
Research Challenges in Deep Reinforcement Learning-based
JoinQuery Optimization

Runsheng Benson Guo, Khuzaima Daudjee
Cheriton School of Computer Science, University of Waterloo

{r9guo,kdaudjee}@uwaterloo.ca

ABSTRACT
The order in which relations are joined and the physical join oper-
ators used are two aspects of query plans which have a significant
impact on the execution latency of join queries. However, the set
of valid query plans grows exponentially with the number of rela-
tions to be joined. Hence, it becomes computationally expensive to
enumerate all such plans for a complex join query. Recently, sev-
eral deep reinforcement learning (DRL) based approaches propose
using neural networks to construct a query plan. They demonstrate
that efficient query plans can be found without exhaustively enu-
merating the search space. We integrated our implementation of a
DRL-based solution to optimize join order and operators into the
PostgreSQL query optimizer. In practice, we found limitations in
the quality of the query plans chosen which are not addressed in
existing approaches. In this paper we highlight some of these limi-
tations and propose future research challenges along with potential
solutions.
ACM Reference Format:
Runsheng Benson Guo, Khuzaima Daudjee. 2020. Research Challenges in
Deep Reinforcement Learning-based Join Query Optimization. In Third
Workshop in Exploiting AI Techniques for Data Management (aiDM’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3401071.3401657

1 INTRODUCTION
A join query specifies a series of base relations 𝑅1, . . . , 𝑅𝑛 that are
to be combined when they satisfy predicates 𝑝1, . . . , 𝑝𝑚 . A join
operator takes as input two relations and produces an aggregate
relation based on the predicates specified between the two relations.
The resulting relation can then be joined with other relations until
the final result, consisting of all the initial base relations joined
together, is produced.

The query optimizer of a database system is responsible for
selecting a query plan that can be efficiently executed. For join
queries, execution time is largely dependent on the order in which
relations are joined and how each join is physically executed [6].
Analytical queries are popular workloads [4] but they can take
hours to complete. Hence, improving the query optimizer can lead
to significant time and monetary savings. The cost of each join is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
aiDM’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8029-4/20/06. . . $15.00
https://doi.org/10.1145/3401071.3401657

influenced by several factors including: (1) the data distribution
of the input relations, (2) the join predicates between the input
relations, and (3) the physical join operator (e.g., merge join, hash
join). Consequently, the optimal query plan changes with not only
the query but also with the data stored in the database system.

Recently, there has been growing interest in applying deep rein-
forcement learning (DRL) to query optimization [8, 11, 12]. These
approaches are appealing because they can replace hand-tuned com-
ponents of query optimizers and are adaptable to different data dis-
tributions and workloads [13]. We studied these DRL-based query
optimizers to gain a better understanding of their performance
limitations. Despite selecting high quality query plans efficiently a
majority of the time, we found that these approaches have short-
comings because their underlying models (1) occasionally make
poor estimates, and (2) lack a generalizable feature encoding. Since
we were unable to obtain source code for existing work, we con-
ducted our study using DQ+, our implementation of DQ [8]. We
integrated DQ+ into the PostgreSQL query optimizer. In Section
2, we go over the traditional approach to query optimization as
well as recently proposed DRL-based query optimization methods.
We describe the architecture of DQ+ in Section 3, followed by our
experimental results in Section 4 and an analysis of the limitations
we encountered in Section 5. We propose that resolving these limita-
tions will lead to further performance improvements for DRL-based
query optimization.

2 RELATEDWORK
Popular database systems such as PostgreSQL [1] and SQL Server
[3] employ a cost-based approach [15] for query optimization. A
cost model is used to estimate the cost of executing a query plan.
The query optimizer searches for the plan with the least estimated
cost. In this paper, we refer to the plan with the least estimated cost
as the optimal plan. It is important to keep in mind the optimal
plan is not necessarily the plan with the lowest execution latency.
This is because cost models are based on cardinality estimates that
in practice can be inaccurate and lead to greatly over or under
estimating the cost of a query plan. Dynamic programming and
genetic algorithm are two methods that PostgreSQL uses to search
for the optimal plan.

2.1 Dynamic Programming
Dynamic programming (DP) can be used to exhaustively enumerate
all query plans and was first proposed for query optimization in
System R [15]. It is based on the observation that an optimal query
plan for a join query is a join between two relations that were
produced by optimal plans themselves. In DP, optimal plans are
memoized in a lookup table and incrementally built. The optimal
plan joining 𝑘 relations is found by considering joins between

https://doi.org/10.1145/3401071.3401657
https://doi.org/10.1145/3401071.3401657
https://doi.org/10.1145/3401071.3401657

aiDM’20, June 14–19, 2020, Portland, OR, USA Runsheng Benson Guo, Khuzaima Daudjee

optimal plans of 1 to 𝑘 − 1 relations. This is repeated until the
optimal plan that joins all relations in the query is constructed. The
number of plans that need to be considered grows exponentially
with the number of relations to join. Consequently, even though
DP will find the query plan with the lowest estimated cost, it can
be computationally prohibitive to do so for large join queries.

2.2 Genetic Algorithm
The genetic algorithm can be used to cheaply search for query
plans, even for large join queries [2]. It is a randomized search
inspired by the process of natural selection. A group of individuals,
each representing a query plan is initially randomly generated.
During each iteration, a new query plan is generated by randomly
recombining the join orderings of two query plans selected from the
population. This is analogous to crossover in sexual reproduction.
The algorithm maintains a fixed size population of the best query
plans found so far by removing the most expensive query plans
estimated by the cost model. The total time complexity is linear
with respect to the number of base relations, so the algorithm is
much faster than dynamic programming for complex join queries.
However, there is no guarantee that the algorithm will produce an
optimal plan.

2.3 Deep Learning for Query Optimization
Next, we describe several approaches that use deep learning to select
a query plan. DQ [8] and ReJoin [12] formulate join order selection
as a reinforcement learning problem and apply deep reinforcement
learning (DRL) algorithms. In particular, DQ uses deep Q-learning.
Join order selection is modeled as a Markov decision process. Each
state is a query graph which encodes the relations that have been
joined together as well as the relations that remain to be joined. An
action corresponds to a join between two relations. Let 𝑠 be a state, 𝑎
be an action applied to state 𝑠 , and let 𝑠 ′ be the resulting state. The Q-
function,𝑄 (𝑠, 𝑎) returns the cost of the cheapest query plan possible
that could be constructed by joining the remaining relations in 𝑠 ′

in an optimal order. With the Q-function, the join ordering can be
built by greedily selecting the join action minimizing 𝑄 until all
relations have been joined. However, the Q-function is not known,
so DQ approximates the Q-function with a neural network. This
neural network is then used by the query optimizer to greedily
select join orderings.

ReJoin is similar to DQ but uses the proximal policy optimization
algorithm to find a join ordering instead of deep Q-learning. Both
approaches build the join ordering based on the output of a neural
network, avoiding exhaustive enumeration. Neo [11] is also similar
to DQ and uses value iteration to train a neural network predicting
the latency of an optimal query plan that could be built from a
partial query plan. Neo determines not only the join order of a
query plan but also the physical join operators and table access
paths. The neural network searches for query plans through best
first search instead of a greedy approach. Best first search still
has an exponential runtime but in practice Neo caps the search
time to 250ms which is enough to find good plans for a variety of
workloads.

Another advantage of DRL-based query optimization approaches
is that they are not limited by inaccurate estimates from a cost

Figure 1: Feature Encoding Example

model. DQ and Neo initially rely on a cost model to train their
underlying neural networks. However, these networks can be fine-
tuned to reflect real latencies by learning from the latencies of
queries executed in the database. Thus, DRL-based query optimizers
have the potential to not only reduce optimization time but also
improve the quality of query plans produced.

3 ARCHITECTURE
We implemented a variant of the neural network used in DQ [8] and
integrated it into the PostgreSQL query optimizer. We call this DQ+.
It was extended to select the physical join operators in addition
to the join order, and draws ideas from both ReJoin [12] and Neo
[11] to encode input for the neural network approximation of the
Q-function. The Q-value of a state-action pair (𝑠, 𝑎) is the log of
PostgreSQL estimated cost of the cheapest query plan possible that
could be constructed by joining the remaining relations after join
𝑎 has been applied to query graph 𝑞. Since the Q-value of every
action-state pair can be computed in this context, the neural net-
work is trained to regress Q-values directly rather than using the
standard deep Q-learning training process. The log of the cost is
regressed rather than the cost to avoid exploding gradient issues
during training. As in [8], state-action pairs and their correspond-
ing Q-values are obtained from the DP table constructed when
executing the training queries with the PostgreSQL DP optimizer.

Consider the following join query on a database containing the
base relations customer, nation, orders, and lineitem:
SELECT *
FROM customers as c,

nation as n,
orders as o,
lineitem as l,

WHERE c.customer_key = o.customer_key
AND c.nation_key = n.nation_key
AND l.order_key = o.order_key

One way to execute this query is to first join the orders and cus-
tomer relations. This results in the join graph visualized in Figure 1.
In particular, it contains the newly constructed orders, customers
relation. From here, one possible action is to perform a nested
loop join of orders, customer and nation. To evaluate the Q-value of
performing this action in the current state, information about the

Research Challenges in Deep Reinforcement Learning-based Join Query Optimization aiDM’20, June 14–19, 2020, Portland, OR, USA

action and state must be encoded as a fixed length vector which
the trained neural network model expects as input.

The action and query in this example would be encoded for our
model as :



1
1
0
0
0
0
1
0
0
0
1
𝑐𝐿
𝑐𝑅
1
1
1
1
1
0
1
1
0
0



=



𝐿 −𝑂𝑟𝑑𝑒𝑟𝑠

𝐿 −𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

𝐿 − 𝑁𝑎𝑡𝑖𝑜𝑛

𝐿 − 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑅 −𝑂𝑟𝑑𝑒𝑟𝑠

𝑅 −𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

𝑅 − 𝑁𝑎𝑡𝑖𝑜𝑛

𝑅 − 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑀𝑒𝑟𝑔𝑒 𝑗𝑜𝑖𝑛

𝐻𝑎𝑠ℎ 𝑗𝑜𝑖𝑛

𝑁𝑒𝑠𝑡𝑒𝑑𝐿𝑜𝑜𝑝 𝐽𝑜𝑖𝑛

𝐿 −𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑅 −𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑄 −𝑂𝑟𝑑𝑒𝑟𝑠

𝑄 −𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

𝑄 − 𝑁𝑎𝑡𝑖𝑜𝑛

𝑄 − 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑄 − 𝐸𝑞𝑢𝑖 𝑗𝑜𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑠 −𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟

𝑄 − 𝐸𝑞𝑢𝑖 𝑗𝑜𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑠 − 𝑁𝑎𝑡𝑖𝑜𝑛

𝑄 − 𝐸𝑞𝑢𝑖 𝑗𝑜𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑠 − 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑄 − 𝐸𝑞𝑢𝑖 𝑗𝑜𝑖𝑛𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 − 𝑁𝑎𝑡𝑖𝑜𝑛

𝑄 − 𝐸𝑞𝑢𝑖 𝑗𝑜𝑖𝑛𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 − 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚

𝑄 − 𝐸𝑞𝑢𝑖 𝑗𝑜𝑖𝑛𝑁𝑎𝑡𝑖𝑜𝑛 − 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚


(1) The teal rows 1-hot encode the tables belonging to the left

and right input relations in the join action. The first four
rows correspond to the left relation and the next four cor-
respond to the right relation. orders and customer are in the
left relation, so the first two rows are 1 while the third and
fourth are 0.

(2) The orange rows 1-hot encode the physical join operator
used for the join action, which is one of mergejoin, hashjoin,
and nested loop join.

(3) The black rows encode the cardinality estimates for the left
and right input relations, which are computed by the Post-
greSQL optimizer

(4) The red rows 1-hot encode the relations belonging in the
final query result.

(5) The six gray rows 1-hot encode whether there is an equijoin
predicate between each of the six pairs of tables. Three of
these rows are non zero, corresponding to the three equijoin
predicates in the query.

4 EXPERIMENTAL RESULTS
We evaluated DQ+ by comparing the quality of query plans pro-
duced versus dynamic programming (DP) and genetic algorithm
(GA) for the Join Order Benchmark (JOB) [9]. JOB consists of a set of
challenging join queries on the real IMDB dataset. It features joins
of up to 17 relations between correlated relations. DQ+ is trained
on 70% of the queries in JOB and evaluated on the remaining 30%.
The neural network took about 30 minutes to train.

Table 1: Query Plan Quality Comparison

Model Median Ratio 95th Percentile Ratio Mean Latency
DQ+ 7.40x 138564.65x 37.52ms
DP 1.00x 1.00x 210.44ms
GA 1.00x 1.03x 65.95ms

4.1 Query Plan Quality
We evaluate the quality of a query plan by comparing the Post-
greSQL estimated cost of the query plan to the lowest cost plan
possible, which would be computed by the PostgreSQL DP opti-
mizer. Table 1 provides the median and 95th percentile cost ratio,
which is the ratio between the cost of the query plan produced by
the optimizer and the optimal plan.

While DQ+ has the lowest mean latency, in the median case it
produces plans 7.40 times more expensive than the cheapest plan.
DP always finds the optimal plan because it enumerates through
all possible query plans, and the nature inspired GA optimizer
is also almost always able to produce near optimal plans. A big
concern is that DQ+ occasionally produces plans that are extremely
expensive. 5% of query plans produced by DQ+ are more than
105 times the cost of the optimal plan. We observed that some of
the query plans selected by DQ+ took hours to execute or even
caused the database system to crash because they required more
disk space than the 2TB available to store intermediate results. The
poor results suggest that the neural network in DQ+ is not able to
adequately approximate the Q-function. It was surprising to us that
the genetic optimizer was able to consistently build close to optimal
query plans with comparable latency to DQ+. One disadvantage of
the genetic optimizer is that it still relies on a hand designed cost
model, which may not accurately reflect real execution latencies.
DRL-based optimizers like Neo [11] do not have this limitation,
however, we were unable to make a direct comparison because the
source code for Neo has not yet been released.

4.2 Optimization Latency
Figure 2 compares the optimization latency, which is the time re-
quired to produce a query plan, for DQ+ and DP. Each point cor-
responds to one of the queries in the JOB and points falling above
the black curve correspond to the queries for which DQ+ had a
lower optimization time than DP. The points are color coded by the
number of relations joined in the query. Even though DQ+ avoids
the exponential search cost of DP, it is still slightly slower than DP
for small join queries due to the overhead of making calls to the
neural network. As the number of relations to join increases, the
exponential search cost overshadows the neural network overhead
and the optimization latency of DQ+ becomes relatively faster. This
is observed for joins of 11 or more relations.

5 RESEARCH CHALLENGES
It is evident from the experimental results that there is significant
room for improvement for the quality of queries produced from
DQ+, especially at the tail. DQ+ and similar DRL-based optimizers
[8, 11, 12] construct query plans entirely based on the output of
their underlying neural network models. Consequently, improving

aiDM’20, June 14–19, 2020, Portland, OR, USA Runsheng Benson Guo, Khuzaima Daudjee

0 50 100 150 200 250

100

101

102

103

104

DQ+ Latency (ms)

D
P
Lo

g
La
te
nc
y
(m

s)

Plan Optimization Latency

< 8 Relations
8 − 11 Relations
> 11 Relations

Figure 2: Plan Optimization Latency, DQ+ vs DP

the performance of DRL-based optimizers begins with improving
their underlying models. In this section we outline two directions
in which models of state-of-the-art DRL-based optimizers can be
improved, along with their challenges and potential solutions. The
architecture of the neural network used in DQ+ is primarily based
on the design in DQ and ignores the tree structure of a query
plan in the encoding process. Since then, there has been work on
plan-structured neural networks and tree convolution on how to
capture and learn from the tree structure of a query plan [11, 14].
While we do not explore all of the proposed model architectures
in DQ+, the research directions we outline are still relevant to
other architectures, and the solutions we propose can be used in
conjunction with more complex architectures like tree convolution.

5.1 Model Robustness
In the 95th percentile scenario, DQ+ produces plans that are over
105 times more costly than the cheapest plan. It is important that a
DRL-based optimizer does not produce any terrible query plans, as
the orders of magnitude extra time taken to execute these queries
is far greater than the time saved from avoiding full enumeration.

There are two approaches towards preventing terrible query
plans from being generated. The first approach is to improve the
model itself. Mean squared error (MSE) and mean absolute error
(MAE) are two common loss functions used to train a neural net-
work. We observed that models trained with MSE produced ex-
tremely expensive query plans less frequently than models trained
with MAE. MSE and MAE are computed by the following equations,
where 𝑒𝑖 is the prediction error of the ith training example:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑
𝑖=1

𝑒2𝑖 𝑀𝐴𝐸 =
1
𝑛

𝑛∑
𝑖=1

|𝑒𝑖 |

Since the error in MSE is squared, it penalizes large prediction er-
rors relatively more than small errors. The network in DQ+ predicts
the log of cost estimates, hence the prediction error is a measure

Table 2: Query Plan Quality & Search Time vs BeamWidth

𝛽 Median Ratio 95th Percentile Ratio Mean Latency
1 7.40x 138564.65x 37.52ms
2 5.63x 92308.16x 49.38ms
4 4.72x 18.276.94x 71.28ms
8 1.58x 2894.39x 114.00ms
16 1.15x 393.84x 197.38ms
32 1.15x 288.93x 365.45ms
64 1.03x 28.36x 676.45ms
128 1.02x 19.25x 1208.26ms

of the relative error of the model’s cost estimate. Consequently,
MSE will train the model in a way that prioritizes avoiding large
relative prediction errors. Large relative prediction errors can lead
to higher cost plans being chosen over cheaper plans, so an MSE
loss is preferred.

Even with a more robust model, inaccurate predictions may still
occur from time to time. Hence, another approach to prevent poor
query plans from being built is to add robustness around the model
to account for inaccurate predictions. Neo [11] explores query plans
greedily but does not stop after finding the first query plan. It
continues exploring plans until a time threshold is reached. This is
one way to build robustness around the query plan, however the
time threshold may need to be adjusted depending on the number
of relations joined in the query.

We explored a different approach to make DQ+ robust to model
inaccuracies. We modified DQ such that it uses the Q-value es-
timates of the model to greedily build the top 𝛽 cheapest query
plans through beam search. Beam search is a breadth-first search
that expands only the 𝛽 best states at each level [5]. When 𝛽 = 1,
beam search is equivalent to the greedy algorithm in DQ. Out of
the 𝛽 plans generated, the one with the lowest cost estimated by
the PostgreSQL cost model is chosen. We call this method Beam
DQ+. 𝛽 is a tuneable parameter called the beam width, and there
is a trade-off between search quality and search time as 𝛽 is in-
creased. To illustrate this trade-off, Table 2 shows the median and
95th percentile plan cost ratios as well as the mean optimization
latency when 𝛽 is varied. Notice that the mean latency increases
sub-linearly with 𝛽 . This is because some query plans in the top 𝛽

share the same sub-plans, allowing for computation to be shared.
Moreover, neural network evaluations can be efficiently batched.
When 𝛽 is at least 64, the median plan cost is near optimal, and the
95th percentile plan cost drops dramatically to an acceptable level.

Training a neural network to accurately approximate the Q-
function currently remains a challenge for DRL-based optimizers.
Two promising directions that deserve further exploration include
improving the prediction accuracy of the model, and building ro-
bustness around the model.

5.2 Feature Encoding
Any neural network used to make query optimization decisions
requires an adequate way to encode the features of a query and
query plan as the network’s input. DQ, ReJOIN, and Neo each
have their own method of encoding these features. Deep learning

Research Challenges in Deep Reinforcement Learning-based Join Query Optimization aiDM’20, June 14–19, 2020, Portland, OR, USA

Figure 3: Self-Join Encoding Strategies

Table 3: Self-Join (SJ) Encoding Strategies Comparison

Dataset JOB (No SJ) JOB (SJ) JOB (All)
1-Hot 3.88x 173.57x 5.96x
1-Hot+ 5.27x 125.61x 15.05x

Multiple 1-Hot 3.02x 81.96x 4.71x
Multiple 1-Hot + DA 7.87x 15.12x 13.26x

Lowest cost ratios are bolded.

approaches for cardinality estimation [7, 10, 17] and query latency
prediction [14] also propose their own methods of encoding query
plans. However, all existing encoding strategies assume a fixed
schema. In particular, all methods proposed so far 1-hot encode
tables present in a query plan or query. Some methods also 1-hot
encode the columns across all tables. This is problematic for three
reasons. First, adding a column or table would change the encoding,
requiring the neural network to be retrained. Second, an increase in
the encoding would increase the parameters in the neural network.
This leads to an increase in both the training and evaluation time
of the network. This is unacceptable for commercial databases with
a large number of tables. Finally, the 1-hot table encoding is not
able to distinguish between multiple instances of a table appearing
in a join (such as in a self-join), and is not defined for joins with
sub-queries.

We explored two methods of extending the 1-hot encoding to ex-
plicitly represent self-joins. The first method, which we call 1-Hot+,
is simply encoding the number of times that a table appears, rather
than a 1-hot encoding to indicate that the table appears. The sec-
ond method, which we call Multiple 1-Hot, assumes the maximum
number of times a table appears in a join query is known. If this
number were 𝑐 (for the JOB, 𝑐 = 2), then Multiple 1-Hot reserves 𝑐
entries to 1-hot encode up to 𝑐 instances of the same table present
in a join query. Figure 3 exemplifies the three encoding schemes for
a query on a database with 3 tables A, B, and C. Table 3 compares
the median query plan cost ratio of the encoding strategies on the
subset of JOB queries without self-joins, the subset with self-joins,
and the entire set of queries.

1-Hot+ andMultiple 1-Hot are able to encode multiple references
to the same table, and consequently both outperform 1-Hot on
queries containing self-joins. Overall, Multiple 1-Hot produces the
cheapest query plans. However, it still performs relatively poorly
on the subset of queries containing self-joins, suggesting there is
much room for improvement. Multiple 1-Hot needs to learn that
each of the 𝑐 fields corresponding to each table are logically equiv-
alent and have the same properties. There are likely not enough
training examples to do so, however, more training examples could
be generated through data augmentation to help the model learn
this relationship. Data augmentation is a technique for enhancing
the size and diversity of a dataset without collecting new train-
ing examples by modifying existing training examples [16]. It is
commonly used for image datasets, and for Multiple 1-Hot, new
training examples can be generated by swapping the 𝑐 locations
used to 1-hot encode instances of a table. As shown in the last row
of Table 3, when Multiple 1-Hot is trained with data augmentation
(DA), plan costs for queries with self-joins are significantly reduced.
However, this technique is not perfect as plan costs for queries
without self-joins slightly increase.

From these results, it is evident that extending existing encoding
schemes to work for self-joins is non-trivial. Moreover, sub-query
joins are still unaccounted for. The underlying cause for both of
these issues is the dependence on a fixed database schema for
encoding. It is worthwhile to explore new encoding schemes that
are invariant to the database schema. Such an encoding would avoid
both expensive retraining costs and increase to the model size when
tables or columns are added.

Very recently, RTOS [18] proposed an alternative DRL method
using a Tree-LSTM network. Their architecture can represent self-
joins and allows new columns or tables to be added to the database
without retraining the entire network. We construe that this work
brings us one step closer to achieving better encoding schemes.

6 CONCLUSION
DRL-based query optimizers [8, 11, 12] are attractive because they
avoid the exponential search time of traditional optimizers and can
be automatically tuned for the database and underlying hardware.
They are already capable of matching state of the art query optimiz-
ers without relying on hand designed cost models [11]. However,
there is still plenty of room for improvement. Existing approaches
rely on a neural network to accurately predict which partial query
plans lead to optimal complete query plans. It was shown in this pa-
per that the model in DQ+ is susceptible to prediction errors which
can lead to query plans with a very high cost relative to the optimal
plan. We proposed two approaches to improve the robustness of
the model. Our approaches are not limited to the architecture of
DQ+ and can be combined with more complex architectures like
tree convolution and plan-structured networks. Current models
also rely on an inflexible feature encoding scheme; they assume
a fixed schema and are not able to represent queries joining sub-
queries or queries containing self-joins. We believe exploring new
methods of improving model robustness and more flexible encoding
schemes will pave the way to the next generation of DRL-based
query optimizers.

aiDM’20, June 14–19, 2020, Portland, OR, USA Runsheng Benson Guo, Khuzaima Daudjee

REFERENCES
[1] 2020. PostgreSQL database. http://www.postgresql.org/
[2] 2020. PostgreSQL: Genetic Query Optimizer. https://www.postgresql.org/docs/

12/static/geqo.html
[3] 2020. SQL Server 2019. https://www.microsoft.com/en-ca/sql-server/sql-server-

2019
[4] Iqbal Alvi. 2019. Transactional vs. Analytical Databases: How Does OLTP Differ

from OLAP. https://datawarehouseinfo.com/how-does-oltp-differ-from-olap-
database/

[5] R. Bisiani. 1987. Beam Search. In Encyclopedia of Artificial Intelligence, S. Shapiro
(Ed.). Wiley & Sons, 56–58.

[6] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational
Systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (Seattle, Washington, USA) (PODS
’98). Association for Computing Machinery, New York, NY, USA, 34–43. https:
//doi.org/10.1145/275487.275492

[7] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR 2019, 9th Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[8] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. CoRR abs/1808.03196 (2018). arXiv:1808.03196 http://arxiv.org/abs/
1808.03196

[9] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[10] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte. 2015.
Cardinality Estimation Using Neural Networks. In Proceedings of the 25th Annual
International Conference on Computer Science and Software Engineering (Markham,

Canada) (CASCON ’15). IBM Corp., USA, 53–59.
[11] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705–1718. https:
//doi.org/10.14778/3342263.3342644

[12] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. In Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management (Houston,
TX, USA) (aiDM’18). Association for Computing Machinery, New York, NY, USA,
Article 3, 4 pages. https://doi.org/10.1145/3211954.3211957

[13] Ryan Marcus and Olga Papaemmanouil. 2018. Towards a Hands-Free Query
Optimizer through Deep Learning. CoRR abs/1809.10212 (2018). arXiv:1809.10212
http://arxiv.org/abs/1809.10212

[14] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(July 2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[15] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Manage-
ment of Data (Boston, Massachusetts) (SIGMOD ’79). Association for Computing
Machinery, New York, NY, USA, 23–34. https://doi.org/10.1145/582095.582099

[16] Connor Shorten and Taghi Khoshgoftaar. 2019. A survey on Image Data
Augmentation for Deep Learning. Journal of Big Data 6 (12 2019). https:
//doi.org/10.1186/s40537-019-0197-0

[17] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
Proc. VLDB Endow. 12, 3 (Nov. 2018), 210–222. https://doi.org/10.14778/3291264.
3291267

[18] Chengliang Chai Nan Tang Xiang Yu, Guoliang Li. 2020. Reinforcement Learning
with Tree-LSTM for Join Order Selection. In 36th IEEE International Conference
on Data Engineering, ICDE 2020, Dallas, USA, April 20-124, 2020. IEEE, 1297–1308.

http://www.postgresql.org/
https://www.postgresql.org/docs/12/static/geqo.html
https://www.postgresql.org/docs/12/static/geqo.html
https://www.microsoft.com/en-ca/sql-server/sql-server-2019
https://www.microsoft.com/en-ca/sql-server/sql-server-2019
https://datawarehouseinfo.com/how-does-oltp-differ-from-olap-database/
https://datawarehouseinfo.com/how-does-oltp-differ-from-olap-database/
https://doi.org/10.1145/275487.275492
https://doi.org/10.1145/275487.275492
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1808.03196
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.1145/3211954.3211957
http://arxiv.org/abs/1809.10212
http://arxiv.org/abs/1809.10212
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.1145/582095.582099
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.14778/3291264.3291267
https://doi.org/10.14778/3291264.3291267

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dynamic Programming
	2.2 Genetic Algorithm
	2.3 Deep Learning for Query Optimization

	3 Architecture
	4 Experimental Results
	4.1 Query Plan Quality
	4.2 Optimization Latency

	5 Research Challenges
	5.1 Model Robustness
	5.2 Feature Encoding

	6 Conclusion
	References

