with workers prefetching acti-
vation and gradient inputs asynchronously during computa-
tion.

Figure 2 demonstrates pipelining for a model partitioned
into 3 shards and a minibatch of data split into 3 micro-
batches. The pipeline starts on worker 1 with forward prop-
agation on shard 1 with microbatch 1. The results can be
passed to worker 2, which begins forward propagation on
shard 2 with microbatch 1. At the same time, worker 1
can begin forward propagation on microbatch 2. Similarly,
during backward propagation, worker 2 can begin backward
propagation with microbatch 1 while worker 3 performs
backward propagation with microbatch 2.

With the prefetching optimization, workers receive activa-
tion and gradient values as soon as they become available.
With a well-balanced model partition, forward and backward
propagation can start on subsequent microbatches without
communication delay. In Figure 2, the gradients for micro-
batch 2 are transferred from worker 3 to worker 2 while
worker 2 is doing backward propagation on microbatch 1.
Consequently, worker 2 is able to start backward propaga-
tion on microbatch 2 immediately after microbatch 1.

3.3 Partitioning Algorithm

Hydrozoa’s partitioning algorithm aims to partition the
model into shards p1, p2, . . . , pk in a way that minimizes
the total training time of a minibatch of inputs. To mini-
mize training time, the partitioning algorithm ensures that
computation is evenly distributed across each worker while
minimizing the data communicated between workers. Parti-
tions that evenly distribute the computation enable efficient
microbatch pipelining, and minimizing the amount of data
exchanged avoids communication bottlenecks.

Profiling The partitioning algorithm first profiles informa-
tion about the model’s per-layer computation time, output
sizes, and network speed. Let the profiled forward and
backward propagation times for layer i be fi and bi. Then,

for any shard pl that spans layers x through y, the forward
and backward propagation time of pl can be estimated as

fpl
=

y∑
i=x

fi and bpl
=

y∑
i=x

bi. The time cpi
to transfer

activations and gradients between shard pi−1 and shard pi is
estimated to be api−1

/D, where api−1
is the activation size

of the last layer in shard pi−1 and D is network bandwidth.

Algorithm The partitioning algorithm aims to produce the
partition that minimizes the runtime of processing a mini-
batch of inputs. This runtime is modeled with the equation
below, which incorporates communication time, computa-
tion time, and pipeline stalls. tk and r1 model the time
between consecutive batches of forward and backward prop-
agation.

k∑
i=1

(fpi
+ bpi

) + 2

k∑
i=2

cpi
+ (M − 1)(tk + r1).

The derivation of this model is described in Appendix A.1.
We use dynamic programming to find a partition that min-
imizes this runtime model. Details of this are provided in
Appendix A.2. Our dynamic programming algorithm re-
turns the overall best partition found in addition to the best
partition found for each possible partition size. This allows
the planner to consider partitions of different sizes when
choosing a hybrid-parallelism strategy.

Theorem 1 Hydrozoa’s partitioning algorithm can pro-
duce a partition with runtime arbitrarily close to the optimal
solution. Proof: In Appendix A.3.

Selecting Size and Number of Microbatches The opti-
mal partition depends on the microbatch size and the num-
ber of microbatches. Hydrozoa performs an exponential
search to select these hyperparameters, since they can have
a big impact on performance, but are tedious to tune. The
search generates partitions for microbatch sizes in increas-
ing powers of 2, until they no longer fit in GPU memory.
Pipelining is more efficient as the number of microbatches
increases. Thus, for each microbatch size, we use binary
search to maximize the number of microbatches within the
GPU memory limits. The partitioning algorithm then re-
turns the best partition produced across all the sizes and
number of microbatches considered.

3.4 Planner

Hydrozoa’s planner considers the exponential search space
of hybrid-parallel training strategies and selects one that
is optimized for the training workload, VM type, and de-
sired number of VMs to use for training. The planner first
uses the partitioning algorithm to produce the most efficient
partitions for each partition size. For each such partition,

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

Figure 2. Pipelined Model-Parallelism in Hydrozoa Figure 3. Hydrozoa Architecture

the planner considers the hybrid-parallelism strategies us-
ing that partition for model-parallelism, and maximizes the
level of data-parallelism while not exceeding the desired
VMs. The planner uses a model for hybrid-parallel runtime
to select the strategy with the lowest estimated runtime.

Hybrid-Parallelism Runtime Model When processing
a minibatch with hybrid-parallelism, Hydrozoa first runs
model-parallelism within each worker group and then
synchronizes weights across worker groups through data-
parallelism. Thus, Hydrozoa’s model for hybrid-parallelism
runtime combines the runtime model for model-parallelism
described earlier, and a runtime model for data-parallelism.

Suppose we were training a model with parallelism-strategy
A×B (data-parallelism of A and model-parallelism of B).
Worker wij corresponds to the worker on the ith worker
group processing the jth partition. Moreover, let D be the
network bandwidth, |pk| be the size of partition pk in bytes,
and α, β be model parameters.

We use the runtime model from the partitioning algorithm
to compute the model-parallelism runtime of wij as T (M)

ij .

We use the following equation to model data-parallelism
(implemented in Hydrozoa with ring allreduce) runtime:

T
(D)
ij = (B − 1)(

|pj |
B ·D

+ α
|pj |
B

+ β)

The term |pj |
B·D models the data transfer time for each of the

2(B − 1) rounds in allreduce. α |pj |
B + β models any other

overhead that occurs during every round of communication,
such as serialization and deserialization. The planner learns
α, β through linear regression after collecting some runtime
statistics on dummy data.

Thus, the total runtime of wij is then

Tij = T
(M)
ij + T

(D)
ij

Then the entire round of hybrid-parallelism ends when all
workers finish, which is modeled as

T = max
i,j

Tij

Algorithm 1. Parallelism Strategy Selection
1: procedure SELECTHYBRIDSTRATEGY(clusterSize)
2: bestStrategyTime← inf
3: for 1 ≤ mp ≤ clusterSize do
4: dp← ⌊clusterSize/mp⌋
5: runtime← runtimeModel(dp,mp)
6: if runtime < bestStrategyT ime then
7: bestStrategyT ime← runtime
8: bestStrategy ← (dp,mp)

return bestStrategy

Selecting Parallelism Strategy Algorithm 1 shows how
the planner selects a hybrid-parallelism strategy for a desired
cluster size based on the runtime model. It considers all
possible combinations of data- and model-parallelism that
fit within the cluster size and returns the strategy with the
lowest estimated runtime.

3.5 Dynamic Worker Scaling

Hydrozoa allows users to specify policies for adjusting the
number of workers at each epoch boundary. Hydrozoa
adjusts serverless resources dynamically in response to deci-
sions to scale up or down workers, and coordinates workers
such that they are aware of changes in the training topology.
Users can use worker scaling in Hydrozoa to implement
strategies that improve statistical training efficiency (De-
varakonda et al., 2017; McCandlish et al., 2018). Dynamic
worker scaling would be difficult to implement otherwise,
since the user would need to manually scale the cluster,
and popular ML frameworks such as MXNet and PyTorch
assume the number of workers are fixed throughout training.

3.6 API

Hydrozoa exposes an API for data loading, planning, hybrid-
parallel training, and worker scaling. It was used to train
image-classification and language models in Section 5.

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

4 HYDROZOA IMPLEMENTATION

Hydrozoa’s implementation consists of a (1) worker task, (2)
planner, and (3) coordinator. Worker tasks execute training
logic for a model shard and run on containers in ACI. The
planner and coordinator also run as separate ACI containers.
The coordinator manages the worker tasks throughout the
training process. Training metadata and results are stored
on S3. Figure 3 illustrates Hydrozoa’s architecture.

4.1 Worker

Each worker is part of a worker group and assigned a model
shard. The worker performs model-parallelism within its
worker group and data-parallelism with the corresponding
shard in other worker groups. The machine learning library
MXNet is used to implement the training process.

Communication Workers exchange activations and gradi-
ents with each other through ZeroMQ (zer, 2021), a high-
speed messaging library. We choose to use ZeroMQ since
it is lightweight, heavily optimized, and offers convenient
abstractions for implementing complex distributed commu-
nication patterns. Each worker is connected to the coordina-
tor for querying network topology information and neigh-
bouring workers for exchanging data during hybrid-parallel
training.

Pipelined Model-Parallelism with Prefetching Activa-
tions for microbatches are cached during forward propaga-
tion so that they can be reused in backward propagation.
Separate threads on each worker handle the transfer of gra-
dient and activation values asynchronously with forward
and backward propagation. Likewise, a separate thread is
responsible for prefetching training data.

4.2 Planner

The planner runs on ACI so that profiled computational and
network statistics are consistent with the actual training en-
vironment. After determining the model partitioning and
hybrid-parallel strategy selection, the planner collects mem-
ory utilization statistics for each shard, which is used by the
coordinator for resource allocation decisions. In practice,
the planner runs within a few minutes in all of our experi-
ments, which is an insignificant amount of time compared
to the overall training time of the models.

4.3 Coordinator

The Coordinator orchestrates the training job, running as
a container on minimal resources in ACI. It is responsible
for starting worker tasks with the appropriate configuration
based on model partition information and training hyperpa-
rameters. The coordinator right-sizes the memory allocation

Task Model Parameters FLOPs / Input

Image Classification

AlexNet 57M 0.7G
ResNet-34 21.5M 3.7G
ResNet-152 58.5M 11.3G
VGG19 143.7M 19.6G

Question Answering BERT-12 108.9M 65.3G

Table 2. A comparison of the models used for evaluation.

vCPU Memory (GB) K80 V100

CPU Container $0.04050 $0.00445 N/A N/A
GPU Container $0.03165 $0.00425 $0.36 $2.8548

Table 3. Cost per hour for ACI resources used by Hydrozoa.

for workers based on data profiled from the planner. Work-
ers share their IP and port information with the coordinator
that forwards this information to other workers that need it.

Dynamic Worker Scaling When dynamic worker scal-
ing is enabled, the coordinator is responsible for adjusting
provisioned resources as the number of workers change.
GPU containers on ACI can take several minutes to start
up, so the coordinator will pre-start workers to ensure they
are ready when actually needed. The coordinator collects
information about worker startup time and training speeds
to anticipate when to pre-start workers. The coordinator
also informs existing workers about new workers so that
they are aware of changes in network topology for allreduce
and are assigned new subsets of the dataset.

5 PERFORMANCE EVALUATION

This section evaluates the performance of Hydrozoa on
DNN training for image classification and question answer-
ing tasks. In Section 5.2, we demonstrate why Hydrozoa is
superior to existing systems built on serverless functions. In
Section 5.3, we show that Hydrozoa is able to improve on
VM-based training throughput while costing significantly
less through hybrid-parallelism and fine-grained resource al-
location. Finally, in Section 5.4, we explore the performance
benefits achievable through dynamic worker scaling.

5.1 Experimental Setup

Models: For evaluation, we train 5 popularly used models
for image classification and question answering. We use
AlexNet (Krizhevsky et al., 2012), ResNet-34, Resnet-152
(He et al., 2016), VGG19 (Simonyan & Zisserman, 2015b),
and BERT-12 (Devlin et al., 2019), featuring varying sizes
and computational requirements shown in Table 2.

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

1 2 4 8 16
0

20

40

60

80

Workers

T
hr

ou
gh

pu
t

Hydrozoa-Lambda Hydrozoa-CPU Hydrozoa-CPU

1 2 4 8 16
0

1

2

3

4

5
·105

Workers

T
hr

ou
gh

pu
t/

D
ol

la
r

Hydrozoa-Lambda Hydrozoa-CPU Hydrozoa-GPU

Figure 4. Hydrozoa ablation study on ResNet-34.

Datasets: We use the CIFAR-10 (Krizhevsky, 2012)
dataset for image classification and SQuAD (Rajpurkar
et al., 2016) for question answering. CIFAR-10 images
are scaled to standard size 3× 224× 224 colour images.

Batch Sizes & Evaluation Methodology: For data-
parallel training, we use the largest per-GPU minibatch
that fits within memory to optimize utilization of the GPUs.
For hybrid-parallel training, Hydrozoa selects the micro-
batch size and number of microbatches processed per worker
group. These numbers are reported in Table 5.

The main evaluation metrics we use for system comparison
are throughput and throughput-per-dollar. Throughput (T)
is measured as the number of inputs processed per second.
We define throughput-per-dollar as the number of inputs
the system can process per dollar spent, i.e., T/C, where C
is the per-second cost of running the system. Throughput
is used to compare the raw speed of each system, while
throughput-per-dollar enables comparing performance nor-
malized by cost. Results for system comparisons are aver-
aged over at least 3 independent experimental runs. Costs
are computed based on current Cloud pricing in the US East
region.

5.2 Comparison to Training on Serverless Functions

In Section 2.4, we identified the main limitations of training
DNNs on serverless functions to be (1) indirect communica-
tion, and (2) the inability to train on GPUs. We demonstrate
that Hydrozoa breaks away from these limitations to im-
prove performance significantly using these benchmarks:

(i) Hydrozoa-Lambda (H-L): A re-implementation of
Hydrozoa using serverless functions. H-L is built
on Lambda, passes data through S3, and is represen-
tative of state-of-the-art serverless training systems
(Jiang et al., 2021). Each worker is configured to have
the maximum compute of 6 vCPUS and 10GB RAM,
which cannot be scaled independently on Lambda.

(ii) Hydrozoa-CPU (H-C): Hydrozoa, but limited to train-
ing on CPUs. We configure each worker to have 4

1 2 4 8 16
0

200

400

600

Workers

T
hr

ou
gh

pu
t

Hydrozoa-Lambda Hydrozoa-CPU Hydrozoa-GPU

1 2 4 8 16
0

1

2

3

·106

Workers

T
hr

ou
gh

pu
t/

D
ol

la
r

Hydrozoa-Lambda Hydrozoa-CPU Hydrozoa-GPU

Figure 5. Hydrozoa ablation study on AlexNet.

vCPUs that is the maximum for containers without
GPUs. This runs on serverless containers, and can
benefit from direct communication between workers.

(iii) Hydrozoa-GPU (H-G): Hydrozoa, using a single
worker with a K80 GPU and 4 vCPUs.

We compare data-parallelism throughput and throughput-
per-dollar for H-L and H-C as the number of workers are
scaled from 1 to 16, on ResNet-34 in Figure 4, and AlexNet
in Figure 5. We also plot the performance of H-G with a
single worker as a baseline to compare against. The cost of
ACI resources used by Hydrozoa are given in Table 3. Note
that ACI charges more for vCPU and memory resources on
CPU-only containers. For Lambda, each worker provisioned
with 10 GB of RAM costs $0.60 per hour.

Hydrozoa-Lambda vs Hydrozoa-CPU As the number
of workers increases, the throughput gap between H-L and
H-C widens since H-L scales poorly. With 16 workers, the
throughput of H-C is 1.34× higher than H-L for ResNet-34
(Fig. 4). Poorer scaling can be attributed to differences in
communication. Messages in H-L are exchanged indirectly
through S3, requiring higher latency than direct commu-
nication. This inefficiency is amplified as the number of
workers increases, since communication during allreduce
increases with the number of workers. This is also echoed
in throughput-per-dollar. While the throughput-per-dollar
increases for H-L with an increase in workers, it stays rel-
atively constant for H-C due to near-linear scaling. On
AlexNet (Fig. 5), the throughput scaling of H-L is even
worse. This is not surprising since AlexNet is relatively
large in size compared to computation – it is almost 3 times
as large as ResNet-34 in size but requires 80% fewer FLOPs
to train. With 16 workers, the throughput of H-C is 4.6×
higher than that of H-L on AlexNet. Cheaper resources on
Azure ML over Lambda yield even higher throughput-per-
dollar improvements of 4.1× and 11.5× for these models.

Hydrozoa-CPU vs Hydrozoa-GPU Comparing H-C to
H-G demonstrates the benefit of using GPUs over CPUs.
H-G with a single K80 GPU delivers 1.8× and 2.5× higher

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

throughput than H-C with 16 workers for ResNet-34 and
AlexNet, respectively. This performance also comes at
significantly lower cost – compared to H-C with 16 workers,
the throughput-per-dollar of H-G is 9.8× and 13.5× higher.
From both a performance and cost perspective, GPUs should
be the choice over CPUs to accelerate DNN training.

These experiments show why Hydrozoa is superior to state-
of-the-art DNN training systems on serverless functions.
Hydrozoa is able to scale better with an increasing number
of workers due to more efficient communication. Moreover,
by training on GPUs instead of CPUs, Hydrozoa is able to
further boost throughput while reducing costs. As a result,
H-G is able to train ResNet-34 and AlexNet with throughput-
per-dollar that is 40.4× and 155.5× higher, respectively,
than H-L.

5.3 Comparison to Training on VMs

We compare Hydrozoa to VM-based training in Azure ML
and AWS SageMaker:

(i) Azure ML: We run distributed training in PyTorch
with Horovod (Sergeev & Balso, 2018), that, like Hy-
drozoa, employs data-parallelism with allreduce.1

(ii) AWS SageMaker: We also train with PyTorch on
SageMaker in order to use their optimized distributed
training API, which supports data-parallelism, model-
parallelism, and also hybrid-parallelism.

Azure ML and SageMaker are MLaaS services on Azure and
AWS, so the deployment and execution of the distributed
training jobs are managed by their respective cloud service
provider. There should be no performance difference be-
tween training on Azure ML/SageMaker and running the
equivalent training logic on a self-managed cluster of VMs
provisioned from IaaS. In fact, training performance is ex-
pected to be better on SageMaker because we are able to
take advantage of their custom distributed training libraries
that are industrial-strength and optimized for AWS’ network
infrastructure. Experiments are run on clusters with K80
and V100 GPUs. Details on the clusters used for evaluation
are provided in Appendix B.1.

Unlike Hydrozoa, Azure ML and SageMaker do not select
a parallelism strategy for the user. We tried all parallelism
strategies for these systems and compared the results ob-
tained from their best-performing configuration to Hydro-
zoa. The results for K80 clusters are summarized in Table 5.
Results for V100 clusters are provided in Appendix B.2. Hy-
drozoa achieves better throughput and throughput-per-dollar
through a combination of fine-grained resource allocation
and hybrid-parallelism. We break down the contribution of

1Azure ML does not support MXNet.

1 2 4 8 16
0

200

400

600

Workers

T
hr

ou
gh

pu
t

Hydrozoa Azure ML SageMaker

1 2 4 8 16
0

1

2

3

4

·105

Workers

T
hr

ou
gh

pu
t/

D
ol

la
r

Hydrozoa Azure ML SageMaker

Figure 6. Comparison of data-parallelism performance on Hydro-
zoa, Azure ML and SageMaker for ResNet-34.

each of these factors next.

Fine-Grained Resource Allocation ResNet-34 is a rela-
tively small model with low computational requirements, so
data-parallelism is more effective than model- and hybrid-
parallelism for all systems. Figure 6 compares the through-
put and throughput-per-dollar as the number of workers
used for data-parallelism are scaled. Hydrozoa’s throughput
scales similarly to the VM-based benchmarks, since they
all use the same parallelism strategy. However, Hydrozoa
attains this performance at much lower cost due to its fine-
grained resource allocation. For example, the p2.xlarge VM
in SageMaker is the smallest sized VM containing a K80
GPU, yet it comes with 61 GB RAM. Since training occurs
on the GPU, only a fraction of that memory is used. Hydro-
zoa uses profiling data to allocate no more resources than
needed – a K80, 4 VCPUs, and 6 GB of RAM per worker.
Consequently, each worker in Hydrozoa costs $0.512/hour
compared to more than double the price tag of $1.125/hour
for each SageMaker VM. With these cost savings, Hydro-
zoa achieves 1.81× and 2.26× higher throughput-per-dollar
than Azure ML and SageMaker, respectively.

Hybrid-Parallelism: ResNet-152, VGG19, and BERT-12
are much larger models than ResNet-34, causing communi-
cation to be a bottleneck in data-parallel training. Hydrozoa
mitigates this issue by using hybrid-parallelism to greatly
reduce the communication overhead while balancing com-
putation evenly across workers. Azure ML supports only
data-parallelism. On the other hand, SageMaker supports
hybrid-parallelism but it was ineffective for training any of
the models other than ResNet-152.

Figure 7 compares the throughput of Hydrozoa to Sage-
Maker for model- and hybrid-parallelism on BERT-12. The
left graph compares the two systems as the partition size
for model-parallelism increases. Hydrozoa’s partitioning
algorithm is able to produce partitions that scale throughput
effectively up to 4 shards. 8 shards improves the throughput
marginally over 4. SageMaker’s model-parallelism cannot

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

Model Hydrozoa
Strategy

Microbatches
×Microbatch Size

Compared
System

Compared
Strategy

Throughput
Speedup

Cost
Reduction

Throughput / Dollar
Improvement

ResNet-34 DP - 16×1 1×256 Azure ML DP - 16×1 1.03× 1.76× 1.81×
SageMaker DP - 16×1 1.03× 2.19× 2.26×

ResNet-152 HP - 4×4 16×4 Azure ML DP - 16×1 1.03× 1.70× 1.75×
SageMaker HP - 8×2 1.05× 2.15× 2.25×

VGG19 HP - 8×2 70×2 Azure ML DP - 16×1 1.98× 1.63× 3.23×
SageMaker DP - 16×1 1.70× 2.04× 3.47×

BERT-12 HP - 4×4 13×4 Azure ML DP - 16×1 2.05× 1.64× 3.36×
SageMaker DP - 16×1 2.66× 2.05× 5.43×

Table 4. Summary of results comparing Hydrozoa to VM-based training on Azure ML and AWS SageMaker on K80 clusters. Strategy
refers to the data × model parallelism employed. DP and HP correspond to data- and hybrid-parallelism, respectively.

1 2 4 8
0

5

10

15

MP Partition Size

T
hr

ou
gh

pu
t

Hydrozoa SageMaker

16×1 8×2 4×4 2×8
0

10

20

30

Parallelism Strategy

T
hr

ou
gh

pu
t

Hydrozoa SageMaker

Figure 7. Comparison of throughput for BERT-12 on Hydrozoa
and SageMaker for different parallelism strategies.

scale well to even 2 shards. In fact, all of the configura-
tions involving model-parallelism on SageMaker performed
worse than the trivial partition of size 1, suggestive of their
partitioning algorithm being unable to find an effective par-
tition. Since hybrid-parallelism applies data-parallelism on
top of model-parallelism, it is not surprising that hybrid-
parallelism in SageMaker also performs worse. The graph
on the right in Figure 7 compares the throughput on the
different hybrid-parallel configurations that fit on 16 GPUs.
Hydrozoa achieves the highest throughput with 4× data-
parallelism applied on top of 4 partition model-parallelism.
Using less than 4× data-parallelism is inefficient due to the
relative communication overhead incurred from allreduce.
On the contrary, with more than 4 shards, the benefit from
model-parallelism is marginal, and so further scaling with
data-parallelism is more effective. In SageMaker, using pure
data-parallelism (16×1) was the fastest configuration.

Thus, Hydrozoa is able to achieve 1.70× and 2.66× higher
throughput than SageMaker for training VGG19 and BERT-
12, respectively. Hydrozoa provides an even larger improve-
ment in throughput-per-dollar at 3.47× and 5.43×, because
it factors in the cost savings from fine-grained resource
allocation. Compared to Azure ML, Hydrozoa improves
throughput-per-dollar by 3.23× and 3.36×. Hydrozoa’s cost
reduction from Azure ML is still significant, yet slightly less
than AWS since Azure VMs are cheaper.

5.4 Dynamic Worker Scaling

In this section we show how dynamic worker scaling in
Hydrozoa achieves performance gains and cost savings. We
implemented an adaptation of AdaBatch (Devarakonda et al.,
2017) into Hydrozoa in which the equivalent batch size
scaling is achieved by increasing the number of workers and
not the per-worker minibatch size.

We train ResNet-34 on CIFAR-10 with the Adam Optimizer,
an initial learning rate of 10−3 and a minibatch size of 256
per worker. Our baselines are data-parallelism with 1 (DP-1)
and 16 workers (DP-16). All experiments are on Hydro-
zoa so that the performance results are attributed solely to
worker scaling and not affected by system differences. We
decay the learning rate every 5 epochs by a factor of 0.375
to avoid stagnation during training. We compare this to
DP-(1-16), which starts with 1 worker, and gradually scales
to 16 workers. Instead of decaying the learning rate by a
factor of 0.375, we perform the equivalent of doubling the
batch size and decaying the learning rate by a factor of 0.75
(Smith et al., 2018). We double the batch size by doubling
the number of workers, which doubles the parallelism.

The training curves are shown in Figure 8. While DP-16
maximizes training speed, the statistical efficiency is poor.
It reaches a lower accuracy for the same number of epochs
processed compared to DP-1 and converges to a lower ac-
curacy of 71% vs 85%. On the other hand, DP-1 achieves
good statistical efficiency but is slow because there is only
one worker training. DP-(1-16) achieves the best of both ap-
proaches. By scaling the number of workers, it can maintain
the same statistical efficiency as DP-1 while reaching the
training speed of DP-16. Thus, DP-(1-16) converges to an
accuracy of 85% in about 45% less time than DP-1. More-
over, since DP-(1-16) is more statistically efficient than DP-
16, it converges to an accuracy of 71% in fewer epochs than
DP-16 and at 96% lower cost. While other scaling strate-
gies can be implemented, this experiment demonstrates that
dynamic worker scaling in Hydrozoa can bring significant
benefits in training efficiency and cost.

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

0 1 2 3 4

20

40

60

80

Time (Hours)

A
cc

ur
ac

y
(%

)

Hydrozoa DP-1
Hydrozoa DP-16

Hydrozoa DP-(1-16)

0.00 5.00 10.00 15.00 20.00 25.00

20

40

60

80

Cost (Dollars)

A
cc

ur
ac

y
(%

)

Hydrozoa DP-1
Hydrozoa DP-16

Hydrozoa DP-(1-16)

0 5 10 15 20 25 30

20

40

60

80

Epochs

A
cc

ur
ac

y
(%

)

Hydrozoa DP-1
Hydrozoa DP-16

Hydrozoa DP-(1-16)

Figure 8. Training curves for Hydrozoa with dynamic worker scaling versus fixing the number of workers.

6 RELATED WORK

Serverless Computing Serverless computing has been
applied in many areas, including IoT (Cheng et al., 2019),
video processing (Ao et al., 2018), query execution (Per-
ron et al., 2020), and machine learning. Multiple systems
have been proposed for training DNN models on server-
less functions with data-parallelism. In Siren (Wang et al.,
2019), workers use S3 as a parameter server. (Feng et al.,
2018) use multiple layers of parameter servers to reduce
the data transfer time. (Carreira et al., 2019) reduces inter-
worker communication latency by using a parameter server
deployed on an EC2 cluster. (Jiang et al., 2021) compare the
performance of serverless functions versus IaaS for a variety
of ML tasks. They conclude that serverless functions are
only effective for workloads requiring limited communica-
tion. This is generally not true for training DNNs, which can
be large in size and require many rounds of communication
until convergence. Hydrozoa is the first serverless system
for DNN training that demonstrates performance competi-
tive with GPU-based training on VMs for large DNNs.

Distributed DNN Training Data-parallelism is supported
by most machine learning frameworks, including MXNet,
PyTorch, and TensorFlow. Like Hydrozoa, GPipe (Huang
et al., 2019) uses a synchronized pipeline-parallelism
scheme, but details of its partitioning algorithm are not
disclosed. PipeDream (Narayanan et al., 2019), PipeDream-
2BW (Narayanan et al., 2021) and PipeMare (Yang et al.,
2019) propose architectures for asynchronous pipeline-
parallelism. Pipedream’s partitioning algorithm is optimized
for asynchronous training and would be difficult to retrofit
to Hydrozoa’s architecture. PipeDream and HetPipe (Park
et al., 2020) both support variants of hybrid-parallelism,
however they are susceptible to resource over-provisioning
because unlike Hydrozoa, they cannot right-size resource
allocations.

Dynamic Batch Scaling Proposals exist for gradually
scaling to larger batch sizes during DNN training to im-
prove training throughput while maintaining good model
convergence properties (Devarakonda et al., 2017; Yin et al.,

2017; Lee et al., 2019; McCandlish et al., 2018). However,
most approaches scale the batch size without increasing
the amount of resources used for training, limiting the par-
allelization possible on a larger batch size. KungFu (Mai
et al., 2020) supports scaling the amount of workers during
training to extract more performance benefit from larger
batch sizes. However, it assumes there are free resources
available to deploy new workers. Hydrozoa also supports
worker scaling but dynamically adjusts allocated resources
so users do not pay for idle compute.

7 CONCLUSION

We presented Hydrozoa, a serverless system for training
DNNs. Hydrozoa overcomes existing limitations of server-
less DNN training with a novel architecture that combines
serverless containers with hybrid-parallel training and sup-
ports dynamic worker scaling. Hydrozoa attains higher
throughput at a lower cost, achieving throughput-per-dollar
improvements of up to 5.4× over existing VM-based train-
ing and 155.5× over serverless approaches while relieving
the user from the burden of managing machine clusters.

8 ACKNOWLEDGMENTS

This project was supported by funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC), Ontario Graduate Scholarship (OGS), and WAII
Microsoft Azure Credits. We thank Kevin Li, Jerry Xie, and
Andy Wang for their technical contributions during their
undergraduate research assistantships. We also thank our
anonymous reviewers for their valuable feedback.

REFERENCES

Azure Container Instances, 2021. https:
//azure.microsoft.com/en-us/services/
container-instances/.

Azure Machine Learning, 2021. https:
//azure.microsoft.com/en-ca/services/
machine-learning/.

https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-ca/services/machine-learning/
https://azure.microsoft.com/en-ca/services/machine-learning/
https://azure.microsoft.com/en-ca/services/machine-learning/

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

Azure Functions, 2021. https://azure.microsoft.
com/en-us/services/functions.

Cloud Functions, 2021. https://cloud.google.
com/functions.

AWS Lambda, 2021. https://aws.amazon.com/
lambda.

Amazon SageMaker, 2021. https://aws.amazon.
com/sagemaker/.

ZeroMQ, 2021. https://zeromq.org/.

Ao, L., Izhikevich, L., Voelker, G. M., and Porter, G.
Sprocket: A serverless video processing framework. In
Proceedings of the ACM Symposium on Cloud Com-
puting, SoCC 2018, Carlsbad, CA, USA, October 11-
13, 2018, pp. 263–274. ACM, 2018. doi: 10.1145/
3267809.3267815. URL https://doi.org/10.
1145/3267809.3267815.

Carreira, J., Fonseca, P., Tumanov, A., Zhang, A., and Katz,
R. H. Cirrus: a serverless framework for end-to-end ML
workflows. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA,
November 20-23, 2019, pp. 13–24. ACM, 2019. doi: 10.
1145/3357223.3362711. URL https://doi.org/
10.1145/3357223.3362711.

Cheng, B., Fürst, J., Solmaz, G., and Sanada, T. Fog func-
tion: Serverless fog computing for data intensive iot ser-
vices. In 2019 IEEE World Congress on Services (IEEE
SERVICES 2019), Milan, Italy, July 2019.

Collobert, R. and Weston, J. A unified architecture
for natural language processing: deep neural networks
with multitask learning. In Machine Learning, Pro-
ceedings of the Twenty-Fifth International Conference
(ICML 2008), Helsinki, Finland, June 5-9, 2008, vol-
ume 307 of ACM International Conference Proceed-
ing Series, pp. 160–167. ACM, 2008. doi: 10.1145/
1390156.1390177. URL https://doi.org/10.
1145/1390156.1390177.

Delimitrou, C. and Kozyrakis, C. Quasar: Resource-
efficient and qos-aware cluster management. SIGPLAN
Not., 49(4):127–144, February 2014. ISSN 0362-1340.
doi: 10.1145/2644865.2541941. URL https://doi.
org/10.1145/2644865.2541941.

Devarakonda, A., Naumov, M., and Garland, M. Adabatch:
Adaptive batch sizes for training deep neural networks.
CoRR, abs/1712.02029, 2017. URL http://arxiv.
org/abs/1712.02029.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pp. 4171–4186,
Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

Feng, L., Kudva, P., Da Silva, D., and Hu, J. Exploring
serverless computing for neural network training. In 2018
IEEE 11th International Conference on Cloud Computing
(CLOUD), pp. 334–341, 2018.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch SGD: training ima-
genet in 1 hour. CoRR, abs/1706.02677, 2017. URL
http://arxiv.org/abs/1706.02677.

Guo, R. B. and Daudjee, K. Research challenges in
deep reinforcement learning-based join query optimiza-
tion. In Proceedings of the Third International Work-
shop on Exploiting Artificial Intelligence Techniques
for Data Management, aiDM@SIGMOD 2020, Port-
land, Oregon, USA, June 19, 2020, pp. 3:1–3:6. ACM,
2020. doi: 10.1145/3401071.3401657. URL https:
//doi.org/10.1145/3401071.3401657.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/
10.1109/CVPR.2016.90.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M. X., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen, Z.
Gpipe: Efficient training of giant neural networks using
pipeline parallelism. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pp. 103–
112, 2019.

Jiang, J., Gan, S., Liu, Y., Wang, F., Alonso, G., Klimovic,
A., Singla, A., Wu, W., and Zhang, C. Towards de-
mystifying serverless machine learning training. CoRR,
abs/2105.07806, 2021. URL https://arxiv.org/
abs/2105.07806.

Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J. M., and
Stoica, I. Learning to optimize join queries with deep
reinforcement learning. CoRR, abs/1808.03196, 2018.
URL http://arxiv.org/abs/1808.03196.

https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://cloud.google.com/functions
https://cloud.google.com/functions
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://zeromq.org/
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/2644865.2541941
https://doi.org/10.1145/2644865.2541941
http://arxiv.org/abs/1712.02029
http://arxiv.org/abs/1712.02029
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1706.02677
https://doi.org/10.1145/3401071.3401657
https://doi.org/10.1145/3401071.3401657
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2105.07806
https://arxiv.org/abs/2105.07806
http://arxiv.org/abs/1808.03196

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

Krizhevsky, A. Learning multiple layers of features from
tiny images. University of Toronto, 05 2012.

Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet
classification with deep convolutional neural networks.
Neural Information Processing Systems, 25, 01 2012. doi:
10.1145/3065386.

Lee, S., Kang, Q., Madireddy, S., Balaprakash, P.,
Agrawal, A., Choudhary, A. N., Archibald, R., and
Liao, W. Improving scalability of parallel CNN train-
ing by adjusting mini-batch size at run-time. In Baru,
C., Huan, J., Khan, L., Hu, X., Ak, R., Tian, Y.,
Barga, R. S., Zaniolo, C., Lee, K., and Ye, Y. F.
(eds.), 2019 IEEE International Conference on Big
Data (Big Data), Los Angeles, CA, USA, December
9-12, 2019, pp. 830–839. IEEE, 2019. doi: 10.1109/
BigData47090.2019.9006550. URL https://doi.
org/10.1109/BigData47090.2019.9006550.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation, OSDI’14,
pp. 583–598, USA, 2014. USENIX Association. ISBN
9781931971164.

Luo, W., Yang, B., and Urtasun, R. Fast and furious:
Real time end-to-end 3d detection, tracking and mo-
tion forecasting with a single convolutional net. CoRR,
abs/2012.12395, 2020. URL https://arxiv.org/
abs/2012.12395.

Mai, L., Li, G., Wagenländer, M., Fertakis, K., Bra-
bete, A., and Pietzuch, P. R. Kungfu: Making train-
ing in distributed machine learning adaptive. In 14th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November
4-6, 2020, pp. 937–954. USENIX Association, 2020.
URL https://www.usenix.org/conference/
osdi20/presentation/mai.

Marcus, R. C., Negi, P., Mao, H., Zhang, C., Alizadeh,
M., Kraska, T., Papaemmanouil, O., and Tatbul, N.
Neo: A learned query optimizer. Proc. VLDB En-
dow., 12(11):1705–1718, 2019. doi: 10.14778/3342263.
3342644. URL http://www.vldb.org/pvldb/
vol12/p1705-marcus.pdf.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training. CoRR,
abs/1812.06162, 2018. URL http://arxiv.org/
abs/1812.06162.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and

Zaharia, M. Pipedream: Generalized pipeline paral-
lelism for dnn training. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP
’19, pp. 1–15, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. ISBN 9781450368735.
doi: 10.1145/3341301.3359646. URL https://doi.
org/10.1145/3341301.3359646.

Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and Za-
haria, M. Memory-efficient pipeline-parallel dnn training.
In 2021 International Conference on Machine Learning
(ICML 2021), July 2021.

Park, J. H., Yun, G., Yi, C. M., Nguyen, N. T., Lee, S.,
Choi, J., Noh, S. H., and ri Choi, Y. Hetpipe: En-
abling large DNN training on (whimpy) heterogeneous
GPU clusters through integration of pipelined model
parallelism and data parallelism. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20), pp. 307–
321. USENIX Association, July 2020. ISBN 978-1-
939133-14-4. URL https://www.usenix.org/
conference/atc20/presentation/park.

Perron, M., Fernandez, R. C., DeWitt, D. J., and Mad-
den, S. Starling: A scalable query engine on cloud
functions. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Con-
ference 2020, online conference [Portland, OR, USA],
June 14-19, 2020, pp. 131–141. ACM, 2020. doi: 10.
1145/3318464.3380609. URL https://doi.org/
10.1145/3318464.3380609.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD:
100,000+ questions for machine comprehension of text.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 2383–
2392, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1264.
URL https://aclanthology.org/D16-1264.

Sergeev, A. and Balso, M. D. Horovod: fast and
easy distributed deep learning in tensorflow. CoRR,
abs/1802.05799, 2018. URL http://arxiv.org/
abs/1802.05799.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015a. URL http://arxiv.org/abs/1409.
1556.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,

https://doi.org/10.1109/BigData47090.2019.9006550
https://doi.org/10.1109/BigData47090.2019.9006550
https://arxiv.org/abs/2012.12395
https://arxiv.org/abs/2012.12395
https://www.usenix.org/conference/osdi20/presentation/mai
https://www.usenix.org/conference/osdi20/presentation/mai
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
http://www.vldb.org/pvldb/vol12/p1705-marcus.pdf
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://www.usenix.org/conference/atc20/presentation/park
https://www.usenix.org/conference/atc20/presentation/park
https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/3318464.3380609
https://aclanthology.org/D16-1264
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015b. URL http://arxiv.org/abs/1409.
1556.

Smith, S. L., Kindermans, P., Ying, C., and Le, Q. V. Don’t
decay the learning rate, increase the batch size. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?
id=B1Yy1BxCZ.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008,
2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.

Wang, H., Niu, D., and Li, B. Distributed machine
learning with a serverless architecture. In 2019 IEEE
Conference on Computer Communications, INFOCOM
2019, Paris, France, April 29 - May 2, 2019, pp. 1288–
1296. IEEE, 2019. doi: 10.1109/INFOCOM.2019.
8737391. URL https://doi.org/10.1109/
INFOCOM.2019.8737391.

Yang, B., Zhang, J., Li, J., Ré, C., Aberger, C. R., and Sa,
C. D. Pipemare: Asynchronous pipeline parallel DNN
training. CoRR, abs/1910.05124, 2019. URL http:
//arxiv.org/abs/1910.05124.

Yang, B., Guo, R., Liang, M., Casas, S., and Urtasun,
R. Radarnet: Exploiting radar for robust perception of
dynamic objects. In Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XVIII, volume 12363 of Lecture
Notes in Computer Science, pp. 496–512. Springer, 2020.
doi: 10.1007/978-3-030-58523-5\ 29. URL https://
doi.org/10.1007/978-3-030-58523-5_29.

Yin, P., Luo, P., and Nakamura, T. Small batch or large
batch?: Gaussian walk with rebound can teach. In Pro-
ceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Halifax,
NS, Canada, August 13 - 17, 2017, pp. 1275–1284. ACM,
2017. doi: 10.1145/3097983.3098147. URL https:
//doi.org/10.1145/3097983.3098147.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://doi.org/10.1109/INFOCOM.2019.8737391
https://doi.org/10.1109/INFOCOM.2019.8737391
http://arxiv.org/abs/1910.05124
http://arxiv.org/abs/1910.05124
https://doi.org/10.1007/978-3-030-58523-5_29
https://doi.org/10.1007/978-3-030-58523-5_29
https://doi.org/10.1145/3097983.3098147
https://doi.org/10.1145/3097983.3098147

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

A SUPPLEMENTARY MATERIAL FOR
PARTITIONING ALGORITHM

A.1 Model-Parallelism Runtime Model

In this section the runtime model for model-parallelism that
is used by the partitioning algorithm is derived.

Suppose there are k workers for shards p1, p2, ..., pk. The
forward propagation of a minibatch finishes when worker k
finishes forward propagation.

It can be seen from Figure 2 that worker k starts forward

propagation at time
k−1∑
i=1

fpi
+

k∑
i=2

cpi
. In this figure, notice

that in worker 2 there can be a slight delay between the
forward propagation of microbatches. This delay occurs
whenever a worker needs to wait for the activations from a
previous worker. In fact, the time elapsed between the start
of two consecutive forward microbatches in worker 2 equals
the forward time of a microbatch in worker 1. This can
be generalized. Denote the time elapsed between two con-
secutive forward microbatches in worker i as ti (as labeled
in Figure 2). In general, ti = max(max

1≤j≤i
fpj

, max
2≤j≤i

cpj
) –

which is equivalent to the maximum of forward propagation
and communication times encountered up to the ith shard.
If the number of microbatches is M , it follows that worker
i will require (M − 1)ti + fpi

time to perform forward
propagation. Hence, worker k finishes forward propagation

at time
k∑

i=1

fpi
+

k∑
i=2

cpi
+(M − 1)tk; this is also when the

forward propagation of the minibatch finishes.

Similarly, denote the time elapsed between consecutive
backward microbatches in worker i as ri. It follows that
ri = max(max

i≤j≤k
bpj , max

i+1≤j≤k
cpj) and by symmetry, the

backpropagation of the minibatch requires a total time of
k∑

i=1

bpi +

k∑
i=2

cpi + (M − 1)r1.

Hence, given any partition, the total runtime (forward plus
backward propagation) for a minibatch on that partition can
be modeled with the equation

k∑
i=1

(fpi
+ bpi

) + 2

k∑
i=2

cpi
+ (M − 1)(tk + r1).

A.2 Dynamic Programming Optimization

The dynamic programming algorithm aims to find partitions
that minimize the runtime model derived in A.1. Since
k∑

i=1

(fpi
+ bpi

) is constant for all partitions, it suffices to

minimize 2

k∑
i=2

cpi
+ (M − 1)(tk + r1).

It is difficult to optimize this term jointly due to the inter-
dependencies between cpi , tk, r1. However, if tk, r1 were

fixed, the partition that minimizes 2
k∑

i=2

cpi (communication

time) could be found through dynamic programming. The
optimal partition must then be one of the partitions produced
from minimizing the communication time for some tk, r1
combination. However, there are an exponential number
of tk, r1 combinations to consider, so to reduce the search
space, Hydrozoa picks V evenly spaced values as bounds
for tk and similarly, another V bounds are used for r1. We
denote the bounds for tk as B(1)

1 , ..., B
(V)
1 , where B

(j)
1 ∈

[min
1≤i≤L

fi,max(

L∑
i=1

fi, max
2≤i≤L

ci)] for all 1 ≤ j ≤ V , where

ci is the communication time between layer i − 1 and i.

Notice that [min
1≤i≤L

fi,max(

L∑
i=1

fi, max
2≤i≤L

ci)] is the interval

of all possible values for tk. The bounds for r1 are denoted
as B(1)

2 , ..., B
(V)
2 and are defined in a similar fashion.

For each combination of B
(i)
1 and B

(j)
2 , the partitioning

algorithm uses dynamic programming to find the partition
that minimizes communication time while satisfying tk ≤
B

(i)
1 and r1 ≤ B

(j)
2 . In the dynamic programming algorithm

we iteratively solve for C(i, j), which denotes the minimal
communication time for a partition of the first j layers in
the model with i shards. Using the optimal subproblem
property we have that

C(i, j) = min
i−1≤u≤j−1

C(i− 1, u) + cu+1

In the end, all partitions found from every combination
of B(i)

1 and B
(j)
2 are compared, and Hydrozoa selects the

partition with the lowest estimated minibatch runtime.

Notice that the dynamic programming algorithm computes
the partition with minimal communication for each possible
partition size en-route to the final answer. In addition to
the overall best solution, the partitioning algorithm will also
keep track of and return the best solution per partition size.

A.3 Proof of Theorem 1

Theorem 1 Hydrozoa’s partitioning algorithm can produce
a partition with runtime arbitrarily close to the optimal
solution.

Proof. Let ϵ > 0 be arbitrary. Suppose the optimal
solution uses k0 shards and partition p′1, p

′
2, ..., p

′
k0

, let t′k0

and r′1 be the corresponding tk and r1 values for the optimal

Hydrozoa: Dynamic Hybrid-Parallel DNN Training on Serverless Containers

Model Hydrozoa
Strategy

Microbatches
×Microbatch Size

Compared
System

Compared
Strategy

Throughput
Speedup

Cost
Reduction

Throughput / Dollar
Improvement

VGG19 HP - 1×4 34×4 Azure ML DP - 16×1 1.89× 1.02× 1.91×
SageMaker DP - 16×1 0.86× 1.21× 1.04×

BERT-12 MP - 1×4 24×2 Azure ML DP - 4×1 3.66× 1.02× 3.71×
SageMaker DP - 4×1 0.95× 1.22× 1.15×

Table 5. Summary of results comparing Hydrozoa to VM-based training on Azure ML and AWS SageMaker on V100 clusters. Strategy
refers to the data × model parallelism employed. DP and HP correspond to data- and hybrid-parallelism, respectively.

Cluster VMs GPU Cost / Hour

A 16 × Azure NC6 K80 $14.40
B 16 × AWS p2.xlarge K80 $18.00
C 4 × Azure NC6s v3 V100 $12.24
D 1 × AWS p3.8xlarge 4 × V100 $14.69

Table 6. Cluster A, C for Azure ML and B, D for SageMaker.

partition. Thus, the runtime of the optimal partition is
R′ =

∑k0

i=1(fp′
i
+ bp′

i
) + 2

∑k0

i=2 cp′
i
+ (M − 1)(t′k0

+ r′1)

Now let B(i)
1 and B

(j)
2 be the two smallest bounds such

that t′k0
≤ B

(i)
1 and r′1 ≤ B

(j)
2 . Suppose the solution

found from dynamic programming for bounds B
(i)
1 and

B
(j)
2 was p1, ..., pk. The runtime of this solution is at most

R =
∑k

i=1(fpi
+bpi

)+2
∑k

i=2 cpi
+(M−1)(B(i)

1 +B
(j)
2).

We can bound the runtime of this solution as follows:

R−R′ = 2

k∑
i=2

cpi
− 2

k0∑
i=2

cp′
i

+ (M − 1)(B
(i)
1 +B

(j)
2)− (M − 1)(t′k0

+ r′1)

We know that 2
∑k

i=2 cpi
≤ 2

∑k0

i=2 cp′
i

since the algo-
rithm picks the partition with minimal communication time.

Furthermore, B(i)
1 − t′k0

≤ B
(V)
1 −B

(1)
1

V and B
(j)
2 − r′1 ≤

B
(V)
2 −B

(1)
2

V . From this it follows that R−R′ ≤ 2(M −1)∆V ,
where ∆ = max(B

(V)
1 −B

(1)
1 , B

(V)
2 −B

(1)
2).

Therefore, we can choose V ≥ 2(M−1)∆
ϵ such that the

partition selected by the partitioning algorithm is within ϵ
of the optimal partition and the theorem follows. Even with
this theoretical guarantee, we found that simply selecting
V = 1000 works well for the models we benchmarked.

B SUPPLEMENTARY MATERIAL FOR
EVALUATION

B.1 Cluster Setup

Table 6 outlines the details of the clusters used for the ex-
periments. Each cluster has either 16× K80 GPUs, or 4×

of the relatively more powerful V100 GPUs. Since there
were no VMs on AWS with a single V100 GPU, we used
the p3.8xlarge instance, which contains 4× V100 GPUs.

B.2 Results on V100 GPUs

Table 5 summarizes performance comparison of Hydro-
zoa to Azure ML and SageMaker on the V100 clusters.
Since V100 has more compute power than K80 GPUs,
we evaluate on the computationally-intensive VGG19 and
BERT-12 models. As in the K80 experiments, Hydrozoa
achieves higher throughput-per-dollar than Azure ML and
SageMaker on both models. Since the AWS p3.8xlarge VM
contains 4 GPUs locally, it is able to leverage NVLink for
extremely high throughput GPU-to-GPU communication.
Consequently, SageMaker was able to outperform Azure
ML.

