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Introduction &
Background

Arithmetic Circuits and Factoring




Factoring in Real Life -

Basic routine in many tasks:

Fast decoding of Reed Solomon Codes

Used to compute:
* Primary Decompositionsof Ideals
 Grobner Bases, etc.

I
Can be done efficientlyin (randomized) poly time! %

In theory, interested in:
 Derandomization

* Parallel complexity
e Structure of factors



Arithmetic Circuits -

Definition by picture

Main measures: f=y2—x2
Size = # edges
-1
Depth = length of X y X

longest path from

root to leaf Model captures our notion of
algebraic computation

Many interesting polynomials have succinct rep. in
this model, such as Det,, (X ), or(z1,...,2y)

It is a major open questionwhether Perm,, has a
succinct rep. in this model.



Polynomial Factorization -

Problem: Given a circuit for P(x), where

P(x) = g1(x)g2(x) ... gr(x)

output circuits for g1 (X), g2(X), - . . , g (X)

» [LLL’82, Kal '89]: if P(x) is computed by a small circuit, then

so are the factorsg; (X), g9 (X), s Ok (X) Moreover
Kaltofen gives a randomized algorithm to compute factors

* Fundamental consequences to:
e Circuit Complexity & Pseudorandomness: [KI ‘04, DSY ’09]
 CodingTheory: [Sud ‘97, GS’06]
 Geometric Complexity Theory: [Mul’13]



What About Depth? -

[Kaltofen ’89]: factorization behaves nicely w.r.t. size.

What about depth?

More generally:

Structure: given polynomial P(x) in circuit class C, which
classes C™ efficiently compute the factors of P(x)?

e |If P(X) has a small depth circuit, do its factors have small
depth circuits?
* If P(X) has a small formula, do its factors have small formula?



Gap of Understanding

If P(x)is a polynomial with § monomialsand degree d

Kaltofen & depth reduction

Factors ofP(X)computed by formulas of
depth 4 and

size exp(O(Vd)).

General depth reductions [AV’08, Koi’12, GKKS’13, Tav’13]
give subexponential gap.

Can this be improved?



Why Bound Individual Degrees? -

Polynomials with bounded ind. deg. form a very rich class,
which generalizes multilinear polynomials.

Well studied, works of [Raz’06, RSY ’08, Raz’09, SV ’10,
SV 11, KS '152, KCS’15, KCS’16].

Bounded
Individual
Degree

Little is
known

Step towards
understanding

Multilinear general case

Trivial



e[

Theorem: If P(x)isa polynomial which:
* has individual degrees bounded by T°,
* iscomputed by a circuit (formula) of size S & depth d
Then any factorf(X) of P(X) is computed by a circuit
(formula) of size

poly(n', s)
d-+ 5

& depth

Furthermore, result provides a randomized algorithm for
computing all factors of P(X)in time poly(nr, S)




[DSY ’09]: if P(x,y) is computed by a circuit of size S, depth d

» deg, (P) is bounded by 1

Then its factors of the form y — g(X) have circuits of
depth d 4+ 3 and size poly(nr, 3)

Extend Hardness vs Randomness approach of [KI’04] to
bounded depth circuits.

[DSY ’09] noticed that only factors of the form y — g(x) are
important to extend [KI '04] to bounded depth.
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Supposeinputis:

P(x,y) = (y — g1(x))(y — 92(x))

Where

p1 = g1(0), no2 = g2(0) and py # po

How do we factor in this case?

Can try to build the homogeneous parts of g; (X) one
at a time.



-

Note that:

P(0,y) = (y — p1)(y — p2)

Which we know how to factor.

Hence, found the constant terms of the roots.

How to find the linear terms of the roots?




-

Setting Y =— [L1 intheinputpolynomial:

P(x,p1) = (1 — g1(x)) (1 — g2(x))

Since U1 7& 2, the constant term of

B — g2(x)
is nonzero, whereas the constant term of
B — g1(x)

is zero! Hence, linear term ofP(X7 Iul)equals the i
linear term of g7 (X), up to a constant factor. %



-

Continuing this way, we can recover the roots
and factor the input polynomial.

Hensel Lifting/Newton Iteration.

Pervasive in factoring algorithms, such as
[Zas '69, Kal 89, DSY '09], and many others.

[DSY '09]: if P(X, y) is computed by a circuit of size S, depth d
» deg, (P) is bounded by T

Then its factors of the form y — g(X) have circuits of
depth d 4+ 3 and size poly(nr, 3)




*  What if P(X, y) does not factor into linear
factors in Y?
Approximate roots in algebraic closure of [F(x)
by low degree polynomials in IF[X] .

* Whatif P(x, y) is not monicin y?
Use reversal to reduce the
number of variables ( N
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Approximation Polynomials -

Supposeinputis:

r—1
P(x,y)=y" +» Pi(x)y’
1=0

Which does not factor into linear factors. Let

P(Xv y) — f(Xa y)Q(X7 y)

where

k—1
fxy) =y"+ > fi(x)y’
1=0

Is irreducible and does not divide the other factor.



Approximation Polynomials -

Any polynomial factors completelyin the algebraic closure

of F(x)!

P(x,y) = H(y — ©i(x))
4
f(x,y) = H(y — ©i(x))

Where each (0; (X) is a “function” on the variables X



Approximation Polynomials -

Since P(x,y) and f(x, y) share roots (0; (X), can
try to approximate these roots by polynomials gi,t(X)
of degree { such that

f(%,9i.4(x))

only has terms of degree higherthan ¢.

Definition: we say that
f(x) =¢ g(x)

if the ponnomiaIf(X) — g(X) only has terms of degree
higher thant.




Approximation Polynomials -

Definition: we say that
f(x) =¢ g(x)

if the ponnomiaIf(X) — g(X) only has terms of degree
higher than Z.

This definition gives us a topology:
- Two polynomials are close if they agree on
low degree parts
- Can use this topology to derive analogs of
Taylor series for elements of [F(x).

Can “approximate” elements of [F(x) by polynomials! ‘,\‘_')’




Approximation Polynomials -

If we can find giyt(x)for each root ; (X) of f(x,y)
such that

f(x,9i,t(x)) =¢ 0

Then we can prove the following:

Lemma: the polynomials g; ;(x) are such that
k
Fxy) = | [(y— gia(x))
1=1

Can convert approximations to the roots into I
approximations to the factors! ﬁ




Approximation Polynomials -

How do we obtain these polynomials g; +(x)?

Since each (p, (X) is also a root of P(x, ), can
obtain g; 4(x) from P(x,y)via lifting!

Looking at our parameters:
k

Fxy) = | [ — gi.¢(x))

=1 v y,

Depth d + 4 size poly(n”, s)

With standard techniques, can recover f(x. y)
fi Observation: for the general case, need to keep the
product top fan in!

1=1
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Supposeinput now is:

ZP x)y’, Po(x)P,(x) # 0

Let

P(Xv y) — f(Xa y)Q(X7 y)

k
= Zfz’(x)y

isirreducible and does not divide the other factor.

where



The Game Plan -

Reduce to the monic case:

P(x,y) = (yr+2?§

1=0 T

k1
f(xy) = fr(x) - (yk + Z Jilx) yz)

i (%)

1. Recover f1(X) from P, (x)by some kind of induction
2. Recoverthe part of f(x, 1) thatdependson




Naive Recursion -

Let P(x,y)haveindividualdegrees, 71 variables
and computed by circuit of size Sand depth (]

Let T(s, n) be such that:

f(x,y) | P(x,y)

4

There exists ®(x, g/ )with
O(x,y) = f(x,9)
o depth d + 4
- sie < T'(s,n)

* topfan in product gate




Naive Recursion -

Our recurrence becomes:

T(s,n) < kT(3frs\,(n — 1) —I—\poly(nrj 32
Y

Recover f(x) fro o, = < part dependingon ¥

After ¢ steps, our recursion would become
T(s,n) <T((3r)'s,n—1t)+Q(n's)

Exponentialwhen { ~ 1 !



Dealing with Exp. Growth -

How do we avoid exponential growth?

Itis hard to get P, (X) from P(x,y) butitiseasy to
get Py(x) from P(x, y)

Py(x) = P(x,0)

Py (X) has smaller circuit size than P(x, y)!

What if we could make F) (X) the leading coefficient
of P(x,y)?




Definition by example: If

P(x,y) = Ps(x)y” + Pa(x)y* + Po()
Then its reversal is defined as

P(z,y) = Po(x)y® + Py(x)y + Ps(x)

The reversal can be efficiently computed from circuit
computing original polynomial.




Recursion with Reversal

If we take the reversal to compute the factors, our
recurrence for T'(s, n) becomes

T(s,n) < T(s,n— 1)+ poly(n”,9r%s)
\ / \ Y,
Y Y
After ¢ steps, oul Rff\?\ie\r,f(\)_(%)fzom P(}’éggrt dependingon Yy

T(s,n) < T(s,n —t)+ poly(n”,9r°s)

No exponential growth!
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P(x,y) = f(x,y)Q(x )»P(X y),= F(x,9)Q(x.y)

Size becomes 9r S
Depth remains d

ﬁ(X7 y) —t PO(X) °\G(X7 y)
Y
‘I\/Ionicin Y ‘

f(x,y) =¢ fo(x) -

\

9(x,y)

‘I\/Iomc in Y ‘




Each approximate root of g(X, y)is also approx. root

of G(x,y)
k

/

Depth

Size  poly(s,n")

Top gate: addition gate

d+ 3

By induction, fO (X) —¢ h(X)

Size. poly(s,n")
Depth d + 4
Top gate: product gate




f(x,y) = fux) - 9(x,y)
v /

Size. poly(s,n")

Depth d + 4

Top gate: product gate

f(X7 y) computed by circuit of

Size. poly(s,n")
Depth
Top gate: addition gate




Conclusions and
Open Problems




This Work - Recap -

We showed: If P(x)isa polynomial with individual degrees
bounded by 7°, and has a small low-depth circuit (formula),

then any factor f(x)of P(x)is computed bya small low-
depth circuit (formula).

Furthermore, result provides a randomized algorithm for
computingall factors of P(x)in time poly(n', s)




General Framework -

In [SY ’10], it is asked whether factors of low depth circuits
have poly size circuits of low depth, without the bounded
degree restriction.

Question open even for factors of the form y — g(x)

Theorem: If P(x, y)is a polynomial computed by a low
depth circuit, and all its approximate roots are computed by
small low depth circuits, then any factor of P(X, y) is
computed by small low depth circuits.

Corollary: To settle above conjecture, itis enough to solve
qguestion above for approximate roots, instead of factors of
the formy — g(x).




Open Questions -

e Remove exponentialdependence on the degree
for factors of the form y — g(x)

 Reducethe depth boundsin the work of [DSY ’09]
 Can we show that factors of sparse have small
depth 4 circuits?

 Derandomize polynomial factorization, even for
bounded individual degree polynomials.
* Questionis open even for sparse polynomials
* Will require stronger PITs than current
techniques



Thank you!



