Computational Lax Conjectures

Rafael Oliveira University of Waterloo

Number Theory Meeting IIT Kanpur February 2023

Overview

Introduction

- Hyperbolic Polynomials
- Hyperbolicity Cones
- Semidefinite Programming & Spectrahedral Representations
- Previous Work

• Our Results

- Ramanujan Detour Matching Polynomial
- General Lax Conjecture: Equivalent Formulation
- Main Result: Conditional Lower Bounds for Spectrahedral Representations

• Conclusion & Open Problems

Hyperbolic Polynomials

Let $\mathbf{x} = (x_1, \dots, x_m)$ be a vector of variables and $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{R}^m$.

Hyperbolic Polynomials

Let $\mathbf{x} = (x_1, \dots, x_m)$ be a vector of variables and $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{R}^m$.

Definition (Hyperbolic Polynomials)

A homogeneous polynomial $h(\mathbf{x}) \in \mathbb{R}[x_1, \dots, x_m]$ is hyperbolic with respect to a point $\mathbf{e} \in \mathbb{R}^m$ if

▶
$$h(\mathbf{e}) > 0$$
,

► for every vector $\mathbf{a} \in \mathbb{R}^m$, the univariate polynomial $f(t) := h(t\mathbf{e} - \mathbf{a})$ only has real zeros.

Hyperbolic Polynomials

Let $\mathbf{x} = (x_1, \dots, x_m)$ be a vector of variables and $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{R}^m$.

Definition (Hyperbolic Polynomials)

A homogeneous polynomial $h(\mathbf{x}) \in \mathbb{R}[x_1, \dots, x_m]$ is hyperbolic with respect to a point $\mathbf{e} \in \mathbb{R}^m$ if

►
$$h(\mathbf{e}) > 0$$
,

► for every vector $\mathbf{a} \in \mathbb{R}^m$, the univariate polynomial $f(t) := h(t\mathbf{e} - \mathbf{a})$ only has real zeros.

Example

Hyperbolicity Cones

Definition (Hyperbolicity Cones)

Given $h(\mathbf{x})\in\mathbb{R}[x_1,\ldots,x_m]$ hyperbolic w.r.t. $\mathbf{e}\in\mathbb{R}^m,$ its hyperbolicity cone is

 $\Lambda_+(h,\mathbf{e}) = \{\mathbf{a} \in \mathbb{R}^m \mid \text{ all roots of } h(t\mathbf{e}-\mathbf{a}) \text{ are non-negative} \}$

Hyperbolicity Cones

Definition (Hyperbolicity Cones)

Given $h(\mathbf{x})\in\mathbb{R}[x_1,\ldots,x_m]$ hyperbolic w.r.t. $\mathbf{e}\in\mathbb{R}^m,$ its hyperbolicity cone is

 $\Lambda_+(h,\mathbf{e}) = \{\mathbf{a} \in \mathbb{R}^m \mid \text{ all roots of } h(t\mathbf{e} - \mathbf{a}) \text{ are non-negative} \}$

Theorem ([Gårding, 1959])

- ▶ $\Lambda_+(h, \mathbf{e})$ is a closed convex cone
- Equivalent definition of Λ₊(h, e): closure of connected component of {a ∈ ℝ^m | h(a) ≠ 0} that contains e.

Hyperbolicity Cones

Definition (Hyperbolicity Cones)

Given $h(\mathbf{x})\in\mathbb{R}[x_1,\ldots,x_m]$ hyperbolic w.r.t. $\mathbf{e}\in\mathbb{R}^m,$ its hyperbolicity cone is

 $\Lambda_+(h,\mathbf{e}) = \{\mathbf{a} \in \mathbb{R}^m \mid \text{ all roots of } h(t\mathbf{e}-\mathbf{a}) \text{ are non-negative} \}$

Theorem ([Gårding, 1959])

- $\Lambda_+(h, \mathbf{e})$ is a closed convex cone
- Equivalent definition of Λ₊(h, e): closure of connected component of {a ∈ ℝ^m | h(a) ≠ 0} that contains e.
- Origins in PDE in works of Petrovsky and Gårding.
- Convex structure can be used for optimization [Güler, 1997]!
- Recent applications in combinatorics and optimization [Gurvits, 2004, Gurvits Leake 2021].

Hyperbolic Programming

Definition (Hyperbolic Programming - HP)

Given $h(\mathbf{x}) \in \mathbb{R}[x_1, \dots, x_m]$ hyperbolic with respect to $\mathbf{e} \in \mathbb{R}^m$, a hyperbolic program is the following minimization problem:

 $\inf_{\mathbf{s},\mathbf{t},\mathbf{t}} \mathbf{c}^{\dagger} \mathbf{x}$ s.t. $\mathbf{x} \in \Lambda_{+}(h, \mathbf{e})$

Hyperbolic Programming

Definition (Hyperbolic Programming - HP)

Given $h(\mathbf{x}) \in \mathbb{R}[x_1, \dots, x_m]$ hyperbolic with respect to $\mathbf{e} \in \mathbb{R}^m$, a hyperbolic program is the following minimization problem:

$$\begin{array}{l} \inf \ \mathbf{c}^\dagger \mathbf{x} \\ \mathsf{s.t.} \ \mathbf{x} \in \Lambda_+(h,\mathbf{e}) \end{array}$$

Remark

Hyperbolic programming generalizes Linear Programming (LP) and Semidefinite Programming (SDP)!

$$\blacktriangleright h(\mathbf{x}) = \ell_1(\mathbf{x}) \cdots \ell_m(\mathbf{x}) \tag{LPs}$$

•
$$h(\mathbf{x}) = \det(\sum A_i x_i)$$
, with A_i symmetric (SDPs)

Spectrahedral Sets & SDPs¹

Definition (Spectrahedral Sets)

A convex set $S \subseteq \mathbb{R}^m$ is spectrahedral if it can be defined by linear matrix inequalities (LMIs). That is, there exists $d \in \mathbb{N}$ and $d \times d$ symmetric matrices A_1, \ldots, A_m, B such that

$$S = \{ \mathbf{c} \in \mathbb{R}^m \mid \sum_i c_i \cdot A_i \succeq B \}.$$

S has non-empty interior if there is $\mathbf{e} \in S$ such that $\sum_i e_i \cdot A_i \succ B$.

¹SDP deals with projections of spectrahedral sets (spectrahedral shadows)

Spectrahedral Sets & SDPs¹

Definition (Spectrahedral Sets)

A convex set $S \subseteq \mathbb{R}^m$ is spectrahedral if it can be defined by linear matrix inequalities (LMIs). That is, there exists $d \in \mathbb{N}$ and $d \times d$ symmetric matrices A_1, \ldots, A_m, B such that

$$S = \{ \mathbf{c} \in \mathbb{R}^m \mid \sum_i c_i \cdot A_i \succeq B \}.$$

S has non-empty interior if there is $\mathbf{e} \in S$ such that $\sum_i e_i \cdot A_i \succ B$.

Open Question (General Lax Conjecture)

Is every hyperbolicity cone a spectrahedral set?

Relates the qualitative generality of HPs compared with SDPs.

¹SDP deals with projections of spectrahedral sets (spectrahedral shadows)

 $LP \subset SDP \subseteq HP.$

First containment proper.

 $LP \subset SDP \subseteq HP.$

First containment proper.

► General Lax Conjecture: last containment is equality

 $LP \subset SDP \subseteq HP.$

- First containment proper.
- General Lax Conjecture: last containment is equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Helton, Vinnikov, 2007]

 $LP \subset SDP \subseteq HP.$

- First containment proper.
- General Lax Conjecture: last containment is equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Helton, Vinnikov, 2007]
- General Lax Conjecture: qualitative aspects of SDPs vs HPs. Can we get quantitative aspects between them?

 $LP \subset SDP \subseteq HP.$

- First containment proper.
- General Lax Conjecture: last containment is equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Helton, Vinnikov, 2007]
- General Lax Conjecture: qualitative aspects of SDPs vs HPs. Can we get quantitative aspects between them?

Open Question (Quantitative General Lax Conjecture)

Is there a (poly degree) hyperbolicity cone which is "simple", but any spectrahedral representation of it requires matrices of large dimension?

 $LP \subset SDP \subseteq HP.$

First containment proper.

- General Lax Conjecture: last containment is equality
- Original conjecture was only for hyperbolic polynomials in 3 variables, which was proved by [Helton, Vinnikov, 2007]
- General Lax Conjecture: qualitative aspects of SDPs vs HPs. Can we get quantitative aspects between them?

Open Question (Quantitative General Lax Conjecture)

Is there a (poly degree) hyperbolicity cone which is "simple", but any spectrahedral representation of it requires matrices of large dimension?

Open Question (Explicit "hard" hyperbolicity cone) Is there explicit (poly degree) hyperbolicity cone for which any spectrahedral representation of it requires matrices of large dimension?

Previous Work

Theorem (Non-Explicit Lower Bounds [RRSW, 2019])

Exponential lower bounds on the dimension of minimal spectrahedral representations of non-explicit hyperbolicity cones (which are known to be spectrahedral).

- Exponential lower bounds for some polynomial in a large set of hyperbolic polynomials
- Carefully chosen perturbations of elementary symmetric polynomial

Previous Work

Theorem (Explicit Linear Lower Bounds [Kummer, 2016]) Optimal lower bounds on the dimension of minimal spectrahedral representations of explicit hyperbolicity cones of quadratic polynomials.

Linear lower bounds (on number of variables) for Lorentz cone

$$h(\mathbf{x}) = x_0^2 - x_1^2 - \dots - x_n^2$$

Matches upper bounds for known constructions

Previous Work

Theorem (Explicit Linear Lower Bounds [Kummer, 2016]) Optimal lower bounds on the dimension of minimal spectrahedral representations of explicit hyperbolicity cones of quadratic polynomials.

Linear lower bounds (on number of variables) for Lorentz cone

$$h(\mathbf{x}) = x_0^2 - x_1^2 - \dots - x_n^2$$

Matches upper bounds for known constructions
 No superpoly lower bound for explicit polynomials.

• Introduction

- Hyperbolic Polynomials
- Hyperbolicity Cones
- Semidefinite Programming & Spectrahedral Representations
- Previous Work

• Our Results

• Ramanujan Detour - Matching Polynomial

• General Lax Conjecture: Equivalent Formulation

• Main Result: Conditional Lower Bounds for Spectrahedral Representations

• Conclusion & Open Problems

Hyperbolicity of Matching Polynomial

Definition (Matching Polynomial [Amini 2019])

Let G(V, E) be an undirected graph $\mathbf{x} = (x_v)_{v \in V}, \ \mathbf{w} = (w_e)_{e \in E}$ be indeterminates.

- ▶ $\mathcal{M}(G)$ be the set of all matchings of G, $\mathcal{M}(G) \subseteq 2^E$
- \blacktriangleright for $M \in \mathcal{M}(G)$ let V(M) be the vertices in this matching

$$\mu_G(\mathbf{x}, \mathbf{w}) = \sum_{M \in \mathcal{M}(G)} (-1)^{|M|} \cdot \prod_{v \notin V(M)} x_v \cdot \prod_{e \in M} w_e^2.$$

Hyperbolicity of Matching Polynomial

Definition (Matching Polynomial [Amini 2019])

Let G(V, E) be an undirected graph $\mathbf{x} = (x_v)_{v \in V}, \ \mathbf{w} = (w_e)_{e \in E}$ be indeterminates.

- ▶ $\mathcal{M}(G)$ be the set of all matchings of G, $\mathcal{M}(G) \subseteq 2^E$
- \blacktriangleright for $M \in \mathcal{M}(G)$ let V(M) be the vertices in this matching

$$\mu_G(\mathbf{x}, \mathbf{w}) = \sum_{M \in \mathcal{M}(G)} (-1)^{|M|} \cdot \prod_{v \notin V(M)} x_v \cdot \prod_{e \in M} w_e^2.$$

Amini: μ_G is hyperbolic and the hyperbolicity cone of μ_G is spectrahedral.

Hyperbolicity of Matching Polynomial

Definition (Matching Polynomial [Amini 2019])

Let G(V, E) be an undirected graph $\mathbf{x} = (x_v)_{v \in V}, \ \mathbf{w} = (w_e)_{e \in E}$ be indeterminates.

- ▶ $\mathcal{M}(G)$ be the set of all matchings of G, $\mathcal{M}(G) \subseteq 2^E$
- \blacktriangleright for $M \in \mathcal{M}(G)$ let V(M) be the vertices in this matching

$$\mu_G(\mathbf{x}, \mathbf{w}) = \sum_{M \in \mathcal{M}(G)} (-1)^{|M|} \cdot \prod_{v \notin V(M)} x_v \cdot \prod_{e \in M} w_e^2.$$

Elementary proof of hyperbolicity using (multi-branched) continued fractions!

Ask me to show you after the talk :)

General Lax Conjecture - Equivalent Formulation

 $h(\mathbf{x}) \in \mathbb{R}[x_1, \dots, x_m]$ hyperbolic w.r.t. $\mathbf{e} \in \mathbb{R}^m$, does there exist $d \in \mathbb{N}$ and symmetric $d \times d$ matrices A_1, \dots, A_m such that

$$\Lambda_+(h, \mathbf{e}) = \{ \mathbf{c} \in \mathbb{R}^m \mid \sum_i c_i \cdot A_i \succeq 0 \}$$

General Lax Conjecture - Equivalent Formulation

Definition (Definite Determinantal Representations)

A homogeneous polynomial $h(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ has a definite determinantal representation at $\mathbf{e} \in \mathbb{R}^m$ if there are symmetric matrices A_1, \ldots, A_m s.t.:

$$\sum_{i} e_i \cdot A_i \succ 0$$

$$h(\mathbf{x}) = \det(\sum_{i} x_i \cdot A_i)$$

General Lax Conjecture - Equivalent Formulation

Definition (Definite Determinantal Representations)

A homogeneous polynomial $h(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ has a definite determinantal representation at $\mathbf{e} \in \mathbb{R}^m$ if there are symmetric matrices A_1, \ldots, A_m s.t.:

$$\blacktriangleright \sum_{i} e_i \cdot A_i \succ 0$$

$$\blacktriangleright h(\mathbf{x}) = \det(\sum_i x_i \cdot A_i)$$

Proposition (General Lax Conjecture - Equivalent Formulation) For each $h(\mathbf{x})$ hyperbolic at e, there is $q(\mathbf{x})$ hyperbolic at e, s.t.:

- 1. $\Lambda_+(h, \mathbf{e}) \subseteq \Lambda_+(q, \mathbf{e})$
- 2. $h(\mathbf{x}) \cdot q(\mathbf{x})$ has a definite determinantal representation.

Main Result: Conditional Lower Bounds

Definition (Matching Polynomial [Amini 2019])

Let G(V, E) be an undirected graph $\mathbf{x} = (x_v)_{v \in V}, \ \mathbf{w} = (w_e)_{e \in E}$ be indeterminates.

- ▶ $\mathcal{M}(G)$ be the set of all matchings of G, $\mathcal{M}(G) \subseteq 2^E$
- \blacktriangleright for $M \in \mathcal{M}(G)$ let V(M) be the vertices in this matching

$$\mu_G(\mathbf{x}, \mathbf{w}) = \sum_{M \in \mathcal{M}(G)} (-1)^{|M|} \cdot \prod_{v \notin V(M)} x_v \cdot \prod_{e \in M} w_e^2.$$

Main Result: Conditional Lower Bounds

Definition (Matching Polynomial [Amini 2019])

Let G(V, E) be an undirected graph $\mathbf{x} = (x_v)_{v \in V}, \ \mathbf{w} = (w_e)_{e \in E}$ be indeterminates.

- ▶ $\mathcal{M}(G)$ be the set of all matchings of G, $\mathcal{M}(G) \subseteq 2^E$
- \blacktriangleright for $M \in \mathcal{M}(G)$ let V(M) be the vertices in this matching

$$\mu_G(\mathbf{x}, \mathbf{w}) = \sum_{M \in \mathcal{M}(G)} (-1)^{|M|} \cdot \prod_{v \notin V(M)} x_v \cdot \prod_{e \in M} w_e^2.$$

Theorem (Lower Bound [O. 2020])

If $G = K_{n,n}$ is the complete bipartite graph, then the minimal spectrahedral representation of the hyperbolicity cone of μ_G is superpolynomial, assuming that $VP \neq VNP$.

Theorem (Factors are closed in VP [Kaltofen 1989]) $F \in VP$, then so do all of its factors.

Theorem (Factors are closed in VP [Kaltofen 1989]) $F \in VP$, then so do all of its factors.

Corollary (Factors are closed in VP [Kaltofen 1989]) $F \notin VP$, then $F \cdot G \notin VP$ for any G.

Theorem (Factors are closed in VP [Kaltofen 1989]) $F \in VP$, then so do all of its factors.

Corollary (Factors are closed in VP [Kaltofen 1989]) $F \notin VP$, then $F \cdot G \notin VP$ for any G.

Combining Kaltofen with a bit of real AG yields the lower bound.

Theorem (Factors are closed in VP [Kaltofen 1989]) $F \in VP$, then so do all of its factors.

Corollary (Factors are closed in VP [Kaltofen 1989]) $F \notin VP$, then $F \cdot G \notin VP$ for any G.

Combining Kaltofen with a bit of real AG yields the lower bound.

matching polynomial irreducible

Theorem (Factors are closed in VP [Kaltofen 1989]) $F \in VP$, then so do all of its factors.

Corollary (Factors are closed in VP [Kaltofen 1989]) $F \notin VP$, then $F \cdot G \notin VP$ for any G.

Combining Kaltofen with a bit of real AG yields the lower bound.

- matching polynomial irreducible
- irreducible polynomial minimally defines variety
 Any other polynomial defining variety must be a multiple of it

Theorem (Factors are closed in VP [Kaltofen 1989]) $F \in VP$, then so do all of its factors.

Corollary (Factors are closed in VP [Kaltofen 1989]) $F \notin VP$, then $F \cdot G \notin VP$ for any G.

Combining Kaltofen with a bit of real AG yields the lower bound.

- matching polynomial irreducible
- irreducible polynomial minimally defines variety
 Any other polynomial defining variety must be a multiple of it
- Equivalent formulation of Lax conjecture + Kaltofen yield lower bound.

Introduction

- Hyperbolic Polynomials
- Hyperbolicity Cones
- Semidefinite Programming & Spectrahedral Representations
- Previous Work

• Our Results

- Ramanujan Detour Matching Polynomial
- General Lax Conjecture: Equivalent Formulation
- Main Result: Conditional Lower Bounds for Spectrahedral Representations

• Conclusion & Open Problems

This work: first superpoly lower bound on the size of any spectrahedral representation for **explicit** polynomial (p-degree) (assuming $VP \neq VNP$).

This work: first superpoly lower bound on the size of any spectrahedral representation for **explicit** polynomial (p-degree) (assuming $VP \neq VNP$).

Lower bound is conditional

This work: first superpoly lower bound on the size of any spectrahedral representation for **explicit** polynomial (p-degree) (assuming $VP \neq VNP$).

- Lower bound is conditional
- Explicit polynomial is also "hard to compute"

This work: first superpoly lower bound on the size of any spectrahedral representation for **explicit** polynomial (p-degree) (assuming $VP \neq VNP$).

- Lower bound is conditional
- Explicit polynomial is also "hard to compute"

Open Question (Quantitative General Lax Conjecture) Is there a hyperbolicity cone which is "simple", but any spectrahedral representation of it requires matrices of large dimension?

This work: first superpoly lower bound on the size of any spectrahedral representation for **explicit** polynomial (p-degree) (assuming $VP \neq VNP$).

- Lower bound is conditional
- Explicit polynomial is also "hard to compute"

Open Question (Quantitative General Lax Conjecture) Is there a hyperbolicity cone which is "simple", but any spectrahedral representation of it requires matrices of large dimension?

Open Question (Explicit "hard" hyperbolicity cone)

Is there an explicit hyperbolicity cone for which any spectrahedral representation of it requires matrices of superpolynomial dimension?

Open Question (General Lax Conjecture) Are all hyperbolicity cones spectrahedral?

Open Question (General Lax Conjecture) Are all hyperbolicity cones spectrahedral?

Open Question (Extended Formulations?)

Is there an *explicit* (poly degree) hyperbolicity cone for which any spectrahedral shadow representation of it requires matrices of super polynomial dimension?

Last question is open even for non-explicit polynomials.

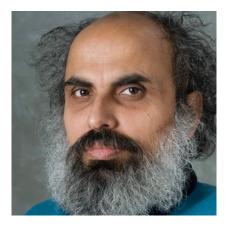
Open Question (General Lax Conjecture) Are all hyperbolicity cones spectrahedral?

Open Question (Extended Formulations?)

Is there an *explicit* (poly degree) hyperbolicity cone for which any spectrahedral shadow representation of it requires matrices of super polynomial dimension?

Last question is open even for non-explicit polynomials.

Open Question (Continued Fractions - Open Ended) Could the multi-branched partial fraction method prove the Lax Conjecture?



Bold conjecture time!

Targeted Conjectures

- 1. $\mathcal{S}(F):=$ algebraic formula size for F
- 2. $S_{hom}(F) :=$ homogeneous formula size F
- 3. if $F \in \mathbb{R}_{\geq 0}[x_1, \ldots, x_n]$, define $\mathcal{S}_{mon}(F)$ as the minimum size of a monotone formula computing F

Targeted Conjectures

- 1. $\mathcal{S}(F):=$ algebraic formula size for F
- 2. $S_{hom}(F) :=$ homogeneous formula size F
- 3. if $F \in \mathbb{R}_{\geq 0}[x_1, \ldots, x_n]$, define $\mathcal{S}_{mon}(F)$ as the minimum size of a monotone formula computing F
- ▶ $S_{\Lambda}(h) :=$ spectrahedral complexity of $\Lambda(h, \mathbf{e})$
- $S_{\pi,\Lambda}(h) :=$ spectrahedral shadow complexity of $\Lambda(h, \mathbf{e})$

Targeted Conjectures

- 1. $\mathcal{S}(F):=$ algebraic formula size for F
- 2. $S_{hom}(F) :=$ homogeneous formula size F
- 3. if $F \in \mathbb{R}_{\geq 0}[x_1, \ldots, x_n]$, define $\mathcal{S}_{mon}(F)$ as the minimum size of a monotone formula computing F
- ▶ $S_{\Lambda}(h) :=$ spectrahedral complexity of $\Lambda(h, \mathbf{e})$
- ▶ $S_{\pi,\Lambda}(h) :=$ spectrahedral shadow complexity of $\Lambda(h, \mathbf{e})$

Conjecture

$$\mathcal{S}_{\Lambda}(h) = \mathsf{poly}(\mathcal{S}_{hom}(h), \mathcal{S}_{mon}(h))$$

and

$$\mathcal{S}_{\pi,\Lambda}(h) = \mathsf{poly}(\mathcal{S}(h))$$

References I

Amini, Nima (2019)

Spectrahedrality of hyperbolicity cones of multivariate matching polynomials

Journal of Algebraic Combinatorics 50(2), 165 - 190

Gårding, Lars (1959)

An inequality for hyperbolic polynomials

Journal of Mathematics and Mechanics 957-965.

Güler, Osman (1997)

Hyperbolic polynomials and interior point methods for convex programming

Mathematics of Operations Research 22(2), 350-377.

Gurvits, Leonid (2004)

Combinatorial and algorithmic aspects of hyperbolic polynomials arXiv preprint math/0404474.

References II

Gurvits, Leonid, and Leake, Jonathan (2021)

Capacity lower bounds via productization.

Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.

Helton, J William and Vinnikov, Victor (2007)

Linear matrix inequality representation of sets

Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 60(5), 654–674.

Kaltofen, Erich (1989)

Factorization of polynomials given by straight-line programs Randomness and Computation 5, 375–412

Kummer, Mario (2016)

Two results on the size of spectrahedral descriptions

SIAM Journal on Optimization, 26(1), 589 – 601.

References III

Oliveira, Rafael (2020)

Conditional lower bounds on the spectrahedral representation of explicit hyperbolicity cones

Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, 396 – 401

Raghavendra, Prasad and Ryder, Nick and Srivastava, Nikhil and Weitz, Benjamin (2019)

 $\ensuremath{\mathsf{Exponential}}$ lower bounds on spectrahedral representations of hyperbolicity cones

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms 2322 – 2332