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(Very brief) History
[Sylvester 1893]: given a finite set of points F ⊂ RN such that:
▶ any line containing two points of F must pass through a third.

Must F be contained in a line?

[Melchior 1940,Gallai 1944]: YES.

Problem depends on base field.
[Folklore]: over C, torsion points of elliptic curves give

2-dimensional configurations.
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TCS History
Several variations and generalizations.

▶ Coloured versions
▶ PIT [Dvir Shpilka 2007] (conjectured coloured version)

▶ Higher-dimensional analogs:
▶ PIT [Kayal Saraf 2009,Saxena Seshadri 2013]

▶ Robust analogs:
▶ Coding Theory (LCCs) [BDWY 2011]
▶ Reconstruction (aka tensor decomposition) [Sinha 2016]

▶ Higher-degree analogs:
▶ PIT [Gupta 2014]

Underlying theme:

Are Sylvester-Gallai type configurations always low-dimensional?
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Robust Sylvester-Gallai
Definition (Robust linear Sylvester Gallai)
F := {v1, . . . , vm} ⊂ CN is a δ-linear-SG configuration if for all
i ∈ [m], there are δ(m− 1) indices j such that:

there is k 6= i, j such that vk ∈ spanC {vi, vj}.

Theorem (robust linear SG theorem – [BDWY 2011])

If F is δ-linear-SG configuration, then dim spanC {F} = O(1/δ2).

▶ Improved to O(1/δ) by [Dvir Saraf Wigderson 2014].
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Why Should I Care?
▶ Mathematicians & complexity theorists:

It’s a structural study of cancellations/relations (syzygies).

Cancellations in SG configurations make them quite complex!
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Mayr-Meyer

[Mayr Meyer 1982]: “cancellations in algebraic geometry are
EXPSPACE hard”

[Brownawell 1987,Kollar 1988]: “radical cancellations” are in
PSPACE.



Where are the cancellations?
▶ F = {v1, . . . , vm} ⊂ R2 is a SG configuration if for all

i, j ∈ [m], there is k 6= i, j such that vi, vj , vk colinear.

▶ Duality: F = {ℓ1, . . . , ℓm} ⊂ R[x, y]1 is a SG configuration if
for all i, j ∈ [m], there is k 6= i, j such that ℓk ∈ (ℓi, ℓj).

1. ℓk ∈ (ℓi, ℓj) ⇔ ∃αi, αj , αk ∈ R such that

αiℓi + αjℓj + αkℓk = 0

2. Are these relations enough to show that dim〈F〉 = 1?

▶ (Non-linear) Generalization [Gupta 2014]:
▶ F = {F1, . . . , Fm} ⊂ C[x1, . . . , xN ] is a SG configuration if

for all i, j ∈ [m], there is k 6= i, j such that

Fk ∈ rad(Fi, Fj)
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Generalization – geometrically



General conjecture
Definition (Radical Sylvester Gallai – [Gupta 2014])
F = {F1, . . . , Fm} ⊂ C[x1, . . . , xN ] is a d-radical-SG config. if:

1. Fi irreducible for all i ∈ [m]

2. deg(Fi) ≤ d for all i ∈ [m] (low degree)
3. Fi 6∈ (Fj) for i 6= j (“distinct”)
4. for all i, j, there is k 6= i, j such that (SG dependency)

Fk ∈ rad(Fi, Fj)
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Previous (and current) Works
Theorem (Linear SG – [Hirzebruch 1983])

If F is 1-radical-SG configuration, then dim spanC {F} ≤ 2.

Another proof given by [Dvir Saraf Wigderson 2014]

Theorem (Quadratic radical SG theorem – [Shpilka 2020])

If F is 2-radical-SG configuration, then dim spanC {F} = O(1).

Theorem (Cubic radical SG theorem – [O. Sengupta 2022])

If F is 3-radical-SG configuration, then dim spanC {F} = O(1).
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Quadratic Case (1-page Amir)
Theorem (Quadratic radical SG theorem – [Shpilka 2020])

If F is 2-radical-SG configuration, then dim spanC {F} = O(1).

Proof outline:
▶ Structure theorem: how can Fk ∈ rad(Fi, Fj)?

1. Fk ∈ spanC {Fi, Fj}

2. ℓ2 ∈ spanC {Fi, Fj}
3. Fi, Fj , Fk ∈ (x, y) for some linear x, y

▶ Main idea: ”linearize” the configuration
quadratics not robust linear configuration ⇒ must look alike.

▶ Extract linear Sylvester-Gallai configuration from remaining
linear forms (combinatorially involved)
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Upshot: non-linear SG dependencies involve special linear
forms.

▶ Extract linear Sylvester-Gallai configuration from remaining
linear forms (combinatorially involved)
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Some Notation
▶ Graded rings: R =

⊕
d≥0

Rd such that

RiRj ⊂ Ri+j

Rd := set of elements of degree d.

▶ Polynomial ring graded by degree
▶ Given graded vector space V = V1 + · · ·+ Vd can construct

graded algebra C[V ]
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How can we induct?
Approach to induct generalizes [Shpilka 2020] in several ways.

▶ Observation: if there is vector space V = V1 + V2 such that
F ⊂ C[V ], then

dim spanC {F} ≤ (dimV )3.

Enough to construct small algebra C[V ] with dimV = O(1).
▶ How to reduce degree? (from 3 → 2) Let F = F1 ∪F2 ∪F3.

▶ it may not be true that F1 ∪F2 is a 2-radical-SG configuration

▶ if could prove
1. there is small V = V1 + V2 s.t. F3 ⊂ C[V ]
2. we could solve 2-radical-SG over the algebra C[V ]

then done!

▶ Can we do both? YES!
Need a lot of new tools!
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Inductive radical SG problem
Original radical SG configuration:
Definition (Radical Sylvester Gallai )
F = {F1, . . . , Fm} ⊂ C[x1, . . . , xN ] is a d-radical-SG config. if:

1. Fi irreducible for all i ∈ [m]

2. deg(Fi) ≤ d for all i ∈ [m] (low degree)
3. Fi 6∈ (Fj) for i 6= j (“distinct”)
4. for all i, j, there is k 6= i, j such that (SG dependency)

Fk ∈ rad(Fi, Fj) ⇔ |F ∩ rad(Fi, Fj)| ≥ 3

5. for all i, j (SG dependency over algebra)

|F ∩ rad(Fi, Fj)| ≥ 3 or rad(Fi, Fj) ∩ C[V ] 6⊂ (Fi) ∪ (Fj)

Upshot: can have pairs i, j with no dependence in F , but it has to
have dependence in algebra C[V ].
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Algebras
▶ Not all algebras are created equally...

1. Best algebra: polynomial rings (commutative and free)

2. Could F3 be in a small sub-polynomial ring?
3. May not be possible in our case:

F = x(y1z1 + y2z2 + · · ·+ ynzn) + uw2 ∈ F3

▶ What is next best thing?

▶ Subalgebras that are isomorphic to a polynomial ring AND
behave well with C[x1, . . . , xN ]

▶ Algebras generated by prime sequences!
Key properties: Regular Sequence & Intersection flatness

1. Regular sequence ⇒ “free as polynomial ring”
2. Intersection flatness ⇒ behaves nicely with C[x1, . . . , xN ]

Primes in the small subalgebra are also primes in
C[x1, . . . , xN ]
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Wide Ananyan-Hochster Algebras
▶ Suppose I have an algebra C[F1, . . . , Fk] of low degree

polynomials which is not nice
Can I convert it into a nice algebra without blowing up the

size too much?

▶ [Ananyan Hochster 2020] construct such algebras (and
much more!)

1. Basic idea: if V = V1 + V2 is such that ANY Q ∈ V2 has

rank(Q) ≥ dimV + 3

then C[V ] is a nice algebra (V nice vector space).
▶ In [O. Sengupta 2022] we build upon this to construct wide

Ananyan-Hochster algebras
1. generated by prime sequences (or better)
2. robust to “small increases”
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Our approach
1. Solve (2, V )-radical-SG problem

Proposition ([O. Sengupta 2022])
If V is wide AH vector space and F is (2, V )-radical-SG
configuration, then

dim spanC {F} = O(1 + (dimV )2)

2. Now we need to construct V wide such that F3 ⊂ C[V ].
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Structure Theorems
Theorem (Structure theorem for cubics [O. Sengupta 2022])
Let F,G be irreducible homogeneous cubics. One of the following
must hold:

1. (F,G) is radical
2. (F,G) ⊂ (x, y) for x, y linear forms
3. (F,G) ⊂ (Q, x) for Q irreducible quadratic and x linear
4. xy2 ∈ spanC {F,G} for x, y linear forms
5. (F,G) ⊂ Imd where Imd cuts out variety of minimal degree

Example of variety of minimal degree: (twisted cubic)(
x y z
y z w

)
7→ (y2 − xz, z2 − yw, xw − yz)



More Structure Theorems
In addition to the above, several new structure theorems which
hold for general degree d

▶ Discriminant lemma (decide radical or not)
▶ generalizes fact that discriminant of univariate polynomial p(x)

is zero ⇔ p(x) has multiple roots
▶ quantitative bounds when combined with wide AH algebras

Key property: Cohen-Macaulayness
▶ Transfer principle: generalize several properties of polynomial

rings to wide AH algebras
▶ elimination theorems in wide AH algebras
▶ primality and reducedness criteria in AH algebras
▶ more...

Key property: Intersection Flatness
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Proof overview
▶ F = F1 ∪ F2 ∪ F3 our 3-radical-SG configuration
▶ Solved (2, V )-radical-SG problem over V low dimensional

wide AH vector space

▶ Need to prove F3 ⊂ C[V ] for some small wide AH vector
space V

1. If F3 is a δ-linear-SG configuration then
dim spanC {F3} = O(1).

Apply our wide AH process to spanC {F3} to get V .

2. F3 not δ-linear-SG configuration, then there are cubics
C1, C2, C3 such that most Fi ∈ F3 is such that (Fi, Cj)
not-radical (j ∈ [3]).

Most of the wide vector space V comes from C1, C2, C3.

With a bit of work, transform F into a (2, V )-radical-SG
configuration.
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Why is 3 important?
Challenges in degree 3 similar to challenges in general case
▶ geometry is more complex

▶ need more general structural lemmas
▶ structure theorem for cubics is more involved than for

quadratics

▶ it may not be possible to “linearize” the configuration
▶ if we want principled approach, need to devise an inductive

version of SG
▶ reducing from cubic to quadratic is harder than from quadratic

to linear

All of the above (and a little bit more) in [O. Sengupta 2022]!
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Conclusion
▶ Proved 3-radical-SG conjecture is true.

▶ Inductive, generalizable SG problem (SG over algebra)
In previous versions, unclear how to solve SG inductively.

▶ Introduced several new algebro-geometric techniques:
1. wide AH algebras

▶ subalgebras “like subpolynomial rings”
▶ robust to small augmentations

2. discriminant-based reducedness testing & quantitative bounds
3. transfer principle:

polynomial rings → algebras generated by prime sequences

4. Exploration of Cohen-Macaulayness in SG configurations
5. Structure theorem for intersection of cubics
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Open Questions
Open Question (Radical Sylvester-Gallai over an algebra)
There is λ : N2 → N such that if F is a (d, V )-radical-SG
configuration, then

dim spanC {F} ≤ λ(d, dimV ).

Several variants – robust, coloured, higher-codimensional... this is
just the beginning of the rabbit hole.

Radical Sylvester-Gallai seems instrumental first step towards main
conjecture of [Gupta 2014], as in [Shpilka 2020,Peleg Shpilka
2020].

More generally: can we parametrize cancellations in algebra?
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Future Directions
A sneak peek into the rabbit hole:
Open Question (Complexity theory for Algebraic Geometry)
Can we pin down the complexity of basic algebro-geometric
questions?
▶ primary decomposition
▶ radical ideal membership
▶ projective dimension
▶ free resolutions

[Ananyan Hochster 2020] gives us upper bound (non-explicit) on
parametrization of cancellations/relations (and in the above
problems).
▶ can we get explicit (and eventually tight) parametrizations?
▶ important special cases as complexity classes?
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SG configurations in PIT and
Reconstruction

▶ PIT/Reconstruction break down into two cases:
1. SG circuits: where a lot of cancellations/relations can happen.

In this case the circuit may not be unique/have less structure
(hard case)

2. non-SG circuits: few relations can happen. This case is easier,
since we can “isolate” the gates.



Proving structure theorem
▶ Look at primary decomposition (minimal primes +

multiplicity)
1. (F,G) is Cohen-Macaulay ⇒ unmixed (and much more)

2. From primary decomposition:

deg(F,G) =
∑
p

m(p) · deg(p)

3. deg(F,G) = 9, since F,G cubics with gcd(F,G) = 1
4. if m(p) = 1 for all p then (F,G) is radical
5. if (F,G) ⊂ (x, y) we are done, so assume this is not the case.

Then deg(p) ≥ 2 for all p.
6. 9 = {2, 3} · d + “stuff of degree ≥ 2” so d ∈ {2, 3}
7. d = 2 ⇒ p = (Q, x) for Q quadratic and x linear
8. d = 3 and (F,G) degenerate ⇒ p = (F, x) for x linear
9. d = 3 and (F,G) non-degenerate ⇒ p defines variety of

minimal degree
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