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Hyperbolic Polynomials
Let x = (x1, . . . , xm) be a vector of variables and
a = (a1, . . . , am) ∈ Rm.

Definition (Hyperbolic Polynomials)
A homogeneous polynomial h(x) ∈ R[x1, . . . , xm] is hyperbolic
with respect to a point e ∈ Rm if
▶ h(e) > 0,
▶ for every vector a ∈ Rm, the univariate polynomial

f(t) := h(te − a) only has real zeros.

Example
▶ h(x) = x1 · x2 · · ·xn, e = (1, . . . , 1)

▶ m =
(
n+1
2

)
, X symmetric n× n matrix, e = In

h(X) = det(X)
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Hyperbolicity Cones
Definition (Hyperbolicity Cones)
Given h(x) ∈ R[x1, . . . , xm] hyperbolic w.r.t. e ∈ Rm, its
hyperbolicity cone is

Λ+(h, e) = {a ∈ Rm | all roots of h(te − a) are non-negative}

Theorem ([Gårding, 1959])
▶ Λ+(h, e) is a closed convex cone
▶ Equivalent definition of Λ+(h, e): closure of connected

component of {a ∈ Rm | h(a) ̸= 0} that contains e.

▶ Origins in PDE in works of Petrovsky and Gårding.
▶ Convex structure can be used for optimization [Güler, 1997]!
▶ Recent applications in combinatorics and

optimization [Gurvits, 2004,Gurvits Leake 2021].
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Hyperbolic Programming
Definition (Hyperbolic Programming - HP)
Given h(x) ∈ R[x1, . . . , xm] hyperbolic with respect to e ∈ Rm, a
hyperbolic program is the following minimization problem:

inf c†x
s.t. x ∈ Λ+(h, e)

Remark
Hyperbolic programming generalizes Linear Programming (LP) and
Semidefinite Programming (SDP)!
▶ h(x) = ℓ1(x) · · · ℓm(x) (LPs)
▶ h(x) = det(

∑
Aixi), with Ai symmetric (SDPs)
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Spectrahedral Sets & SDPs1

Definition (Spectrahedral Sets)
A convex set S ⊆ Rm is spectrahedral if it can be defined by linear
matrix inequalities (LMIs). That is, there exists d ∈ N and d× d
symmetric matrices A1, . . . , Am, B such that

S = {c ∈ Rm |
∑
i

ci ·Ai ⪰ B}.

S has non-empty interior if there is e ∈ S such that
∑

i ei ·Ai ≻ B.

Open Question (General Lax Conjecture)
Is every hyperbolicity cone a spectrahedral set?

Relates the qualitative generality of HPs compared with SDPs.

1SDP deals with projections of spectrahedral sets (spectrahedral shadows)
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General Lax Conjecture
LP ⊂ SDP ⊆ HP.

▶ First containment proper.

▶ General Lax Conjecture: last containment is equality
▶ Original conjecture was only for hyperbolic polynomials in 3

variables, which was proved by [Helton, Vinnikov, 2007]
▶ General Lax Conjecture: qualitative aspects of SDPs vs HPs.

Can we get quantitative aspects between them?
Open Question (Quantitative General Lax Conjecture)
Is there a (poly degree) hyperbolicity cone which is “simple”, but
any spectrahedral representation of it requires matrices of large
dimension?
Open Question (Explicit “hard” hyperbolicity cone)
Is there explicit (poly degree) hyperbolicity cone for which any
spectrahedral representation of it requires matrices of large
dimension?
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Previous Work
Theorem (Non-Explicit Lower Bounds [RRSW, 2019])
Exponential lower bounds on the dimension of minimal
spectrahedral representations of non-explicit hyperbolicity cones
(which are known to be spectrahedral).
▶ Exponential lower bounds for some polynomial in a large set

of hyperbolic polynomials
▶ Carefully chosen perturbations of elementary symmetric

polynomial

Theorem (Explicit Linear Lower Bounds [Kummer, 2016])
Optimal lower bounds on the dimension of minimal spectrahedral
representations of explicit hyperbolicity cones of quadratic
polynomials.
▶ Linear lower bounds (on number of variables) for Lorentz cone

h(x) = x20 − x21 − · · · − x2n

▶ Matches upper bounds for known constructions

No superpoly lower bound for explicit polynomials.
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Hyperbolicity of Matching Polynomial
Definition (Matching Polynomial [Amini 2019])
Let G(V,E) be an undirected graph x = (xv)v∈V , w = (we)e∈E
be indeterminates.
▶ M(G) be the set of all matchings of G, M(G) ⊆ 2E

▶ for M ∈ M(G) let V (M) be the vertices in this matching
µG(x,w) =

∑
M∈M(G)

(−1)|M | ·
∏

v ̸∈V (M)

xv ·
∏
e∈M

w2
e .
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Amini: µG is hyperbolic and the hyperbolicity cone of µG is
spectrahedral.
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Elementary proof of hyperbolicity using (multi-branched) continued
fractions!

Ask me to show you after the talk :)



General Lax Conjecture - Equivalent
Formulation

h(x) ∈ R[x1, . . . , xm] hyperbolic w.r.t. e ∈ Rm, does there exist
d ∈ N and symmetric d× d matrices A1, . . . , Am such that

Λ+(h, e) = {c ∈ Rm |
∑
i

ci ·Ai ⪰ 0}

Definition (Definite Determinantal Representations)
A homogeneous polynomial h(x) ∈ R[x] has a definite
determinantal representation at e ∈ Rm if there are symmetric
matrices A1, . . . , Am s.t.:
▶ ∑

i ei ·Ai ≻ 0

▶ h(x) = det(
∑

i xi ·Ai)

Proposition (General Lax Conjecture - Equivalent Formulation)
For each h(x) hyperbolic at e, there is q(x) hyperbolic at e, s.t.:

1. Λ+(h, e) ⊆ Λ+(q, e)
2. h(x) · q(x) has a definite determinantal representation.
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Main Result: Conditional Lower Bounds
Definition (Matching Polynomial [Amini 2019])
Let G(V,E) be an undirected graph x = (xv)v∈V , w = (we)e∈E
be indeterminates.
▶ M(G) be the set of all matchings of G, M(G) ⊆ 2E

▶ for M ∈ M(G) let V (M) be the vertices in this matching
µG(x,w) =

∑
M∈M(G)

(−1)|M | ·
∏

v ̸∈V (M)

xv ·
∏
e∈M

w2
e .

Theorem (Lower Bound [O. 2020])
If G = Kn,n is the complete bipartite graph, then the minimal
spectrahedral representation of the hyperbolicity cone of µG is
superpolynomial, assuming that VP ̸= VNP.
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Factoring and Circuit Size
Theorem (Factors are closed in VP [Kaltofen 1989])
F ∈ VP, then so do all of its factors.

Corollary (Factors are closed in VP [Kaltofen 1989])
F ̸∈ VP, then F ·G ̸∈ VP for any G.

Combining Kaltofen with a bit of real AG yields the lower bound.

▶ matching polynomial irreducible
▶ irreducible polynomial minimally defines variety

Any other polynomial defining variety must be a multiple of it
▶ Equivalent formulation of Lax conjecture + Kaltofen yield

lower bound.
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Conclusion & Open Questions
This work: first superpoly lower bound on the size of any
spectrahedral representation for explicit polynomial (p-degree)
(assuming VP ̸= VNP).

▶ Lower bound is conditional
▶ Explicit polynomial is also “hard to compute”

Open Question (Quantitative General Lax Conjecture)
Is there a hyperbolicity cone which is “simple”, but any
spectrahedral representation of it requires matrices of large
dimension?

Open Question (Explicit “hard” hyperbolicity cone)
Is there an explicit hyperbolicity cone for which any spectrahedral
representation of it requires matrices of superpolynomial
dimension?
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Conclusion & Open Questions
Open Question (General Lax Conjecture)
Are all hyperbolicity cones spectrahedral?

Open Question (Extended Formulations?)
Is there an explicit (poly degree) hyperbolicity cone for which any
spectrahedral shadow representation of it requires matrices of
super polynomial dimension?

Last question is open even for non-explicit polynomials.

Open Question (Continued Fractions - Open Ended)
Could the multi-branched partial fraction method prove the Lax
Conjecture?
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Bold conjecture time!



Targeted Conjectures
1. S(F ) := algebraic formula size for F
2. Shom(F ) := homogeneous formula size F

3. if F ∈ R≥0[x1, . . . , xn], define Smon(F ) as the minimum size
of a monotone formula computing F

▶ SΛ(h) := spectrahedral complexity of Λ(h, e)
▶ Sπ,Λ(h) := spectrahedral shadow complexity of Λ(h, e)

Conjecture

SΛ(h) = poly(Shom(h),Smon(h))

and

Sπ,Λ(h) = poly(S(h))



Targeted Conjectures
1. S(F ) := algebraic formula size for F
2. Shom(F ) := homogeneous formula size F

3. if F ∈ R≥0[x1, . . . , xn], define Smon(F ) as the minimum size
of a monotone formula computing F

▶ SΛ(h) := spectrahedral complexity of Λ(h, e)
▶ Sπ,Λ(h) := spectrahedral shadow complexity of Λ(h, e)

Conjecture

SΛ(h) = poly(Shom(h),Smon(h))

and

Sπ,Λ(h) = poly(S(h))



Targeted Conjectures
1. S(F ) := algebraic formula size for F
2. Shom(F ) := homogeneous formula size F

3. if F ∈ R≥0[x1, . . . , xn], define Smon(F ) as the minimum size
of a monotone formula computing F

▶ SΛ(h) := spectrahedral complexity of Λ(h, e)
▶ Sπ,Λ(h) := spectrahedral shadow complexity of Λ(h, e)

Conjecture

SΛ(h) = poly(Shom(h),Smon(h))

and

Sπ,Λ(h) = poly(S(h))



References I
Amini, Nima (2019)
Spectrahedrality of hyperbolicity cones of multivariate matching
polynomials
Journal of Algebraic Combinatorics 50(2), 165 – 190

Gårding, Lars (1959)
An inequality for hyperbolic polynomials
Journal of Mathematics and Mechanics 957–965.

Güler, Osman (1997)
Hyperbolic polynomials and interior point methods for convex
programming
Mathematics of Operations Research 22(2), 350–377.

Gurvits, Leonid (2004)
Combinatorial and algorithmic aspects of hyperbolic polynomials
arXiv preprint math/0404474.



References II
Gurvits, Leonid, and Leake, Jonathan (2021)
Capacity lower bounds via productization.
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing.

Helton, J William and Vinnikov, Victor (2007)
Linear matrix inequality representation of sets
Communications on Pure and Applied Mathematics: A Journal Issued by
the Courant Institute of Mathematical Sciences 60(5), 654–674.

Kaltofen, Erich (1989)
Factorization of polynomials given by straight-line programs
Randomness and Computation 5, 375–412

Kummer, Mario (2016)
Two results on the size of spectrahedral descriptions
SIAM Journal on Optimization, 26(1), 589 – 601.



References III
Oliveira, Rafael (2020)
Conditional lower bounds on the spectrahedral representation of explicit
hyperbolicity cones
Proceedings of the 45th International Symposium on Symbolic and
Algebraic Computation, 396 – 401

Raghavendra, Prasad and Ryder, Nick and Srivastava, Nikhil and Weitz,
Benjamin (2019)
Exponential lower bounds on spectrahedral representations of
hyperbolicity cones
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms 2322 – 2332


	Introduction
	Hyperbolic Polynomials
	Hyperbolicity Cones
	Semidefinite Programming & Spectrahedral Representations
	Previous Work

	Our Results
	Ramanujan Detour - Matching Polynomial
	General Lax Conjecture: Equivalent Formulation
	Main Result: Conditional Lower Bounds for Spectrahedral Representations

	Conclusion & Open Problems

