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Introduction &	
Background	

Arithmetic Circuits and Factoring

1



Factoring	in	Real	Life

Basic	routine	in	many	tasks:

Used	to	compute:
• Primary	Decompositions	of	Ideals	
• Gröbner	Bases,	etc.

Fast	decoding	of	Reed	Solomon	Codes

Can	be	done	efficiently	in	(randomized)	poly	time!

In	theory,	interested	in:
• Derandomization
• Parallel	complexity
• Structure	of	factors



Arithmetic	Circuits

Model	captures	our	notion	of	
algebraic	computation

Definition by	picture

++

x y x
-1

×
f =	y2	– x2Main	measures:

Size	=	#	edges

Depth	=	length	of	
longest	path	from	

root	to	leaf

It	is	a	major	open	question	whether																			has	a	
succinct	rep.	in	this	model.

Permn

Many	interesting	polynomials	have	succinct	rep.	in	
this	model,	such	as																																																						.

Detn(X),�k(x1, . . . , xn)



Polynomial	Factorization

Problem:	Given	a	circuit	for												,	where

output	circuits	for	

P (x)

P (x) = g1(x)g2(x) . . . gk(x)

g1(x), g2(x), . . . , gk(x)

• [LLL	’82,	Kal ’89]:	if													is	computed	by	a	small	circuit,	then	
so	are	the	factors																																																	.	Moreover	
Kaltofen	gives	a	randomized	algorithm	to	compute	factors

P (x)
g1(x), g2(x), . . . , gk(x)

• Fundamental	consequences to:
• Circuit Complexity	&	Pseudorandomness:	[KI	’04,	DSY	’09]
• Coding	Theory:	[Sud ’97,	GS’06]
• Geometric	Complexity	Theory:	[Mul’13]



What	About	Depth?

Structure:	given	polynomial	 in	circuit	class				,	which	
classes							efficiently	compute	the	factors	of												?

P (x) C
C⇤ P (x)

[Kaltofen	’89]:	factorization	behaves	nicely	w.r.t.	size.

What	about	depth?	

More	generally:

• If													has	a	small	depth	circuit,	do	its	factors	have	small	
depth	circuits?

• If													has	a	small	formula,	do	its	factors	have	small	formula?

P (x)

P (x)



Gap	of	Understanding

General	depth	reductions	[AV’08,	Koi’12,	GKKS’13,	Tav’13]
give	subexponential	gap.	

Can	this	be	improved?

If												is	a	polynomial	with					monomials	and	degree					P (x) s d

Kaltofen	&	depth	reduction

Factors	of											computed	by	formulas	of	
depth	 and	

size																												.

P (x)
4

exp(

˜O(

p
d))



Polynomials	with	bounded	ind. deg.	form	a	very	rich	class,	
which	generalizes	multilinear	polynomials.
Well	studied,	works	of	[Raz ’06,	RSY	’08,	Raz ’09,	SV	’10,	
SV	’11,	KS	’152,	KCS’15,	KCS’16].

Why	Bound	Individual	Degrees?

Bounded	
Individual	
Degree

Multilinear

Trivial

Little	is	
known

Step	towards	
understanding	
general	case



This	Work

Theorem: If													is	a	polynomial	which:
• has	individual	degrees	bounded	by				,	
• is	computed	by	a	circuit	(formula)	of	size					&	depth				
Then	any	factor												of														is	computed	by	a	circuit	
(formula)	of	size																											

&	depth	

P (x)
r

s d
f(x) P (x)

d+ 5

Furthermore,	result	provides	a	randomized	algorithm	for	
computing	all	factors	of													in	timeP (x)

poly(nr, s)

poly(nr, s)



Prior	Work

[DSY	’09]: if																	is	computed	by	a	circuit	of	size				,	depth

• is	bounded	by	

Then	its	factors	of	the	form																			 have	circuits	of	
depth														and	size

P (x, y)

degy(P )

y � g(x)

Extend	Hardness	vs Randomness	approach of	[KI	’04]	to	
bounded	depth	circuits.

r

s d

poly(nr, s)d+ 3

[DSY ’09] noticed that	only	factors	of	the	form																					are	
important	to	extend	[KI	’04] to	bounded	depth.																				

y � g(x)
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Lifting

Suppose	input is:

Where

How	do	we	factor	in	this	case?

Can	try	to	build	the	homogeneous	parts	of														one	
at	a	time.

µ1 = g1(0), µ2 = g2(0) and µ1 6= µ2

P (x, y) = (y � g1(x))(y � g2(x))

gi(x)



Lifting

Note	that:

Which	we	know	how	to	factor.

Hence,	found	the	constant	terms	of	the	roots.

P (0, y) = (y � µ1)(y � µ2)

How	to	find	the	linear	terms	of	the	roots?



Lifting

Setting																								in	the	input	polynomial:

Since																							,	the	constant	term	of

is	nonzero,	whereas	the	constant	term	of	

is zero!	Hence,	linear	term	of																						equals	the	
linear	term	of													,	up	to	a	constant	factor.		

y = µ1

µ1 6= µ2

µ1 � g1(x)

µ1 � g2(x)

P (x, µ1) = (µ1 � g1(x))(µ1 � g2(x))

P (x, µ1)
g1(x)



Lifting

Continuing	this	way,	we	can	recover	the	roots
and factor	the	input	polynomial.

Hensel Lifting/Newton	Iteration.	
Pervasive	in	factoring	algorithms,	such	as	

[Zas ’69,	Kal ’89,	DSY	’09],	and	many	others.

[DSY	’09]: if																	is	computed	by	a	circuit	of	size				,	depth

• is	bounded	by	

Then	its	factors	of	the	form																			 have	circuits	of	
depth														and	size

P (x, y)

degy(P )

y � g(x)

r

s d

poly(nr, s)d+ 3



Lifting

Two	main	issues

• What	if																	is	not	monic in				?
Use	reversal	to	reduce	the	
number	of	variables	

yP (x, y)

• What	if																	does	not	factor	into	linear	
factors	in				?

Approximate	roots	in	algebraic	closure	of	
by	low	degree	polynomials	in											.	

P (x, y)
y

F(x)
F[x]
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Approximation	Polynomials

Suppose	input is:

Which	does	not factor	into	linear	factors.	Let

where	

Is irreducible	and	does	not	divide	the	other	factor.

P (x, y) = f(x, y)Q(x, y)

f(x, y) = yk +
k�1X

i=0

fi(x)y
i

P (x, y) = yr +
r�1X

i=0

Pi(x)y
i



Approximation	Polynomials

f(x, y) =
kY

i=1

(y � 'i(x))

P (x, y) =
rY

i=1

(y � 'i(x))

Where	each																is	a	“function”	on	the	variables	'i(x) x

Any	polynomial	factors	completely	in	the	algebraic	closure	
of												!	F(x)



Approximation	Polynomials

Since																	and																	share	roots															,	can	
try	to	approximate	these	roots	by	polynomials														
of	degree					such	that

gi,t(x)
P (x, y) f(x, y) 'i(x)

t

f(x, gi,t(x))

only has	terms	of	degree	higher	than .t

Definition:	we	say	that	

if	the	polynomial																													only	has	terms	of	degree	
higher	than			.

f(x)� g(x)
t

f(x) =t g(x)



Approximation	Polynomials

This	definition	gives	us	a	topology:
- Two	polynomials	are	close	if	they	agree	on	
low	degree	parts

- Can use	this	topology to	derive	analogs	of	
Taylor	series	for	elements	of	!(#).

Can	“approximate”	elements	of	!(#) by	polynomials!

Definition:	we	say	that	

if	the	polynomial																													only	has	terms	of	degree	
higher	than			.

f(x)� g(x)
t

f(x) =t g(x)



Approximation	Polynomials

Then	we	can	prove	the	following:

If	we	can	find	 for	each	root																of	
such	that	

gi,t(x) f(x, y)'i(x)

f(x, gi,t(x)) =t 0

Lemma:	the	polynomials																are	such	that

f(x, y) =t

kY

i=1

(y � gi,t(x))

gi,t(x)

Can	convert	approximations	to	the	roots	into	
approximations	to	the	factors!



Approximation	Polynomials

Looking	at	our	parameters:	

How	do	we	obtain	these	polynomials															?gi,t(x)

Since each																	is	also	a	root	of																	,	can	
obtain																	from																	via	lifting!

'i(x) P (x, y)
gi,t(x) P (x, y)

With	standard	techniques,	can	recover																					
from	

f(x, y)
kY

i=1

(y � gi,t(x))

f(x, y) =t

kY

i=1

(y � gi,t(x))

Depth															size	d+ 4 poly(nr, s)

Observation:	for	the	general	case,	need	to	keep	the
product	top	fan	in!
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Set	Up

Suppose	input now	is:

Let

where	

is irreducible	and	does	not	divide	the	other	factor.

P (x, y) = f(x, y)Q(x, y)

P (x, y) =
rX

i=0

Pi(x)y
i, P0(x)Pr(x) 6= 0

f(x, y) =
kX

i=0

fi(x)y
i



The	Game	Plan

Reduce to	the	monic case:

P (x, y) = Pr(x) ·
 
yr +

r�1X

i=0

Pi(x)

Pr(x)
yi
!

f(x, y) = fk(x) ·
 
yk +

k�1X

i=0

fi(x)

fk(x)
yi
!

1. Recover															from														by	some	kind	of	induction
2. Recover	the	part	of																		that	depends	on					

fk(x) Pr(x)
f(x, y) y



There	exists																			with		�(x, y)

• depth		d+ 4
• size		  T (s, n)

Naïve	Recursion

Let																	have	individual	degrees				,						variables	
and	computed	by	circuit	of	size					and	depth	s

r nP (x, y)
d

Let																be	such	that:T (s, n)

f(x, y) | P (x, y)

�(x, y) =t f(x, y)

• top	fan	in	product	gate			



Naïve	Recursion

Our	recurrence	becomes:

After				steps,	our	recursion	would	becomet

Exponential	when																!t ⇠ n

T (s, n)  T (3rs, n� 1) + poly(nr, s)

T (s, n)  T ((3r)ts, n� t) + ⌦(ntrs)

Recover															fromfk(x) Pr(x)Size	of	part	depending	on	y



Dealing	with	Exp.	Growth

How	do	we	avoid	exponential	growth?

P0(x) = P (x, 0)

It	is	hard	to	get from																,	but	it	is	easy	to																	
get																from																	

P (x, y)
P (x, y)P0(x)
Pr(x)

has	smaller	circuit	size	than																!P0(x) P (x, y)

What	if	we	could	make																	the	leading	coefficient	
of																?P (x, y)

P0(x)



Reversal

The	reversal	can	be	efficiently	computed	from	circuit	
computing	original	polynomial.

Definition	by	example:	If																	

Then	its	reversal is	defined	as

P (x, y) = P5(x)y
5 + P4(x)y

4 + P0(x)

P̃ (x, y) = P0(x)y
5 + P4(x)y + P5(x)



Recursion	with	Reversal

After				steps,	our	recursion	remains

No	exponential	growth!

If	we	take	the	reversal	to	compute	the	factors,	our		
recurrence	for																becomesT (s, n)

t Size	of	part	depending	on	yRecover															fromf0(x) P0(x)

T (s, n)  T (s, n� 1) + poly(nr, 9r2s)

T (s, n)  T (s, n� t) + poly(nr, 9r2s)
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Outline

P (x, y) = f(x, y)Q(x, y) P̃ (x, y) = f̃(x, y)Q̃(x, y)

Size	becomes
Depth	remains	

9r2s
d

Monic in	y

f̃(x, y) =t f0(x) · g(x, y)

Monic in	y

P̃ (x, y) =t P0(x) ·G(x, y)



Size	
Depth	
Top	gate:	product	gate

poly(s, nr)
d+ 4

Outline

Each	approximate	root	of																			is	also	approx.	root	
of	

g(x, y)
G(x, y)

g(x, y) =t

kY

i=1

(y � gi,t(x))

Size	
Depth	
Top	gate:	addition	gate

poly(s, nr)
d+ 3

By	induction,																			f0(x) =t h(x)
Size	
Depth	
Top	gate:	product	gate

poly(s, nr)
d+ 4



Size	
Depth	
Top	gate:	product	gate

poly(s, nr)
d+ 4

Outline

f̃(x, y) =t h(x) · g(x, y)

f̃(x, y) computed	by	circuit	of																				

Size	
Depth	
Top	gate:	addition	gate

poly(s, nr)
d+ 5



3 Conclusions and
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This	Work	- Recap

We	showed: If													is	a	polynomial	with	individual	degrees	
boundedby				,	and	has	a	small	low-depth	circuit	(formula),				
then	any	factor												of														is	computed	by	a	small	low-
depth circuit	(formula).

P (x)
r
f(x) P (x)

Furthermore,	result	provides	a	randomized	algorithm	for	
computing	all	factors	of													in	timeP (x) poly(nr, s)



General	Framework

In	[SY	’10],	it	is	asked	whether	factors	of	low	depth	circuits	
have	poly	size	circuits	of	low	depth,	without	the	bounded	
degree	restriction.	

Theorem: If																is	a	polynomial	computed	by	a	low	
depth	circuit,	and	all	its	approximate	roots	are	computed	by	
small	low	depth	circuits,	then	any	factor of																		is	
computed	by	small	low	depth	circuits.

P (x, y)

P (x, y)

Corollary:To	settle	above	conjecture,	it	is	enough	to	solve	
question	above	for	approximate	roots,	instead	of	factors	of	
the	form																		.

Question	open	even	for	factors	of	the	form	 y � g(x)

y � g(x)



Open	Questions

• Reduce	the	depth	bounds	in	the	work	of	[DSY	’09]
• Can	we	show	that	factors	of	sparse	have	small	

depth	4	circuits?

• Derandomize	polynomial	factorization,	even	for	
bounded	individual	degree	polynomials.
• Question	is	open	even	for	sparse	polynomials
• Will	require	stronger	PITs	than	current	

techniques

• Remove	exponential	dependence	on	the	degree	
for	factors	of	the	form		y � g(x)



Thank	you!


