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1 Introduction

Several problems in mathematics, computer science, machine learning and statis-
tics exhibit inherent symmetries which can be described by a group acting linearly
on a vector space. Oftentimes, these symmetries are implicit or disguised in the
“natural” description of the problems. Thus, many qualitative and quantitative
properties inherent to these problems have laid dormant or unexplored until recent
developments, which made crucial use of the group action structure, allowed for
significant progress in such problems.
In this survey, we will give an overview of the phenomenon described above. Our
emphasis will be on the geometric properties of such group actions and on the
generalization of convexity that arises from natural optimization problems along
group orbits, which we term by geodesic convexity.

1.1 Brief history

In the early days of invariant theory, the period known as classical invariant theory
(late 1800s), the question of understanding geometric properties of plane curves
which were invariant under changes of bases received a lot of attention. Notable
mathematicians who worked on this question at the time include Aronhold, Cleb-
sch, Gordan, Cayley, Sylvester and Hilbert. During this time, their focus was on
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finding functions which associate a number to each curve that was independent of
the choice of basis.

Mathematicians at the time came to realize that such a problem (invariance
under change of basis) was about the action of a group on the ambient vector
space, usually the action of the special linear group SLn.C/, and that the functions
that they were studying were polynomial functions over the coefficients of the
polynomials defining the curves being studied.

A simple example of the problem above, which is familiar to us all (but most
likely not in this language), is the problem of deciding when a quadratic form in
two variables, given by ax2CbxyCcy2 2 CŒx; y�, has a double root. As it turns
out, the property of “having a double root” is independent of the choice of basis
(that is, if we change basis .x0; y0/ D .x; y/A, the quadratic will still have a double
root) and it is characterized by the vanishing of the discriminant � WD b2 � 4ac.
Thus, the property of having a double root is completely captured by a polynomial
function on the coefficients of the quadratic form (i.e. a; b; c).

The major research effort at the time was to determine the set of all polynomial
invariants of “nice” group actions on certain vector spaces. Since the set of all
invariant polynomials forms a C-algebra, one of the main questions at the time,
which was termed the first fundamental theorem of invariant theory, was to prove
whether a group action had a finite set of generating invariants as a C-algebra.

This research effort culminated inHilbert’s seminal worksHilbert (1890, 1893),
where he proved such fundamental theorems as the Hilbert Basis Theorem, the
Nullstellensatz, the Syzygy theorem, and the rationality of theHilbert series. Hilbert’s
motivation to prove these theorems was to give a constructive proof that the ring
of invariants was finitely generated, and to give a full description of the ring of
invariants.

While the algebraic side of invariant theory has received much attention since
the nineteenth century, it was only in the seminal works of Mumford and the strik-
ing developments by Kempf, Ness, Kostant and Kirwan, among others, that the
geometric side of invariant theory really flourished. In geometric invariant the-
ory,1 given a group G acting on a vector space V , the goal is to understand the
quotient space V=G given by the set of orbits of the group action on V .

In the development of geometric invariant theory by Mumford, a special opti-
mization problem is central: the null-cone problem, which was already defined in
the work of Hilbert (1893). We will study this problem in greater detail in Chap-

1The setting of geometric invariant theory is more general, and we have decided to remain with
the setting of a group acting on a vector space for simplicity. For the more general treatment we
refer the reader to Mumford, Fogarty, and Kirwan (1994) and Wallach (2017).
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ter 2, but now through the lens of optimization over a Riemannian manifold.

1.2 Examples of scaling problems
In this section we describe some concrete examples of scaling problems which
have seen important progress in recent years by the use of the optimization ap-
proach to geometric invariant theory. The beauty of these concrete examples, apart
from being fundamental problems in their respective subareas of mathematics, is
that we can state them even without the definitions from invariant theory, and we
will do so in order to motivate the reader and to showcase how the inherent sym-
metries of a problem may be disguised in its statement.

1.2.1 Matrix Scaling
Given a non-negative n � n matrix A 2 Matn.R/, we say that A is doubly-
stochastic if all row and column sums of A are equal to 1. An important problem,
which appears in several disciplines ranging from economics, engineering, trans-
portation theory and computer science, is the question of deciding when one can
“transform” a non-negative matrix A (approximately) into a doubly-stochastic ma-
trixB by multiplying the rows and columns ofA by positive scalars. This problem
motivates the following definition:

Definition 1 (Scaling of a matrix). Given a non-negative matrix A 2 Matn.R/,
we say that OA is a scaling of A if it can be obtained by multiplying the rows and
columns of A by positive scalars. In other words, OA is a scaling of A if there exist
positive diagonal matrices R; C 2 Matn.R/ such that OA D RAC .

As the reader can realize, the approximate version of the question is often

needed, since thematrix
�

1 1

0 1

�
can be scaled arbitrarily close to a doubly-stochastic

matrix (i.e. the identity) but it cannot be scaled exactly to a doubly-stochastic ma-
trix (since the non-zero pattern of the matrix does not change by scaling). This mo-
tivates us to define a measure for how close a matrix is to being doubly-stochastic:

Definition 2 (Distance to doubly-stochastic). Given a non-negative matrix A 2

Matn.R/, define its distance to doubly stochastic to be

ds.A/ D

nX
iD1

.ri � 1/2
C

nX
j D1

.cj � 1/2
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where ri and cj denote the i th row sum and the j th column sum, respectively.

With the definition of distance as above, we can say that a non-negative matrix
A is approximately scalable to doubly-stochastic if, and only if, for every " > 0,
there exists a scaling A" of A such that ds.A"/ 6 ". We call such a scaling A" an
"-scaling of A.

Thus, given a non-negative matrix A, two natural questions arise: when is a
matrix approximately scalable? If a matrix is scalable, can one efficiently find an
"-scaling, for a given parameter " > 0?

We have arrived at the (computational version of the) matrix scaling problem:

Question 1.2.1 (Matrix Scaling). Given a non-negative matrix A 2 Matn.R/ and
an accuracy parameter " > 0, is there a scaling B of A such that ds.B/ 6 "? If
there is such a scaling, output it.

As mentioned in the beginning of this section, the matrix scaling problem has
historically appeared independently in several scientific areas, and to solve the
matrix scaling problem the following natural iterative algorithm has often been
used: if the matrix is not row-stochastic (that is, the row sums are 1), make it row-
stochastic by properly normalizing the rows. This may change the column sums.
If the matrix is not column-stochastic, make it column-stochastic by normalizing
the columns.

Input: a non-negative matrix A 2 Matn.R/, " > 0.
Output: a scaling B of A such that ds.B/ 6 ", if one exists. NO, otherwise.

• Set B  A

• For T steps, while ds.B/ > ":

1. if B is not row-stochastic, multiply i th row of B by ri .B/�1 for all
i 2 Œn�

2. if B is not column-stochastic, multiply j th column by cj .B/�1 for all
j 2 Œn�

• If at any point above ds.B/ 6 ", return B , otherwise, after the T steps,
return NO.

Algorithm 1: RAS algorithm

The algorithm above is a special case of a general optimization paradigm
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known as alternating minimization, where to minimize a function one tries to al-
ternately minimize simpler functions in an alternate fashion, where the idea is that
the simpler functions are much easier to optimize (sometimes the optimum for the
simpler functions can even be written in closed form, as is our case).

In Section 1.3, we will see an analysis of the algorithm shown above, as well
as a striking application of using matrix scaling to obtain a deterministic approx-
imation to the permanent of non-negative matrices, and the connection between
matrix scaling and bipartite matchings.

For more background on the matrix scaling problem, we refer the reader to the
surveys Garg and Oliveira (2018) and Idel (2016).

1.2.2 Optimal Transport Distances in Finite Distributions

Given two discrete probability measures r; c 2 Rd
C over a finite set Œd � WD f1; 2;

: : : ; dg, we define U.r; c/ to be the transportation polytope of r and c, which is
given by

U.r; c/ WD fP 2 Matd .RC/ j P1d D r; P �1d D cg

where 1d is the all ones vector of dimension d . An element of U.r; c/ is called a
transportation matrix or joint distribution, as we will now see.

One can view U.r; c/ as the set of all joint probability distributions of two
discrete random variables X; Y each taking values in Œd � WD f1; 2; : : : ; dg where
X has probability distribution r and Y has probability distribution c. In this case,
each matrix P 2 U.r; c/ is such that Pi;j D PrŒX D i; Y D j �.

Given a cost matrix M 2 Matd .R/, the cost of mapping measure r to c us-
ing a transportation matrix P can be quantified by the Frobenius inner product
hM; P i WD TrŒM �P �. Thus, we have arrived at the optimal transport problem
between r and c given cost M :

dM .r; c/ WD min
P 2U.r;c/

hM; P i:

Optimal transport of measures is a problem of great practical importance, hav-
ing originated in the works of Monge (in 1871) and developed further by Kan-
torovich2 (in 1942) in their studies on optimal allocation and transportation of

2Interestingly, Kantorovich is regarded as the father of Linear Programming.
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resources. While the formulation above can be solved via standard convex opti-
mization methods, or more specialized methods for linear programs, the complex-
ity of solving the optimal transport problem above turns out to be O.d3 log d/ in
practice, which turns out to be prohibitive for many applications.

In Cuturi (2013), the author proposed to add entropic constraints on the opti-
mal transport problem to find optimal joint distributions which have small mutual
information, as these solutions have applications to machine learning. Thus, Cu-
turi proposed to find solutions in the convex set

U˛.r; c/ WD fP 2 U.r; c/ j dKL.P jj rc�/ 6 ˛g

where ˛ > 0. Moreover, in the same work, Cuturi showed how one can use the
matrix scaling algorithm from the previous section to solving the modified opti-
mal transport problem! This yields a much simpler algorithm with a much better
runtime in practice for computing such distances, and as showed in Cuturi (ibid.),
these new distances have much better practical applications than the unconstrained
original distances.

For more background on optimal transport and its connections to matrix scal-
ing and machine learning, we refer the reader to Cuturi (ibid.), where the con-
nection presented above was first made, and where we drew this example from.
For connections to image retrieval, see the seminal work of Rubner, Tomasi, and
Guibas (2000). For a comprehensive treatment of optimal transport, see Villani
(2008).

1.2.3 Paulsen Problem
The Paulsen problem is a central question in frame theory as discussed in Casazza
and Kutyniok (2013).
Question 1.2.2. Let U D fu1; :::; ung � Cd be a spanning set of vectors satisfy-
ing

1 � "

d
Id �

nX
j D1

uj u�
j �

1C "

d
Id ; 8j 2 Œn� W

1 � "

n
6 kuj k

2
2 6

1C "

n
:

(1.2.1)

What is the minimum distance
Pn

j D1 kvj � uj k
2
2 over all V D fv1; :::; vng satis-

fying Equation (1.2.1) exactly:X
j

vj v�
j D

1

d
Id ; 8j 2 Œn� W kvj k

2
2 D

1

n
:
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Note that this is a different normalization, by a factor d , than normally given in
the literature.

Vectors satisfying Equation (1.2.1) are known as "-doubly balanced frames.
The balance properties of doubly balanced frames, where " D 0, are exploited to
give strong results in coding theory and signal processing Casazza and Kutyniok
(ibid.). Constructions of exactly doubly balanced frames are difficult and often rely
on complicated algebraic structures. On the other hand, there are many simple al-
gorithms to construct "-doubly balanced frames. For example, a large enough set
of random vectors will satisfy Equation (1.2.1) for some small "with high probabil-
ity. The Paulsen problem asks, for a given "-doubly balanced frame, whether the
conditions in Equation (1.2.1) can be corrected without moving too much. Since
randomly generated frames are nearly doubly balanced, analyzing the distance
bound in this case is of special importance.

Holmes and Paulsen (2004) studied frames from the perspective of coding the-
ory, and showed that doubly balanced frames were optimally robust with respect
to a single erasure. They also showed that Grassmannian frames, doubly balanced
frames with large pairwise angles, were optimal for two erasures.

To address the difficulty of constructing these structured frames, the authors of
Holmes and Paulsen (ibid.) suggested a simple numerical approach: first generate
random frames, which approximately satisfy Equation (1.2.1), and then correct
the conditions. Random frames are good candidates for both of these settings
because they are approximately doubly balanced and have large pairwise angles
with high probability. One goal of the Paulsen problem is then to validate this
numerical algorithm as a simple method of constructing structured frames. The
formalization below is from Cahill and Casazza (2013).

Conjecture 1.2.3 (Paulsen Problem). Let p.d; n; "/ be the smallest function such
that for all "-doubly balanced U D fu1; :::; ung � Cd , there exists a doubly
balanced V D fv1; :::; vng � Cd such that

kV � U k2F D

nX
j D1

kvj � uj k
2
2 6 p.d; n; "/:

Then this distance function p can be taken independent of n.

The optimal function p has been unknown for almost twenty years, despite
considerable attention in the frame theory literature. Prior to the work of Kwok,
Lau, Lee, et al. (2017), the only known results on the function p were given
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by Casazza, Fickus, and Mixon (2012) and Bodmann and Casazza (2010), and
showed p 6 poly.d; n; "/ when d; n are relatively prime and " is small enough.

These results left open Conjecture 1.2.3, which was positively resolved in
Kwok, Lau, Lee, et al. (2017).

Theorem 1.2.4 (Theorem 1.3.1 in Kwok, Lau, Lee, et al. (ibid.)). The distance
function can be bounded by p.d; n; "/ . d11=2". In particular it can be taken
independent of n.

The new idea in this work was to use scaling algorithms like those studied
recently in Garg, Gurvits, et al. (2016). To carry out this approach, Kwok, Lau,
Lee, et al. (2017) defined a dynamical system which corrected approximately dou-
bly balanced frames. This dynamical system could then be analyzed using tools
from the operator scaling analysis of Garg, Gurvits, et al. (2016). The full proof
of Kwok, Lau, Lee, et al. (2017) required a smoothed analysis approach coupled
with an involved convergence analysis of the dynamical system.

Subsequently, in the aptly titled “Paulsen Problem made Simple”, Hamilton
and Moitra (2019) improved the distance bound to p.d; n; "/ . d", using a to-
tally different and much shorter method. This almost matches the known lower
bound, as there are simple examples showing p & ". Ramachandran (2021) revis-
its the dynamical system approach and closes this gap by using tools from geodesic
convex optimization.

This dynamical system can also be analyzed to give a refined distance bound
for the case of random frames, which answers the originalmotivation of the Paulsen
problem.

Theorem 1.2.5 (Theorem 1.12 in Kwok, Lau, and Ramachandran (2019)). For
any n > poly.d/ large enough, if U D fu1; :::; ung � Rd is generated such that
eachuj is independent and uniformly distributed on 1p

n
Sd�1, thenwith high prob-

ability U is "-doubly balanced for " 6 zO.

q
d
n

/, and there exists doubly balanced
V such that

kV � U k2F . "2:

This result validates the numerical approach suggested in Holmes and Paulsen
(2004) to generate doubly balanced frames, and therefore gives a satisfactory an-
swer to the original motivation for Question 1.2.2. It also gives the following
corollary on Grassmannian frames.
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Corollary 1.2.6. With the same conditions as Theorem 1.2.5,U has large pairwise
angles with high probability:

max
j ¤j 02Œn�

huj ; uj 0i
2 6

zO.1/

dn2
:

This result further validates the numerical algorithm in Holmes and Paulsen
(ibid.) as a simple way to generate nearly optimal Grassmannian frames.

1.2.4 Operator Scaling
The operator scalingwas first proposed and studied byGurvits (2004) as a quantum
generalization of the matrix scaling problem. In this setting, the objects of study
are completely positive operators, which can be defined by a tuple of matrices3
A D .A1; : : : ; Am/ 2 MatC.d; n/m in the following way: TA W MatC.n/ !

MatC.d/ is the map

TA.X/ WD

mX
j D1

Aj XA
�
j :

An important property of such operators is that they define a map from the set of
positive semidefinite matrices to themselves, and positive semidefinite matrices
encode mixed quantum states.

In the case where n D d , that is, we have square matrices, Gurvits also de-
fined a notion of doubly-stochasticity for such operators, which as the reader may
notice generalizes the definitions in the matrix scaling setting and also captures
the definition of balanced frames in the Paulsen problem!

Definition 3 (Doubly Stochastic Operators). We say that a completely positive op-
erator defined by .A1; : : : ; Am/ 2 MatC.n/m is doubly stochastic if the following
conditions hold:

mX
j D1

Aj A
�
j D

mX
j D1

A
�
j Aj D In:

Gurvits’ generalization of a scaling for a completely positive operator is by
simultaneous pre and post multiplication by invertible matrices.

Definition 4 (Scaling for Operators). Given a tupleA D .A1; : : : ; Am/ 2 MatC.n; d/,
we say that tuple B D .B1; : : : ; Bm/ is a scaling of the tuple A if there exist
L 2 GLn.C/; R 2 GLd .C/ such that Bj D LAj RT .

3these tuple of matrices are known as Kraus operators of the completely positive map.
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As we saw in the case of the matrix scaling problem, the approximate scaling
problem is themore interesting one4 and the situation is no different here. With this
in mind, analogously to the distance to doubly-stochasticity in the matrix setting,
Gurvits defined the distance to doubly-stochasticity as follows:

Definition 5. Given A D .A1; : : : ; Am/ 2 MatC.n/m, define its distance to
doubly-stochasticity as

ds.A/ WD








mX

j D1

Aj A
�
j � In








2

F

C








mX

j D1

A
�
j Aj � In








2

F

where k�kF is the Frobenius norm.

Now that we have all the definitions we need, we say that an operator A D

.A1; : : : ; Am/ is scalable if for all " > 0, there is an "-scaling B of A, that is, B

is such that ds.B/ 6 ". And with these definitions we have the same algorithmic
problems as in matrix scaling: given a matrix A, can we decide if it is scalable? If
so, given a parameter " > 0, can we find an "-scaling B of A?

Gurvits also generalized the RAS algorithm to the operator scaling setting, and
generalized structural results characterizing when a given operator is scalable. In
addition, Gurvits was able to analyze the running time of the alternating minimiza-
tion algorithm for operator scaling for a special class of operators. However, he
left open the question of proving whether the alternating minimization algorithm
runs in polynomial time, a task that was achieved only recently with the use of
techniques from invariant theory by Garg, Gurvits, et al. (2016). The latter work
marked a new beginning in the combination of techniques from invariant theory
and optimization to solve problems from diverse areas of mathematics.

A further generalization to the operator scaling problem is the tensor scaling
problem, which has further connections to physics, as tensor scaling is the algorith-
mic problem of entanglement distillation by SLOCC operations, which are natural
actions on quantum systems when each of the subsystems is owned by a different
party.

In Chapter 3 and Chapter 4 wewill properly define and study the tensor scaling
problem and see a striking application of the tensor scaling problem in statistics.
For more on the connections between tensor scaling and physics, we refer the
reader to the works Bürgisser, Franks, et al. (2018) and Bürgisser, Garg, et al.
(n.d.) and references therein.

4This has several reasons, some of which will only become clear in the next chapter when we
discuss the geometry of scaling problems.
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1.2.5 Maximum Likelihood Estimation

A basic problem in statistics is the problem of fitting a set of data to a statistical
model (i.e. a parametrized family of probability distributions). In general one tries
to recover from the data the best probability distribution which fits the given data.
To achieve this task, one wants to set the parameters of the probability distribution
in order to maximize the likelihood of observing the input data that was given. A
distribution with such property is called a maximum likelihood estimate, or MLE
for short.

The usual way to compute an MLE for a given statistical model is to setup
an optimization problem given the input data and use standard optimization tech-
niques to find a local maximum, and hope that this maximum is a global maximum.
Thus, a fundamental task is to understand the properties of such statistical models
and optimization problems to provide provably efficient and optimum algorithms
which compute the MLEs, or to prove that such task is computationally hard.

Another fundamental task in statistics is to understand the number of input
samples that one needs (i.e. the size of the input data set) in order for an MLE
to actually exist. Such a problem is known as the sample complexity problem
for a statistical model, and in a very concrete sense it is a prerequisite for the
MLE problem to be well-defined! The sample complexity problem also has its
computational variant, as in addition to existence of anMLE, we are also interested
in knowing whether theMLE actually approximates the true distribution where the
data was sampled from, as well as whether there exists an efficient algorithm to
compute such an MLE.

As was recently discovered by Améndola et al. (2020), scaling problems nat-
urally appear in the maximum likelihood estimation problem of two fundamental
settings in statistics: the log-linear models and Gaussian transformation families.
The latter family of models in particular include the two main statistical models
that we will be studying in Chapter 4: the Matrix Normal Model and the Tensor
Normal Model. As was recently proved by Franks et al. (2021), a deep geometric
understanding of the latter models coupled with tools and ideas from invariant the-
ory and from techniques (old and new) from optimization yield to nearly optimal
sample complexity bounds for the MLE problem for such models!

1.3 Approximation of the Permanent

An important application of matrix scaling in computer science is given in Linial,
Samorodnitsky, and Wigderson (2000), where the goal is to obtain a deterministic



12 1. Introduction

approximation to the permanent of non-negative matrices.

Definition 6. For matrix A 2 Rn�n the permanent is

Per.A/ WD
X

�2Sn

nY
iD1

Ai;�.i/:

This quantity has important implications in algebraic complexity and enumer-
ative combinatorics, and it is known to be #P-hard to compute even the sign Aaron-
son (2011). When the matrix is non-negative, there is a PTAS given in Jerrum and
Sinclair (1989).

The permanent has a combinatorial interpretation: if A 2 f0; 1gn�n, then A is
the adjacency matrix of a bipartite graph on nC n vertices, and the permanent of
A counts the number of perfect matchings in this graph.

The goal of Linial, Samorodnitsky, andWigderson (2000)was to give a strongly
polynomial deterministic algorithm tomultiplicatively approximate the permanent
of a non-negative matrix. Of course, if the permanent is 0, any multiplicative ap-
proximation must also output 0. But Per.A/ D 0 for A 2 Rn�n

C iff the weighted
bipartite graph associated with A has no perfect matchings, and this can be ascer-
tained easily in polynomial time. The following is their main theorem.

Theorem 1.3.1 (Theorem 1.1 in Linial, Samorodnitsky, and Wigderson (ibid.)).
For non-negative matrix A 2 Rn�n

C , there is a quantity f .A/ computable in
strongly polynomial time such that

Per.A/ 6 f .A/ 6 enC1 Per.A/:

When the matrix is doubly stochastic, the following powerful theorem gives
the required approximation.

Theorem 1.3.2 (Van der Waerden). If A 2 Rn�n
C is doubly stochastic, i.e. A1n D

1n; AT 1n D 1n, then
e�n 6 Per.A/ 6 1:

The upper bound holds more generally for non-negative matrices:

Per.A/ 6
nY

iD1

0@ nX
j D1

Aij

1A ;
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as this quantity only has more terms than Definition 6. The difficult part of Theo-
rem 1.3.2 is the lower bound, for which we now have several proofs (e.g. Gurvits
(2006)).

So the approach to Theorem 1.3.1 is by transforming our input A to some
doubly stochastic B while maintaining control of the change in permanent. We
can use the following simple observation to execute this plan.

Fact 1.3.3. For A 2 Rn�n and scalings L; R 2 diag.n/

Per.LAR/ D det.L/Per.A/ det.R/:

Proof. Each term in Definition 6 contains exactly one entry from each row and
column, so this scaling will contribute

Qn
iD1 Li i

Qn
j D1 Rjj to every term.

So we have reduced the problem of approximating the permanent (up to sim-
ply exponential factor) to finding a doubly stochastic row-column scaling. To do
this in strongly polynomial time, Linial, Samorodnitsky, and Wigderson (2000)
use the classical Sinkhorn scaling algorithm. This simple iterative algorithm can
detect when the permanent is 0, and otherwise produces a nearly doubly-stochastic
scaling in polynomial time. We first need a few definitions.

Definition 7. For matrix A 2 Rn�n
C , we define the row and column sums to be

r.A/ WD A1n; c.A/ WD AT 1n. We also define the error from doubly stochastic

�.A/ WD

nX
iD1

.ri .A/ � 1/2
C

nX
j D1

.cj .A/ � 1/2:

Note that the following simple transformations produce row/column stochastic
(but not necessarily doubly stochastic) matrices respectively:

A diag.r.A//�1A; A A diag.c.A//�1: (1.3.1)

The Sinkhorn algorithm for matrix scaling alternates these steps until some termi-
nation condition. To decide on a termination condition, we need the following fact
on permanent 0 matrices.

Lemma 1.3.4 (Lemma 5.2 in Linial, Samorodnitsky, and Wigderson (ibid.)). For
non-negative stochastic matrix A 2 Rn�n

C with permanent 0, the error is lower
bounded by

�.A/ >
1

n
:
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The above lemma in the contrapositive tells us that in order to distinguish
between the zero and non-zero cases, it is enough to scale our input to be 1

n
-close

to doubly stochastic.
On the other hand, we can show that the Sinkhorn algorithm makes progress

while our input is far from doubly stochastic.

Lemma 1.3.5. For non-negative stochastic matrix A 2 Rn�n
C with non-zero per-

manent, a single iteration of Sinkhorn algorithm produces A0 with

log Per.A0/ � log Per.A/ >
1

6
minf�.A/; 1g:

The proof uses the following robust version of AMGM, which can be shown
by Taylor approximation.

Lemma 1.3.6 (Lemma 3.10 in Linial, Samorodnitsky, and Wigderson (2000)).
For x 2 Rn

CC with
Pn

iD1 xi D n, if � WD
Pn

iD1.xi � 1/2, then

log
nY

iD1

xi 6
�

2
CO.�3=2/:

To approximate the permanent for a general input, we need a simple prepro-
cessing step which guarantees that the input is stochastic and if its permanent is
non-zero, then log Per.A/ > �n logn. From here, the proof of Theorem 1.3.1 then
follows simply by iterating Sinkhorn’s algorithm for poly.n/ steps. If �.At / <

1
n logn

for any of these steps, then an approximate version of Theorem 1.3.2 shows
that

1 > Per.At / > e�.nC1/:

Otherwise, we must be in the case where Per.A/ D 0, as otherwise

0 > log Per.AT / > log Per.A/C

TX
tD1

1

6
minf�.At /; 1g > �n lognC

T

12n
> 0;

where the first step is due to the simple approximate for stochastic matrices, and
the second is by Lemma 1.3.5. This is a contradiction for T chosen large enough.
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1.4 References
In this brief introduction we just outlined some of the scaling problems and their
striking applications. For a more complete reference on the history of scaling prob-
lems, its independent discoveries by several disparate communities of researchers
in different research fields, and the recent unification of such problems in the per-
spective of invariant theory, we refer the reader to the surveys Garg and Oliveira
(2018) and Idel (2016), to the recent work Bürgisser, Franks, et al. (2019) and
references therein.

Scaling problems are only part of the optimization and geometric side of in-
variant theory, and an understanding of the algebraic side of invariant theory has
also greatly contributed to progress in the solution to scaling problems. Recently,
with the works of Améndola et al. (2020), Derksen and Makam (2020), and Derk-
sen, Makam, and Walter (2020), the algebraic side of invariant theory has shown
to be quite effective also in solving some of the structural problems in statistics.
And as it is usual for the discipline of invariant theory, the algebraic, geometric
and optimization perspectives often inform one another, and the connections gen-
erated from these perspectives greatly enhance our understanding of the field as
well as their intended applications. In this survey, we will unfortunately not have
enough space to an introduction to the algebraic developments in the past decades
which have connections to our topics being discussed.

For developments on the algebraic front, we refer the reader to Améndola et al.
(2020) and Derksen, Makam, and Walter (2020) for recent results, and the refer-
ences therein, as well as the books by Derksen and Kemper (2015) and Sturmfels
(2008).

1.5 Outline
In Chapter 2 we will provide a very brief introduction to the geometric side of in-
variant theory, describing the fundamental computational problems which will be
of importance to us in the subsequent chapters. We will also see how optimization
problems naturally appear in this setting, and we will revisit some of the problems
discussed in the introduction through the perspective of such invariant-theoretic
optimization problems. Finally, we conclude the chapter with an exploration of
geodesic convexity and the beautiful non-commutative duality theory that comes
from such optimization problems.

In Chapter 3, we will give a more rigorous analysis of matrix scaling. Specif-
ically, we will cover the strongly convex analysis of Kwok, Lau, and Ramachan-
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dran (2019), which will allow us to introduce many tools from convexity in this
simpler setting. Then we will analyze the tensor scaling problem, and again con-
sider the strongly convex case. In this more general setting, we will use tools from
geodesic convexity.

In Chapter 4 we will apply the results on strongly convex tensor scaling to give
near-optimal sample complexity bounds for a well-studied covariance estimation
problem in statistics. These results will be based on Franks et al. (2021).



2 Geometric
invariant

theory

In this chapter we give a very brief overview of the general setting in which scal-
ing problems arise and the convex-like properties inherent in such problems. For
a more thorough and rigorous exposition of this chapter, we refer the reader to
Bürgisser, Franks, et al. (2019).

As it turns out, since the origins of geometric invariant theory in the semi-
nal work of Hilbert (1893), with the definition of the null cone of a group action,
an optimization problem was implicit in the characterization of “singular orbits”
(which are the orbits whose closure contain the zero vector). Hilbert used the
null cone, which we will define in this chapter, to provide a constructive proof of
the finiteness of generators for the invariant ring of SL3.C/ acting on the space of
trivariate homogeneous polynomials of degree d . One important result in Hilbert’s
paper is the characterization of the null cone as the zero set of all homogeneous
non-constant invariant polynomials. In the 1960s, Mumford proved that the set
of points outside of the null cone can be given a structure of an algebraic variety,
and thus the null cone appears prominently in geometric invariant theory. In the
1970s, Kempf and Ness (1979) proved that the null cone can also be characterized
by a non-commutative duality arising from the group action on the vector space.
In this chapter we will be exploring this connection, as well as the computational
aspects of the optimization problems appearing in geometric invariant theory.
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As we are only concerned with the geometric aspects, we will not describe the
algebraic properties of geometric invariant theory, such as the ring of invariant
polynomials the the problems of finite generation as an algebra, separating invari-
ants, and other structural results. For two thorough introductions to the algebraic
side of invariant theory, we refer the reader to the books Derksen and Kemper
(2015) and Sturmfels (2008).

2.1 General setting

As mentioned in Chapter 1, scaling problems arise when we have a “continuous
group” acting linearly on a vector space. The formal general setting where scaling
problems arise is when we take G to be a connected symmetric matrix Lie group,
that is, G is a subgroup of GLn.C/ which is a Zariski-closed, connected (under
the standard topology) and such that g� 2 G whenever g 2 G.

For the sake of concreteness, in this survey we will only study the cases where
G is one of the groups SLn.C/, diagn.C/, or products of these groups, V is a
finite-dimensional Hermitian space (Cm for some m 2 N), and the action of G

is given by a representation � W G ! GL.V /. For the most general setting and
a more thorough discussion of scaling problems, we refer the interested reader
to Bürgisser, Franks, et al. (2019). And for a reference on geometric invariant
theory, we refer the reader to Wallach (2017).

2.2 Orbits and orbit closures

Given an element u 2 V , we can define the G-orbit of u as the set of all elements
in the vector space V that can be reached from u via an action of the group G, that
is, the orbit is the following set:

G � u WD fw 2 V j w D �.g/u; for some g 2 Gg:

Since we are studying actions of continuous groups on finite-dimensional Her-
mitian spaces, it is natural (and as we will see much more important) to consider
the closure of the orbits under the natural metric induced by the norm on V . This
yields the orbit closure, which is the set defined by the union of the orbit and its
limit points, denoted by G � u.

With these geometric definitions, two natural computational problems arise:
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Problem 2.2.1 (Orbit closure intersection). Given two elements u; w 2 V , do their
orbit closures intersect? That is,

G � u \ G � w ¤‹
;

Aswewill see in the next section, a special case of the orbit closure intersection
problem, when one of the vectors is the zero vector, is very important in several
areas of mathematics. Moreover, the set of all such elements of V whose orbit
closures contain the zero element, the null cone of the group action, was defined
in Hilbert (1893) where he showed the importance of the null cone for the algebraic
setting of invariant theory.

Problem 2.2.2 (Orbit closure containment). Given two elements u; w 2 V , is it
the case that the orbit closure of u contains the orbit closure of w? That is:

G � w �‹ G � u

The orbit closure containment problem appears to be a much harder problem
than the orbit closure intersection one, as it contains as a subproblems a geometric
version of the famous VP vs VNP problem from algebraic complexity theory Mul-
muley and Sohoni (2001) as well as matrix completion problems and the slice-rank
problem Bläser et al. (2021).

2.3 Null cone & optimization
In his seminal paper, Hilbert (1893) defined the null cone as the set of points which
contain zero in their orbit closures. He proved that the null cone is the zero set of
all homogeneous, non-constant invariant polynomials, and used the null cone to
construct a set of generators for the invariant ring of polynomials for the SL3.C/

action on degree d homogeneous polynomials in 3 variables. The null cone also
appears prominently in the construction byMumford of moduli spaces, since these
are the “bad points” that one must remove in order to give the quotient space V=G

the structure of an algebraic variety in a way that the quotient map becomes a
morphism. We will not discuss these aspects of the null cone here, but rather em-
phasize the importance of the null cone, and of the null-cone problem, in computer
science and other areas of mathematics.

Definition 8 (Null Cone). The set of all elements u 2 V such that 0 2 G � u is
called the null cone, denoted by N .G; V /.
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As we will see in this and later chapters, the null cone is an important subset
of our vector space, and in particular the nul-cone problem, which we now define,
is an important optimization problem which naturally appears in many areas of
science and mathematics.
Problem 2.3.1 (Null-cone problem). Given an element u 2 V , is 0 2 G � u?

Since we are working over an inner product space V , we can consider the
null-cone problem as a norm minimization problem, since 0 is in the orbit closure
if, and only if, the element of minimum norm in the orbit closure has zero norm!
Motivated by this connection, we have the following definition:
Definition 9 (Capacity). The capacity of a vector u 2 V is given by the value of
the following optimization problem:

cap.u/ WD inf
g2G
k�.g/uk2

where the norm is the norm induced by the inner product on V .
Problem 2.3.2 (Null-cone problem - optimization version). Given a vector u 2 V ,
decide whether cap.u/ D 0.

Given the definition above, and the importance of the norm function along a
group orbit for geometric invariant theory, given any vector u 2 V , the family of
functions fu W G ! R defined by

fu.g/ WD k�.g/uk2

is the Kempf-Ness function.
Since the norm is induced by the inner product, we see that the Kempf-Ness

family of functions can actually be interpreted as a real-valued functions from the
manifold of positive definite matrices. The importance of this connection, together
with the properties of positive definite matrices will be quite important for our op-
timization problems. In Section 2.5 we will briefly study the necessary properties
of the manifold of positive definite matrices that we need, and then come back to
see the Kempf-Ness family of functions in this new setup.

2.4 Examples of Scaling Problems
Now that we have seen a brief picture of the general setting, let us see how the
problems that we discussed in Chapter 1, as well as many additional known objects
in mathematics, are instances of the null cone of particular group actions!

We encourage the reader to work out the details of these examples.
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2.4.1 Left-right multiplication

Let G D SLn.C/ � SLn.C/ act on V D Matn.C/ by left-right multiplication,
taking .L; R/ ı A 7! LART . In this case, we have that the orbit of a matrix
A 2 V of rank r < n is the same as the orbit of the matrix Ir ˚ 0n�r . One can
see this since the group action encodes row reduction, column permutations, and
column scaling (without changing the determinant), and therefore we can always
obtain the canonical form just mentioned. The orbit of an invertible matrix A is
the same as the orbit of In�1 ˚ det.A/.

When we look at the orbit closures, we note that the orbit closures of singular
matrices will contain the zero matrix. Since the determinant is an invariant poly-
nomial for this action, we see that in this case the null cone is the set of all singular
matrices! Moreover, the scaling problem here in particular captures the problem
of deciding whether a matrix is singular.

2.4.2 Matrix scaling

In the matrix scaling action, we have G D diag�
C.n/� diag�

C.n/, where diag�
C.n/

is the set of diagonal n � n matrices with determinant 1. Our group G acts on the
space of matrices Mat.n; C/ by left and right multiplication. In this setting, by
using the exponential map x ! ex for the group action and also for the entries
of the matrix being acted upon, one can see that the orbits of the matrix scaling
problem correspond to weighted bipartite graphs.

The set of matrices that are in the null cone correspond to the (weighted) bipar-
tite graphs which have no perfect matching, so the matrix scaling problem captures
the perfect matching problem in bipartite graphs!

2.4.3 Conjugation action

In the conjugation action our group is G D GLn.C/ acting on V D Mat.n; C/

by conjugation, that is, g ı A 7! gAg�1. The orbit of a matrix A corresponds
to the orbit of its Jordan normal form. The orbit closure of a matrix will contain
the diagonal matrices with the same eigenvalues (countingmultiplicities). Thus, in
this case the null cone corresponds to exactly the nilpotent matrices! Moreover, the
scaling problem in this case corresponds to diagonalizing a matrix by conjugation.



22 2. Geometric invariant theory

2.4.4 Homogeneous bivariate polynomials
In this problem, we have the group G D SL2.C/ acting on binary forms of degree
d , that is, V D CŒx; y�d , by a change of variables. Thus, a polynomial p.x; y/ is
taken to A ı p 7! p..x; y/ � A/.

The orbits of this group action preserve the zero/nonzero pattern of the roots
and their multiplicities, although they (and their closures) are more complex to
describe. The null cone in this case is the set of polynomials with a root of mul-
tiplicity at least bd=2c C 1. For more details on this action, see Weyman (1989)
and references therein.

2.5 Geodesics in Positive Definite Manifold
Before describing the geometry that arises from a group action and geodesic con-
vexity, we need to review some preliminaries from optimization and linear algebra,
which we do here.

2.5.1 Linear Algebra Preliminaries
Definition 10 (Linear Operators). For vector spaces U; V , L.U; V / is the space
of linear operators T W U ! V . If U D V we will denote this as L.U /.

Any choice of bases fu1; : : : ; udim.U /g � U; fv1; : : : ; vdim.V /g � V induces
a matrix representation for L.U; V /. Namely, for the operator T 2 L.U; V / if
T uj D

Pdim.V /
iD1 Mij vi then the matrix representation is fMij g. Note that this

representation is unique due to the linear independence of bases.

Definition 11 (Invertible Linear Operators). GL.V / � L.V / is the subset of in-
vertible linear operators onV . It is a group by left (or right) composition. SL.V / �

GL.V / is the subgroup of unit determinant operators.

If dim.V / D d and fv1; : : : ; vd g � V is a basis, then by the matrix repre-
sentation given above GL.V / is isomorphic to the group of invertible matrices
GL.n; F/ with matrix multiplication. SL.n; F/ � GL.n; F/ is the subgroup of
unit determinant matrices.

Definition 12 (Inner Product Spaces). If V; h�; �i is an inner product, then U.V / �

GL.V / is the subgroup of unitary matrices which preserve the inner product:

8x; y 2 V; U 2 U.V / W hUx; Uyi D hx; yi:
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Definition 13 (Adjoint Operator). A� is the adjoint of matrix A 2 L.V /, and is
defined as the unique operator satisfying

8x; y 2 V W hAx; yi D hx; A�yi:

Theorem 2.5.1 (Spectral Theorem). A 2 L.V / is normal if AA� D A�A. If
A� D A, then A is Hermitian and we denote this H.V /.

Every normal A can be written

A D UDU �;

where U is unitary and D is diagonal. If A is Hermitian then D can be taken to
be real.

Definition 14 (Positive Semidefinite Matrices). A is positive semidefinite if it is
Hermitian and

8x 2 V W hx; Axi > 0:

It is positive definite if the inequality is strict for all x ¤ 0. We denote PD.V / �

GL.V / to be the subset of positive definite matrices.

Theorem 2.5.2 (Polar Decomposition). Any A 2 GL.V / can be uniquely writ-
ten A D UP for unitary U and positive definite P . This decomposes the group
GL.V / ' U.V / � PD.V /, and this decomposition is a diffeomorphism.

If A 2 SL.V /, then U; P will also have unit determinant. This gives the
decomposition SL.V / ' SU.V /� SPD.V /, where SU.V / � U.V /;SPD.V / �

PD.V / denote the subset of unit determinant elements.

Proof. The first statement is standard and we will not prove it here.
For the second statement, by the multiplicativity of det we have

1 D det.A/ D det.UP / D det.U / det.P /:

SinceU 2 U.V /, all of its eigenvalues are purely complex, andP 2 P.V / implies
all of its eigenvalues are positive real. Therefore their determinants multiply to 1

iff they are both also 1.

This statement can be vastly generalized by the Cartan decomposition to all
semisimple Lie groups, but we will not need this fact for our applications, as the
polar decomposition works for any matrix Lie groups. We are now ready to define
geodesics in the manifold of positive definite matrices.



24 2. Geometric invariant theory

Definition 15 (Geodesics). For any two elements P; Q 2 PD.V /, we can define
the following geodesic from P to Q, or path 
P;Q W Œ0; 1�! PD.V / as


P;Q.t/ WD P 1=2.P �1=2QP �1=2/tP 1=2
D P 1=2 exp.t log.P �1=2QP �1=2//P 1=2:

This is in fact the shortest path according to a natural metric on PD.V / (Bhatia
(2009)). It turns out that this is the only geometry on the PD manifold which
satisfies natural equivariance properties, which we will now define.

First note that for any P 2 PD.V /, X WD logP exists and is Hermitian since
P is Hermitian with all eigenvalues strictly positive. Therefore there is a natural
mapping 
 W H.V /! P.V / at the identity:


IV
.X/ WD eX :

The curves from Definition 15 satisfy the following natural equivariance property:


P;Q.t/ � P 1=2
IV ;P �1=2QP �1=2.t/P 1=2:

This equivariance property essentially tells us that all geodesics through a particu-
lar matrix look the same as the geodesics through the identity matrix.

When we discuss geodesically convex functions, our applications will center
exclusively on PD.V /; SPD.V / and direct products of these manifolds.

2.6 Convexity Preliminaries

In this section we define geodesic convexity and strong convexity, and state some
properties which we will need about these functions for the later chapters.

2.6.1 Convexity in Euclidean Spaces

Before we define geodesically convex functions, let us quickly review the usual
notions and some lemmas of convexity in the Euclidean setting.

Definition 16. Function h W R! R is convex if either of the following conditions
hold

1. 8t 2 R W h00.t/ WD @2
xh.x/jxDt > 0.

2. 8s; t 2 R W h.t/ � h.s/ > h0.s/.t � s/.
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As a strengthening, h is ˛-strongly convex at s 2 R if

1. h00.s/ > ˛.

2. 8t 2 R W h.t/ � h.s/ > h0.s/.t � s/C ˛
2

.t � s/2.

Lemma 2.6.1. For h W R! R that is ˛ strongly convex, then for any s 2 R, the
optimum can be lower bounded by

h�
WD inf

t2R
h.t/ > h.s/ �

jh0.s/j2

2˛
:

Proof. By ˛-strong convexity we have for any s 2 R

inf
t2R

h.t/ > inf
t2R

h.s/C h0.s/.t � s/C
˛

2
.t � s/2

D h.s/ �
.h0.s//2

2˛
;

where in the last step we chose infimizer t � s D �h0.s/
˛

.

Remark 2.6.2. Note that we have only used strong convexity for t in the interval
Œs; s � h0.s/

˛
�.

Lemma 2.6.3. For convex h W R ! R with optimizer t�, assume h is ˛-strongly
convex for all js � t j 6 R. Then it is ˛-strongly convex on the level set

L WD fs 2 R j f .s/ � f .t�/ 6 ˛R2=2g:

Further if s 2 R such that jh0.s/j < ˛R, then s 2 L.

Proof. We show the first statement in contrapositive by giving a lower bound for
all s � t� > R. By a simple translation we can assume that t� D 0; h.t�/ D 0.
Then

h.s/ D

Z s

tD0

h0.t/ D

Z s

tD0

�
h0.0/C

Z t

rD0

h00.r/

�
> 0C

Z R

tD0

˛t D
˛R2

2
;

where the first two steps are by the fundamental theorem of calculus, and the third
step was by optimality of t� D 0 and ˛-strong convexity. The same lower bound
holds for h.�s/, so by convexity if h.s/ 6 ˛R2

2
then jsj 6 R is in the strongly

convex region.
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To show the second statement, note that if s 2 R such that jh0.s/j 6 R and
jsj 6 R, then we are done by Lemma 2.6.1 as

h.s/ � h.t�/ 6
.h0.s//2

2˛
6

˛2R2

2˛
D

˛R2

2
;

so s 2 L. We show that the other case, jsj > R, contradicts the first derivative
assumption.

˛R > h0.s/ D h0.0/C

Z s

tD0

h00.s/ > 0C

Z R

tD0

˛ C

Z s

tDR

0 D ˛R;

where the first step was by fundamental theorem of calculus, and the second step
was by optimality of t� D 0 and ˛-strongly convexity for t 2 Œ0; R�. This gives
the required contradiction.

All of these properties lift to convex functions on vector spaces.

Definition 17. For vector space V , function f W V ! R is convex if for every
x; y 2 V , the univariate restriction t ! f .x C ty/ is convex.

If V has inner product h�; �i, then the convexity conditions can be written equiv-
alently as

1. 8v 2 V W r2f .v/ � 0.

2. 8u; v 2 V W f .v/ � f .u/ > hrf .u/; v � ui.

f is ˛-strongly convex in norm k � k at point v 2 V if for every x 2 V the
univariate restriction t ! f .v C tx/ is ˛kxk-strongly convex.

Definition 18. For vector space V and function f W V ! R, x 2 V is a critical
point of f iff

8v 2 V W @tD0f .x C tv/ D 0;

or equivalently that for every v 2 V , the univariate restriction t ! f .xC tv/ has
critical point t D 0.

2.6.2 Geodesic Convexity
Definition 19 (Geodesic Convexity). Let f be a function f W P ! R where P

is some connected submanifold of PD.V / for some vector space V that is closed
under geodesics (Definition 15). Then f is geodesically convex if every univariate
restriction t ! f .
P;Q.t// is convex for every pair P; Q 2 P .
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In our case, since we are studying the Kempf-Ness family of functions fv W

G ! R given by fv.g/ D kg ı vk2, the inner product structure on V tells us that
the Kempf-Ness function can be actually interpreted as a function fv W PD.V /!

R for every v 2 V . One can see this as

fv.g/ D kg ı vk2 D hg ı v; g ı vi D
˝
v; g�g ı v

˛
D hv; pvi;

where p WD g�g is the polar component.
We will use these functions to give optimization formulations of scaling prob-

lems, and therefore the geodesic convexity property will be crucial for our bounds.
Specifically in Proposition 3.1.1 and Lemma 3.2.4, we will use the added structure
of this family of functions to prove geodesic convexity by considering the simpler
geometry of P from the identity.

2.7 Optimization in Geometric Invariant Theory

2.7.1 Commutative case & convex optimization

Now that we have the basic definitions from linear algebra and convex optimiza-
tion at hand, we can look at the general scaling problem in the case where we have
commutative groups, and we will see that this problem corresponds to the setting
of geometric programming in classical convex optimization.

Given a commutative groupG and a representation (or group action) � W G !

GL.V /, we have that the matrices �.g/ for all g 2 G are simultaneously diagonal-
izable. Thus, after an appropriate change of basis we can think of G as a subgroup
of the invertible diagonal matrices diagC.n/. Moreover, the group action can be
described by the simultaneous eigenvalues of the group action, which after an ap-
propriate change of basis become the standard basis vectors.

In particular, for an eigenvector v 2 V , if we write �.g/ D diag.t1; : : : ; tn/,
we can write the group action in the following way:

�.g/v D

nY
j D1

t
wi

i v

where each wj 2 Z. The vectors ! WD .w1; : : : ; wn/ are called the weights of the
representation � .
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Hence, the Kempf-Ness function for the vector u D
P

˛vv, where the vectors
v form an orthonormal eigenbasis for the group action, becomes:

fu.g/ D
X
j˛vj

2
�

nY
j D1

jti j
2wi

In particular, our optimization problem (the capacity problem) becomes:

inf
X
j˛vj

2
�

nY
j D1

jti j
2wi

s.t. ti 2 C�

Since ti 2 C�, we have jti j 2 R>0 and hence we can apply the variable substi-
tution (via the exponential map) jti j D exi where xi 2 R. This transformation
makes our capacity problem become:

inf
X
j˛vj

2
� exp

 
nX

iD1

2xiwi

!
s.t. xi 2 R

Thus the problem of optimizing the functionfu.g/, after an appropriate change
of coordinates, becomes an unconstrained geometric program! We can then use
standard Euclidean optimization methods to solve the capacity problem in the case
of commutative groups!

As it turns out, the commutative case above already has applications in statis-
tics, as it captures the maximum likelihood estimation problem for log-linear mod-
els. We refer the reader to Améndola et al. (2020) for the explicit connections, as
well as to Straszak and Vishnoi (2019) for complexity aspects on these optimiza-
tion problems.

2.7.2 Non-commutative Case & geodesically convex optimization
After seeing the connection between capacity (i.e. optimization of a Kempf-Ness
function) in the commutative setting and standard convex optimization, one is
tempted to wonder whether in the non-commutative case such a global change
of coordinates into a convex optimization problem is actually possible. While
that does not seem to be the case, what we do know is that a more general con-
vexity phenomenon happens when the group is non-commutative, albeit now in
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the manifold of positive definite matrices. Here, we will briefly discuss how this
phenomenon happens and state some of the properties we will need for the later
chapters.

Given a non-commutative groupG (again, think ofG as being either SL.n; C/

or products of such groups), and a representation (or group action) � W G !

GL.V /, as we have seen in Section 2.6.2, the family of Kempf-Ness functions can
be thought of as functions fu W PD.V / ! R for every u 2 V . An important
property of this family of functions is that they are equivariant with respect to the
group action, in much the same way as the geodesics in PD.V / are equivariant.

Proposition 2.7.1 (Equivariance of Kempf-Ness functions). Given a group action
G on a finite dimensional complex vector space V , we have that

fu.�.g/�.h// D f�.h/u.�.g//

for any g; h 2 G and u 2 V .

One benefit of such equivariance property of the family of Kempf-Ness func-
tions is that it is sufficient to study the properties of such functions in the neigh-
borhood of the identity, since the functions “locally look the same.” In particular,
we can define the usual notions of gradient and Hessian for the family of Kempf-
Ness functions around the identity, as it is done in Bürgisser, Franks, et al. (2019,
Section 3). The gradient of the Kempf-Ness function is also known as the moment
map.

In the case of a non-commutative group action, it turns our that the family of
Kempf-Ness functions is geodesically convex, as defined in Section 2.6.2. Thus
the normminimization problem (or capacity) turns out to be a convex optimization
problem, where the convexity is along the geodesics on the manifold of positive
definite matrices. This gives us hopes to generalize the methods from convex
optimization to this new setting, in order to solve the null cone problem. This has
been done in the series of works Allen-Zhu et al. (2018) and Bürgisser, Franks,
et al. (2019), and we refer the reader to the latter work for the development of this
paradigm in the most general setting.

2.7.3 Non-commutative duality theory
The geodesic convexity of the Kempf-Ness family of functions can be used to
establish a non-commutative duality theory, which greatly generalizes linear pro-
gram duality to the non-commutative setting! This is the content of the Kempf-
Ness theorem, proved in Kempf and Ness (1979). This theorem essentially states
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that the capacity of an element u 2 V is zero (i.e., zero is in the orbit closure of
u) iff the norm of the geodesic gradient is always nonzero along the orbit closure.
In particular, the Kempf-Ness theorem states that the norm minimization problem
(i.e. the capacity) is dual to the minimization of the geodesic gradient along the
group orbit!

A quantitative version of the Kempf-Ness theorem has been developed in Bür-
gisser, Franks, et al. (2019).

2.8 References
All of the material presented here can be found, in much more generality, in Bür-
gisser, Franks, et al. (ibid.) and references therein. For the readers interested in
learning more about the manifold of positive definite matrices, we recommend
the book by Bhatia (2009)



3 Scaling
problems and

algorithms

3.1 Matrix Scaling

3.1.1 Sinkhorn Scaling as Convex Optimization

In this section, we can use convex optimization to reframe the scaling algorithm
and analysis in Linial, Samorodnitsky, and Wigderson (2000). We first formulate
a generalization of the problem to matrix tuples. This makes the problem slightly
more natural, and allows to lift our results to the non-commutative setting (e.g.
operator and tensor scaling).

Definition 20. For matrix tuple A D fA1; :::; AKg where Ak 2 MatC.d; n/, its
size is defined

s.A/ WD

KX
kD1

kAkk
2
F :

The row and column sums for i 2 Œd �; j 2 Œn� are defined as

ri .A/ WD

KX
kD1

nX
j D1

jAkj
2
ij ; cj .A/ WD

KX
kD1

dX
iD1

jAkj
2
ij :
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Definition 21. Tuple A D fA1; :::; AKg 2 MatC.d; n/K is "-doubly balanced if

ri .A/ 2
s.A/

d
.1˙ "/; cj .A/ 2

s.A/

n
.1˙ "/; (3.1.1)

for all i 2 Œd �; j 2 Œn�. A is doubly balanced if the above holds with " D 0.

Definition 22 (Matrix Scaling Problem). For matrix tuple A 2 MatC.d; n/K , we
can define an action of diagonal matrices X 2 diag.d/; Y 2 diag.n/ by left/right
scaling:

eXAeY
WD feXA1eY ; :::; eXAKeY

g:

The input to a matrix scaling problem is a matrix tuple A.

1. Success: Output scalings .X; Y / such that eXAeY is doubly balanced.

2. Failure: Proof that no scaling of A is doubly balanced.

When d D n and K D 1, this is equivalent to the matrix scaling problem of
Linial, Samorodnitsky, and Wigderson (2000) on Bij WD jAij j

2. Because Defi-
nition 21 is homogenous, we can assume the following normalization on scalings
without loss of generality.

Definition 23. Matrix scalings can be restricted to the subspace

t WD f.X; Y / 2 diag.d/˚ diag.n/ j T rŒX� D T rŒY � D 0g:

Note that scalings f.eX ; eY / j .X; Y / 2 tg are all determinant one, since det.eX / D

exp.T rŒX�/. At times it will be convenient to view these elements as vectors, so
by abuse of notation we will also use t to refer to the following vector space:

t WD

8<:.X; Y / 2 Rd
˚Rn

j

dX
iD1

Xi D

nX
j D1

Yj D 0

9=; :

It turns out that the work of Kempf andNess (1979) gives a convex formulation
for the matrix scaling problem. In fact, this phenomena is far more general, and
we will revisit this in Section 3.2 for the tensor scaling problem.

Definition 24. For tuple fA1; :::; AKg 2 Mat.d; n/K , the Kempf-Ness function
fA W t! R is defined

fA.2X; 2Y / WD s.eXAeY / D

KX
kD1

keXAkeY
k

2
F D

KX
kD1

X
ij

e2Xi jAkj
2
ij e2Yj ;
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where size is given in Definition 20. The factor 2 is just to remove leading con-
stants for future calculations.

Proposition 3.1.1. For matrix input A 2 Mat.d; n/K , fA is convex on its domain
t, and .X; Y / 2 t is a doubly balanced scaling of A iff .X; Y / is a critical point
for fA iff .X; Y / is a global minimum on t.

We omit the proof, which is a straightforward calculation of derivatives, as we
will prove a generalization of this statement for tensor scaling in Section 3.2.

Proposition 3.1.1 shows that the Kempf-Ness function fA gives a convex for-
mulation for the matrix scaling problem in Definition 22. Using this perspective,
we can reframe Sinkhorn scaling as a convex optimization algorithm.

To apply tools from convex optimization, our first off-the-shelf approachwould
be gradient descent. For this to be well-defined, we need to choose an inner prod-
uct on our domain t.

Definition 25 (t Inner Product). For elements .X; Y /; .X 0; Y 0/ 2 t (Definition 23),
we define inner product

h.X; Y /; .X 0; Y 0/it WD
1

d

dX
iD1

XiX
0
i C

1

n

nX
j D1

Yj Y 0
j :

The induced norm is k.X; Y /kt D
p
h.X; Y /; .X; Y /it.

The justification of this normalization will become clearer in Section 3.1.2.
For now we observe that this makes the gradient well-defined.

Proposition 3.1.2. For inputA 2 Mat.d; n/K , the gradient offA at point .2X; 2Y / 2

t is:

rfA.2X; 2Y / D fd � ri .e
XAeY /� s.eXAeY /g˚ fn � cj .eXAeY /� s.eXAeY /g

where r; c; s refer to the row/column sums and size of eXAeY . We will often use
shorthand rA for rfA.0; 0/, and .rL

A ;rR
A / 2 t for the left and right parts, which

involve the row/column sums respectively.

We omit the proof as it is a straightforward calculation, and we revisit this
proposition more explicitly in the more general tensor setting.
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We can now reframe Lemma 1.3.5 in this more general setting as a guarantee
of the progress of Sinkhorn scaling. In this setting, we consider the following
variant of Sinkhorn

A0
WD

�
dR

det.dR/1=d

��1=2

A; A0
WD A

�
nC

det.nC /1=d

��1=2

;

where R WD diagfri .A/gi2Œd�; C WD diagfcj .A/gj 2Œn�. This is so that the scalings
remain within t.

Lemma 3.1.3. Let A! A0 represent one iteration of Sinkhorn scaling. Then the
size decreases by

log s.A0/ 6 log s.A/ �
1

6
min

(
kr

L;R
A k2t

s.A/2
; 


)

where 
 D 1
d

; 1
n
for row and column normalization steps respectively. This can

be written in terms of the Kempf-Ness function as

logfA.X; Y / � logfA.0; 0/ 6 �
1

6
minfkr logfA.0; 0/k2t ; 
g;

where .X; Y / represents one iteration of Sinkhorn, and we have omitted the L; R

superscript depending on whether it is a row or column normalization step.

Proof. We show the lemma for the case when t D 0 and we are normalizing the
left marginal. The other cases follow by induction.

s.A0/ D

dX
iD1

det.dR/1=d
nX

j D1

jAij j
2

dri .A/
D

0@ dY
iD1

dri .A/

1A1=d

;

where in the last step we used
Pn

j D1 jAij j
2 D ri .A/. To bound this value, we can

use Lemma 1.3.6 with xi WD
dri

s.A/
to show

� log
dY

iD1

xi D � log
Qd

iD1 dri

s.A/d
>

1

6

dX
iD1

�
dri

s.A/
� 1

�2

>
1

6
min

(
dkrL

Ak
2
t

s.A/2
; 1

)
:
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Plugging this calculation into the formula for size gives the result. The calculation
for column-normalization is the same. Since r logf D rf

f
, and fA.0; 0/ D

s.A/, we can rewrite

log s.A0/ � log s.A/ D logfA.X; Y / � logfA.0; 0/;

krL
Ak

2
t

s.A/2
D kr

L logfA.0; 0/k2t

which gives the statement in terms of the Kempf-Ness function.

The algorithm of Linial, Samorodnitsky, and Wigderson (2000) used a simple
preprocessing step to guarantee that the permanent was lower bounded, or equiva-
lently that logfA was finite. We can generalize this analysis in the case when we
have a guarantee on the optimum of fA.

Theorem3.1.4. Considermatrix tupleA 2 Mat.d; n/K such that s.A/ D fA.0; 0/ D

1 and
f �
WD inf

.X;Y /2t
fA.2X; 2Y / > exp.��/:

Then for any ı 6 1
n
, some iteration of Sinkhorn scaling satisfies kr logfA.Xt ; Yt /k

2
t 6

ı for some
T .

�

ı
:

Proof. Let T be the first time kr logfA.Xt ; Yt /k
2
t 6 ı. Then until this time we

make significant progress:

logf �
� logfA.0; 0/ 6 logfA.XT ; YT / � 0

D
X
t<T

logfA.XtC1; YtC1/ � logfA.Xt ; Yt / 6 �T
ı

6
;

where the first step was by definition of f � and the final step was by Lemma 3.1.3,
since the gradient is large for every step before T . Therefore by the assumed lower
bound logf � > ��, we can rearrange to show T 6 6�

ı
.

The optimization perspective also gives a more principled proof of an approx-
imate version of Theorem 1.3.2 that was needed in Linial, Samorodnitsky, and
Wigderson (ibid.). The proof goes by showing the following version of convex
duality for the Kempf-Ness function.
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Theorem 3.1.5. For matrix tuple A 2 Mat.d; n/K with s.A/ D 1, the optimum
of fA can be lower bounded by

logf �
� logfA.0; 0/ > �ndkr logfA.0; 0/kt:

A grand generalization of this theorem is proved in Bürgisser, Franks, et al.
(2019).

3.1.2 Strongly Convex Setting
In this section we will show strong convergence results for abstract convex func-
tions. These will be applied to analyze Sinkhorn’s algorithm for “strongly convex”
matrix scaling in the following section.

Lemma 3.1.6. If f W V ! R is ˛-strongly convex in norm k � k on vector space
V , then for any x 2 V we have the lower bound

f �
WD inf

z2V
f .z/ > f .x/ �

krf .x/k2

2˛
:

Furthermore, if f .x/kr logf .x/k2 6 ˛, we have multiplicative lower bound

logf � > logf .x/ �
f .x/kr logf .x/k2

˛
:

Proof. Let z� be the optimizer of f and zz WD z��z
kz��zk

the normalized direction
towards the optimizer. Then this follows simply from Lemma 2.6.1 by considering
the univariate function h.t/ WD f .z C tzz/:

f .z�/ � f .z/ D inf
t2R

h.t/ � h.0/ > �
jh0.0/j2

2˛
D �
hrf .z/; zzi2

2˛
>
krf .z/k2

2˛
;

where the final step was by Cauchy Schwarz.
To show the multiplicative lower bound, note f .x/r logf .x/ D rf .x/. We

can plug this into the previous statement to show

logf � > log
�

f .x/ � f .x/2 kr logf .x/k2

2˛

�
D logf .x/C log

�
1 � f .x/

kr logf .x/k2

2˛

�
> logf .x/ �

f .x/kr logf .x/k2

˛
;
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where the last step was by Taylor approximation for f .x/kr logf .x/k2 6 ˛

small enough by assumption.

Remark 3.1.7. The above in fact holds whenever the univariate restriction of f

between z; z� is ˛-strongly convex. We will use this weaker assumption when
analyzing strongly convex matrix scaling. This will also allow us to generalize
these results to the geodesically convex setting for tensor scaling (Section 3.2).

In our application in Chapter 4, we will require faster algorithmic conver-
gence. The following is a standard analysis of convex optimization algorithms
in the strongly convex setting.

Definition 26. A is an L-descent algorithm for F if

F.A.z// 6 F.z/ �
1

2L
krF.z/k2:

Note that if F is convex and L-smooth, then standard gradient descent with
step size 1

2L
is anL-descent algorithm forF . Also we have shown in Lemma 3.1.3

that Sinkhorn scaling is an exponential O.1/-descent algorithm for logfA where
fA is the Kempf-Ness function.

Theorem 3.1.8. Let f W V ! RC be ˛-strongly convex and A be an L-descent
algorithm for logf with initial point z0 2 V and iterates ztC1 WD A.zt /. Further
assume that initially ˛ > f .z0/kr logf .z0/k2. Then for every k 2 N,

kr logf .zT /k2t 6 2�k
kr logf .z0/k2t

for some T 6 k 4f .z0/L
˛

.

Proof. Definert WD r logf .zt / for shorthand. By strong convexity and Lemma 2.6.1,
we have

logf �
� logf .z0/ > �

f .z0/kr0k
2

˛
:

Now let t1 be the first time that krtk
2 6 1

2
kr0k

2. Then by Definition 26,

logf .zt1
/ � logf .z0/ D

X
t<t1

logf .ztC1/ � logf .zt /

6 �
X
t<t1

krtk
2

2L
6 �

t1kr0k
2

4L
;
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where the last step was by the assumption that krtk
2 > kr0k2

2
for all t < t1. If

t1 > 4Lf .z0/
˛

, then this contradicts the lower bound derived above.
Since A is a descent function, we must have f .zt1

/ 6 f .z0/. Letting tk be
the first time krtk

2 6 2�kkr0k
2, we can show the statement by induction.

Note in fact that we don’t need strong convexity of f everywhere, but just
enough to apply the lower bound in Lemma 2.6.1. If we are using a descentmethod,
it is enough to have strong convexity in a level set containing the initial point. For
this purpose, we extend Lemma 2.6.3 to the vector setting.

Lemma 3.1.9. Let z� be the optimizer of f W V ! R, and assume f is ˛-strongly
convex on fz 2 V j kz � z�k 6 Rg. Then it is strongly convex on the level set

L WD fz 2 V j f .z/ � f .z�/ 6 ˛R2=2g:

Further krf .z/k < ˛R implies z 2 L.

The proof is a straightforward application of Lemma 2.6.3 on univariate re-
strictions of f .

3.1.3 Putting it Together for Matrix Scaling
As we’ve shown above, Sinkhorn scaling is a L-descent method for logfA where
fA is the Kempf-Ness function. So in order to get fast convergence results, we
can apply the strong convexity analysis derived above.

Definition 27. Matrix tuple A 2 Mat.d; n/K is ˛-strongly convex if fA is ˛-
strongly convex in norm k � kt at the origin.

Theorem 3.1.10 (Kwok, Lau, and Ramachandran (2019), Ramachandran (2021)).
For A 2 Mat.d; n/ with s.A/ D 1, if A is "-doubly balanced and ˛ & " log d -
strongly convex, then

1. The optimizer of fA exists and satisfies

max
i2Œd�
j.X�/i j C max

j 2Œn�
j.Y�/j j .

" log d

˛
:

2. The optimum value is lower bounded

f �
D fA.X�; Y�/ > 1 �

"2

˛
:
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3. The doubly balanced scaling A� WD eX�=2AeY�=2 is ˝.˛/-strongly con-
vex. Furthermore, eXAeY is ˝.˛/-strongly convex for any k.X �X�; Y �

Y�/k2t 6 1
n
.

As a consequence, we have the desired fast convergence of Sinkhorn scaling.

Theorem 3.1.11. Under the same conditions as Theorem 3.1.10, Sinkhorn scaling
outputs ı-doubly balanced iterate AT for some T . 1

˛
.nC log.n"=ı//.

Proof. We would like to apply Theorem 3.1.8 to show fast convergence. By part
(3) of the above, we have that fA is ˝.˛/-strongly convex for a k � kt-norm
ball of size 1p

n
around .X�; Y�/. Lemma 3.1.9 shows that any iterate satisfying

krfA.Xt ; Yt /k
2
t 6 ˛2

n
will be in a strongly convex level set of fA, after which

point Sinkhorn scaling will have fast convergence by Theorem 3.1.8.
So let T be the first time the gradient condition holds. Since Sinkhorn scaling

makes progress on log f instead of f , we need to translate this condition. Because
Sinkhorn scaling is a descent method on f , we have

1 �
"2

˛
6 f � 6 fA.Xt ; Yt / 6 fA.0/ D 1;

where the first inequality is by part (2) of the previous theorem, and the final equal-
ity is by definition s.A/ D 1. Therefore, the gradient of f and log f are similar,
and we can apply the analysis of Theorem 3.1.4.

logfA.XT ; YT / � logfA.0; 0/ . �T
˛2

n

by the assumption that the gradient is large until step T . Combining with the lower
bound and rearranging gives

T .
n"2

˛3
6

n

˛
:

At this point, we can use Theorem 3.1.8 to show fast convergence, i.e. that krtk
2
t

halves every O.1=˛/ iterations. In particular, if k logrfAt
k2t 6 ı2

n
, then At is

ı-doubly balanced, so the result follows.

In the next section, we will vastly generalize these results to the setting of
non-commutative scaling problems. We will be able to lift these results by using
geodesic convexity of the Kempf-Ness function and tools from convex optimiza-
tion.
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3.2 Tensor Scaling
The tensor scaling problem is a generalization of matrix scaling where the inputs
are higher order tensors, and scalings come from the non-commutative group of
unit determinant matrices.

Definition 28. For x WD fx1; :::; xKg 2 .CD/K where CD D Cd1 ˝ :::˝ Cdm ,
its size is defined

s.x/ WD

KX
kD1

kxkk
2
2;

where the norm is the standard Euclidean norm on CD .
For this tuple, we will also define an operator in Mat.D/ by

�x WD

KX
kD1

xkx�
k :

Note that it is positive semidefinite and T rŒ�x� D s.x/.

Definition 29 (Partial trace). Let � 2 Mat.D/ be an operator on CD D Cd1 ˝

:::˝Cdm , and J � Œm�. Define the partial trace �.J / as the element of Mat.dJ /,
CdJ WD ˝a2J Cda , that satisfies the following property.

h�.J /; H i D h�; H ˝ IJ i (3.2.1)

for anyH 2 Mat.dJ /, where IJ is the identity on˝a 62J Cda , andwe have used the
standard inner product hA; Bi WD T rŒA�B�. This property uniquely determines
�.J /. We will omit brackets for small sets and write e.g. �.a/ and �.abc/ for
J D fag and J D fa; b; cg, respectively.

Definition 30. Tuple x WD fx1; :::; xKg 2 .CD/K is "-balanced if

8a 2 Œm� W s.x/
1 � "

da
Ia � �.a/

x � s.x/
1C "

da
Ia;

and x is balanced if " D 0.

Definition 31 (Tensor Scaling Problem). For tuple x WD fx1; :::; xKg 2 .CD/K

where CD D Cd1 ˝ ::: ˝ Cdm , let G WD SL.d1/ � ::: � SL.dm/ act by tensor
product

..g1; :::; gm/ 2 G/ � x WD f.g1 ˝ :::˝ gm/x1; :::; .g1 ˝ :::˝ gm/xKg:
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By abuse of notation, we will also use G to refer to the embedded subgroup fg1˝

:::˝ gm j .g1; :::; gm/ 2 SL.d1/ � ::: � SL.dm/g � GL.D/.
The input to the tensor scaling problem is a tuple x.

1. Success: Output scalings g D .g1; :::; gm/ such that g � x is balanced.

2. Failure: Proof that no G-scaling of x is balanced.

Similar to Proposition 3.1.1 for matrix scaling, there is a geodesically convex
formulation for tensor scaling.

Definition 32. For tuple x WD fx1; :::; xKg 2 .CD/K , the Kempf-Ness function
zfx W G ! R is defined as

zfx.g 2 G/ WD s.g � x/ D

KX
kD1

k.g1 ˝ :::˝ gm/ � xkk
2
2:

The family of functions f zfx2.CD/K g satisfies the following equivariance prop-
erty. We will use it repeatedly in order to simplify calculations.

Fact 3.2.1 (Equivariance). For tuple x WD fx1; :::; xKg 2 .CD/K , the Kempf-
Ness function in Definition 32 satisfies the following relation for g 2 G:

zfx.g/ D s.g � x/ D zfg �x.e/;

where e D .I1; :::; Im/ is the identity element of G.

These functions also inherit unitary invariance from the Euclidean norm.

Definition 33. For G WD SL.d1/ � ::: � SL.dm/, let K WD G \ SU.D/ D

SU.d1/�:::�SU.dm/ be amaximal compact subgroup of unit determinant unitary
matrices in G, and P WD G \PD.D/ D SPD.d1/� :::SPD.dm/ be the set of unit
determinant positive definite matrices in G. Again U is a subgroup of U.D/ and
P is a subgroup of P.D/ by the same embedding used for G.

By Theorem 2.5.2 on the polar decomposition, we have that G D KP .

Definition 34. For G; K; P given above, we define vector space

g WD f.Z1; :::; Zm/ 2 Mat.d1/�:::�Mat.dm/ j 8a 2 Œm� W Z�
a D Za; T rŒZa� D 0g:
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By abuse of notation, we will also use g to refer to the following embedding:

.Z1; :::; Zm/!
X

a2Œm�

Ia ˝Za 2 Mat.D/:

Note that
p
�1g is the set of anti-Hermitian traceless matrices and is the Lie

algebra of K. Also the Spectral Theorem shows that P D eg, where this is the
standard exponential map on Hermitian matrices.

Lemma 3.2.2. The Kempf-Ness function is invariant under K. Therefore, by the
decomposition G D KP , it descends to a function on P :

fx.p 2 P / WD s.p1=2
� x/ D h�x; pi:

Proof. Since K � U.D/, it does not change the norm. Therefore we can let fx be
a function on K orbits and choose the positive definite element as a representative.
Explicitly, let g D kp D keZ for k 2 K; Z 2 g.

zfx.g/ D

KX
kD1

kkeZ
� xkk

2
2 D

KX
kD1

hxkx�
k ; eZk�keZ

i D h�x; e2Z
i:

Since .e2Z/1=2 D eZ is the polar part of g, fx is well-defined.

We distinguish between the two functions f; zf for the following reason: the
domain of f is contained in the domain of zf , but the two functions are normalized
differently, which leads to the following discrepancy on their common domain:

zf .eZ/ D f .e2Z/:

Therefore, we will tend to use f exclusively for positive definite elements to avoid
confusion.

Note importantly that x is "-balanced iff K � x is, so we do not lose any infor-
mation by restricting to P . We next show that the Kempf-Ness function gives an
optimization formulation for the tensor scaling problem (Definition 31).

Lemma 3.2.3. For tuple x WD fx1; :::; xKg 2 .CD/K , if g 2 G is the global
minimizer of zfx , then g � x is a balanced tensor.
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Proof. Let g D k � eZ� be the polar decomposition for k 2 K; Z� 2 g. By
Lemma 3.2.2, g is the global optimizer of zfx iff e2Z� is the global optimizer of
fx . To show the lemma, we examine the optimality conditions of y WD g �x under
small perturbations. For any Z 2 g

@�D0fy.e�Z/ D @�D0

D
�y ;

O
a2Œm�

e�Za

E
D

X
a2Œm�

h�y ; Ia ˝Zai

D
X

a2Œm�

h�.a/
y ; Zai D

X
a2Œm�

D
�.a/

y �
s.y/

da
Ia; Za

E
;

(3.2.2)

where the second step was by the product rule, the third step was by Definition 29
on marginals, and the final step was by the constraint that T rŒZa� D 0.

By local optimality, we must have @�D0fy.e�Z/ > 0 for every Z 2 g. Since
the Frobenius inner product is non-degenerate, this happens iff �

.a/
y D

s.y/
da

Ia for
all a 2 Œm�, which is equivalent to y being a balanced tensor. Therefore the lemma
follows by Fact 3.2.1 and the definition y D g � x.

The above calculation showed that local optimality conditions imply tensor
balance. To show the converse, we will exploit the structure of P and the appro-
priate notion of convexity of f .

Lemma 3.2.4. For x 2 .CD/K , g is the global minimum of zfx iff g�g is a local
minimum of fx iff g � x is a balanced tensor.

Proof. The first equivalence follows by Lemma 3.2.2. To show that local optimal-
ity implies g � x is balanced, we will use geodesic convexity of fx .

Letting y WD g �x be the balanced scaling, Equation (3.2.2) shows that for any
Z 2 g

@�D0fy.e�Z/ D
X

a2Œm�

D
�.a/

y �
s.y/

da
Ia; Za

E
D 0:

We will show that the the family of functions ffx j x 2 .CD/Kg are all
geodesically convex on P . By Definition 19, it is enough to show that the univari-
ate restriction �! fx.e�Z/ is convex at the origin for every Z 2 g.

@2
�D0fx.e�Z/ D @2

�D0

D
�x;

O
a2Œm�

e�Za

E
D

*
�x;

� X
a2Œm�

Ia ˝Za

�2
+

; (3.2.3)
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and this inner product is non-negative as both terms are positive semi-definite.
Therefore, we can use convexity properties to show s.y/ is the global mini-

mum. Specifically, consider the univariate restriction h.�/ WD fy.e�Z/ forZ 2 g.

fy.eZ/ � s.y/ D h.1/ � h.0/ > h0.0/.1 � 0/ D 0;

where we used Definition 16 for the lower bound, and the local optmality of y for
the final equality. As Z 2 g was arbitrary, s.y/ is the minimum value of fy , and
this is also the minimum value of fx by Fact 3.2.1.

This formulation will allow us to use tools from convex optimization to give
strong bounds for the tensor scaling problem.

3.2.1 Geodesic Gradient

To use ideas from convex optimization, we would like to define the appropriate no-
tion of gradient for the Kempf-Ness function. For an inner product space .V; h�; �i/

the gradient rh of function h W V ! R represents the infinitesimal rate of change
with respect to linear perturbations:

hrh.u/; x 2 V i D @�D0h.uC �x/:

The Kempf-Ness function in Definition 32 is not defined on a vector space, so the
Euclidean gradient is not well-defined. Butwe can use the reduction in Lemma 3.2.2
and the geometry of P to define the analogous notion of geodesic gradients. Since
g is a vector space and P D eg, the following gives a natural condition to define
the geodesic gradient at the identity ID 2 G:

hrfx.ID/; Zi D @�D0fx.e�Z/:

To lift this properly to a geodesic gradient at all points, we can use Fact 3.2.1.

Definition 35. [g Inner Product] For elements Z; Z0 2 g, we define inner product

hZ; Z0
ig WD

X
a2Œm�

1

da
hZa; Z0

ai;

where the right hand side uses hX; Y i WD T rŒX�Y �.
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The induces norm kZk2g D hZ; Zig which is in fact equivalent to the standard
Frobenius norm in Mat.D/ by the embedding* X

a2Œm�

Ia ˝Za;
X

b2Œm�

I
b
˝Z0

b

+
D

X
a2Œm�

kIak
2
F hZa; Z0

ai C
X

a¤b2Œm�

hIa ˝Za; I
b
˝Z0

bi

D
X

a2Œm�

D

da
hZa; Z0

ai D DhZ; Z0
ig

where the a ¤ b terms vanish as T rŒZa� D T rŒZ0
b
� D 0.

Proposition 3.2.5. For x 2 .CD/K , the geodesic gradient of fx at point pinP

is the following element of g:

rfx.p/ D
n
da � �

.a/

p1=2�x
� s.p1=2

� x/Ia

o
a2Œm�

:

We will often use shorthand rx WD rfx.ID/, and fr.a/
x ga2Œm� for the marginals.

Proof. By Fact 3.2.1 and Definition 15, if y D p1=2 � x then

@�D0fx.p1=2e�Zp1=2/ D @�D0fy.e�Z/

for any Z 2 g. So it is enough to define the geodesic gradient at the identity. By
the dual definition above, for Z 2 g we calculate

@�D0fy.e�Z/ D
X

a2Œm�

D
�.a/

y �
s.y/

da
Ia; Za

E
D

X
a2Œm�

1

da
hda�.a/

y � s.y/Ia; Zai;

where the first stepwas by Equation (3.2.2). The final expression is exactly hry ; Zig
by Definition 35.

3.2.2 Strong Convexity

Convergence results for convex optimization can generally be strengthened under
the assumption that the function is strongly convex. Here we define the correct
notion of strong geodesic convexitywhichwill allow us to give strong convergence
results in the non-commutative optimization setting. Sincewe have already chosen
the g-inner product, our notion of strong convexity is clear.
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Definition 36. x 2 .CD/K is ˛-strongly convex iff fx is ˛-geodesically strong
convex at the identity:

8Z 2 g W @2
�D0fx.e�Z/ > ˛kZk2g D ˛

X
a2Œm�

kZak
2
F

da
:

In order to show strong convexity of a particular input x, we can further exam-
ine the second-order derivatives by expanding the terms of Equation (3.2.3).

@2
�D0fx.e�Z/ D

*
�x;

� X
a2Œm�

Ia ˝Za

�2
+

D
X

a2Œm�

h�.a/
x ; Z2

ai C
X

a¤b2Œm�

h�.ab/
x ; Za ˝Zbi:

(3.2.4)

The cases of interest to us will be when x is a nearly balanced tensor. Our plan
will then be to show that the diagonal terms h�.a/

x ; Z2
ai are large. To show strong

convexity, we will need a bound on the off-diagonal terms for which we define the
following spectral condition.

Definition 37. For tensor x 2 .CD/K and a ¤ b 2 Œm�, x satisfies the �-spectral
condition in the .ab/ part if

sup
ZD.Za;Zb;0/2g

h�
.ab/
x ; Za ˝Zbi

kZakF kZbkF
6

�p
dadb

;

and x satisfies the �-spectral condition if it does so for every part a ¤ b 2 Œm�.

This condition originated in the operator scaling analysis of Kwok, Lau, and
Ramachandran (2019). For this simpler case, when m D 2, the condition is actu-
ally a spectral upper bound for a particular linear map ˚ W Mat.db/ ! Mat.da/.
This interpretation is quite valuable for the proving robustness of strong convexity,
e.g. Theorem 3.2.11.

We can use this condition to show strong convexity.

Proposition 3.2.6. If tensor x 2 .CD/K is "-balanced and satisfies the �-spectral
condition, then x is ˛-strongly convex for ˛ > s.x/.1 � "/ � .m � 1/�.



3.2. Tensor Scaling 47

Proof. To show that the diagonal terms in Equation (3.2.4) are large, we use the
fact that x is "-balanced so

h�.a/
x ; Z2

ai > s.x/
1 � "

da
hIa; Z2

ai D s.x/
1 � "

da
kZak

2
F ;

where the first step was by Definition 30 and the fact that Z2
a � 0.

The off-diagonal terms in Equation (3.2.4) are bounded by Definition 37, so
for any Z 2 g we can bound the second order derivative

@2
�D0fx.e�Z/ D

X
a2Œm�

h�.a/
x ; Z2

ai C
X

a¤b2Œm�

h�.ab/
x ; Za ˝Zbi

>
X

a2Œm�

s.x/.1 � "/

da
kZak

2
F �

X
a¤b2Œm�

�p
dadb

kZakF kZbkF

D

 
s.x/.1 � "/C �

!
kZk2g � �

0@ X
a2Œm�

kZakF
p

da

1A2

>
�
.s.x/.1 � "/C �

�
kZk2g �m�kZk2g;

where the third and fourth step used Definition 35 on h�; �ig, and the last step was
by Cauchy-Schwarz. As Z 2 g was arbitrary, the statement follows by combining
terms.

3.2.3 Strong Convergence Bound
In this section, we will generalize Theorem 3.1.10 to the geodesic setting. Specifi-
cally, we will need to show that fx is strongly convex on all univariate restrictions
for some neighborhood of ID . This gives a strong distance bound for the solu-
tion of the tensor scaling problem. We will need the following version of operator
norm for our bounds.

Definition 38. For Z 2 g, the operator norm is defined

kZkop WD
X

a2Œm�

kZakop;

where kZakop is the standard Euclidean operator norm on Mat.da/. Note that
this is exactly the Euclidean operator norm of Z with respect to the embedding
Z !

P
a2Œm� Ia ˝Za 2 Mat.D/.
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Lemma 3.2.7. For vector space g, the two norms are equivalent up to the follow-
ing factors:

kZk2g 6 kZk2op 6

0@ X
a2Œm�

da

1A kZk2g:

Proof. By Definition 35 of k � kg and Definition 38 of k � kop

kZk2g D
X

a2Œm�

kZak
2
F

da
6
X

a2Œm�

dakZak
2
op

da
6

0@ X
a2Œm�

kZakop

1A2

D kZk2op;

where the second step was by standard equivalence of operator and Frobenius
norm. To show the reverse equivalence, we calculate

kZk2op D

0@ X
a2Œm�

kZakop

1A2

6

0@ X
a2Œm�

kZakF

1A2

6

0@ X
a2Œm�

da

1A kZk2g;

where we used kZakop 6 kZakF and the final step was by Cauchy-Schwarz.

Lemma 3.2.8. If x 2 .CD/K is ˛-strongly convex, then for any Z 2 g the uni-
variate restriction h.�/ WD fx.e�Z/ is ˛ exp.�k�Zkop/-strongly convex at �.

Proof. Consider univariate restriction � ! fx.e�Z/ for some kZkg D 1. Then
Equation (3.2.3) shows that the second derivative is*

�e�Z=2x;
� X

a2Œm�

Ia ˝Za

�2
+
D

*
e�Z=2�xe�Z=2;

� X
a2Œm�

Ia ˝Za

�2
+

D

*
�x; e�Z

� X
a2Œm�

Ia ˝Za

�2
+

> e�k�Zkop

*
�x;

� X
a2Œm�

Ia ˝Za

�2
+
;

where the second step was from Equation (3.2.3), the third was by Fact 3.2.1,
the fourth step was by the fact that eZ commutes with the term in paranthesis,
and therefore the fifth step was by a spectral lower bound. This last term is
> ˛e�k�Zkop by strong convexity of x.
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Theorem 3.2.9. If x 2 .CD/K is ˛-strongly convex for

˛ > e2

s X
a2Œm�

dakrxkg;

then there exists a balanced scaling eZ� � x such that

kZ�kg 6
ekrxkg

˛
:

Furthermore, the size of this scaling can be lower bounded

s.x�/ > s.x/ �
ekrxk

2
g

2˛
:

Proof. Let R WD e2krxkg=˛ be the desired radius bound, and consider geodesi-
cally convex set B WD feZ j Z 2 g; kZkg 6 Rg. Since B is closed and bounded,
the infimum of continuous function fx over B exists and is attained at some point
eZ� . If there are many such infimum, choose the one that minimizes kZ�kg. If we
can show that eZ� is in fact strictly in the interior of B , then it is a local optimum,
which by Lemma 3.2.3 shows that it is a global optimum and gives a balanced
scaling.

The condition Z� 2 B implies the following operator norm bound.

kZ�k
2
op 6

0@ X
a2Œm�

da

1A kZ�k
2
g 6

0@ X
a2Œm�

da

1A e4krxk
2
g

˛2
6 1;

where the first step is by Lemma 3.2.7, and the final inequality is by the assumption
on ˛.

Letting T WD kZ�kg andZ WD Z�=T , Lemma 3.2.8 shows that the univariate
restriction h.�/ WD fx.e�Z/ is ˛

e
-strongly convex for � 2 Œ0; T �. By definition of

Z�, we must have h0.T / 6 0 as otherwise we could choose some e�Z� for � < 1

that is also an optimizer. So we can bound T as follows:

0 > h0.T / D h0.0/C

Z T

�D0

h00.�/ D hrx; ZiC

Z T

�D0

@2
�fx.e�Z/ > �krxkgCT

˛

e
;

where the second step was by the fundamental theorem of calculus, the third step
was by Proposition 3.2.5 of geodesic gradient, and the final step was by Cauchy-
Schwarz on h0.0/ D hrx; Zi and the strong convexity of h. Rearranging terms,
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we see that T D kZ�kg 6 ekrxkg

˛
< R, and so eZ� is strictly in the interior of B

and therefore is the global optimum which satisfies the required radius bound.
The size lower bound now follows by standard strong convexity.

s.x�/ � s.x/ D h.T / � h.0/ > �
ejh0.0/j2

˛
> �

ekrxk
2
g

˛
;

where the second step used Lemma 2.6.1, and the final stepwas byCauchy-Schwarz
on h0.0/ D hrx; Zig.

3.2.4 Convergence of Algorithms
In this section, we will generalize the results of Theorem 3.1.11 to tensor scaling.
We first give the appropriate generalization of Sinkhorn scaling.

Definition 39 (Flip-Flop Algorithm). For input x 2 .CD/K , one iteration of the
Flip-Flop algorithm chooses a WD argmaxb2Œm� kr

.b/
x kg, and then normalizes this

marginal
x  Ia ˝ .da�.a/

x /�1=2x:

To solve the tensor scaling problem, we can apply a natural variant of this algo-
rithm which stays within G D SL.d1/ � ::: � SL.dm/.

x  Ia ˝

 
da�

.a/
x

det.da�
.a/
x /1=da

!�1=2

x:

Proposition 3.2.10. For input x 2 .CD/K , let .a/ be the largest marginal and x0

be the output of one iteration of Flip-Flop (normalizing the .a/ marginal). Then

log s.x0/ � log s.x/ 6 �
1

6
min

(
kr

.a/
x k

2
g

s.x/2
;

1

da

)
:

This can be rewritten in terms of the Kempf-Ness function as

logfx.eZ/ 6 logfx.e/ �
1

6
min

(
kr logfx.e/k2g

m
;

1

dmax

)
where eZ is one iteration of the Flip-Flop algorithm and e is the identity element
of G, and r logfx WD

rx

s.x/
by abuse of notation.
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Proof. This statement is shown in exactly the same way as Lemma 3.1.3, except
that we consider eigenvalues of �

.a/
x instead of row and column sums.

In Theorem 3.2.9, we have proven a strong bound on the optimizer of fx when
the input x 2 .CD/K is sufficiently strongly convex. In order to show fast con-
vergence of algorithms we require the tensor scaling solution x� WD eZ� � x to be
geodesically strongly convex, whereas Theorem 3.2.9 only proves strong convex-
ity of the univariate restriction � ! fx.e�Z�/. In order to generalize our results
from Theorem 3.1.11, we will need a stronger robustness result.

Theorem 3.2.11. If x 2 .CD/K is ˛-strongly convex, then for any perturbation
ı 2 g such that kıkop 6 1

20
, scaling x0 WD eı � x is ˛ � O.mkıkop/-strongly

convex.

The full proof is given in Franks et al. (2021) and proceeds by showing that
each block of the Hessian does not change too much under small perturbations.

This result allows us to conclude that if the initial point in Theorem 3.2.9 is
˛-strongly convex for large enough ˛, then the tensor scaling solution x� WD eZ� �

x is also ˝.˛/-strongly convex. Therefore we can generalize the arguments of
Section 3.1.3 to the geodesic setting and show fast convergence of Flip-Flop. In
fact, many of the lemmas go through verbatim by replacing Euclidean convexity
with geodesic convexity. The specific condition we need for fast convergence is
defined below.

Definition 40. Let f W P ! R be a geodesically convex function and assume for
simplicity that the optimizer is at the identity. Then Z 2 g or eZ 2 G is called
˛-strongly convergent if the univariate restriction �! f .e�Z/ is ˛kZk2g-strongly
convex for � 2 Œ0; 1�. Equivalently, � ! f .e�Z=kZkg/ is ˛-strongly convex for
� 2 Œ0; kZkg�.

B � g is ˛-strongly convergent if every Z 2 B is ˛-strongly convergent.

The above assumption is sufficient to derive the fast convergence properties
of strongly convex functions.

Lemma 3.2.12. Let f W P ! R be geodesically convex with optimizer at the
identity. If Z 2 g is ˛-strongly convergent, then

1. (Function): f � > f .eZ/ �
krf .eZ/k2

g

2˛
.

2. (Distance): kZkg 6 krf .eZ/kg

˛
.
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Proof. Both statements follow simply from the univariate versions. Specifically
consider h.�/ WD f .e�Z/ which is ˛kZk2g-strongly convex for � 2 Œ0; 1�. Then
Lemma 2.6.1 gives

f �
D h.0/ > h.1/ �

jh0.1/j2

2˛kZk2g
> f .eZ/ �

krf .eZ/k2g

2˛
;

where in the last inequality we used Cauchy-Schwarz on h0.1/ D hrf .eZ/; Zig.
To show the second statement, we use the fact that the optimizer is at the iden-

tity so h0.0/ D 0.

�krf .eZ/kgkZkg > h0.1/ D h0.0/C

Z 1

�D0

h00.�/ > ˛kZk2g;

where the first inequality is again by Cauchy-Schwarz, and the final inequality is
by strong convexity. The bound follows by rearranging.

Using this notion, we can generalize Theorem 3.1.8 to the geodesic setting.

Lemma 3.2.13. Let f W P ! RC be a geodesically convex function with opti-
mizer at the identity, and consider A an L-descent algorithm for logf . If all the
iterates Zt are ˛-strongly convergent, and the initial point eZ0 satisfies

f .eZ0/kr0k
2
g 6 ˛

then T . L
˛
log 1

ı
iterations suffice to produce

kr logf .eZT /k2g 6 ı2
kr logf .eZ0/k2g:

Proof. For shorthand, letrt WD r logf .eZt /, and let T be the first time krT k
2
g 6

1
2
kr0k

2
g. Then by Lemma 3.2.12 (1) we have lower bound

f � > f .eZ0/ �
krf .eZ0/k2g

2˛
:

To show a lower bound for logf , we use rf D f � r logf to show

logf �
� logf .eZ0/ > log

 
1 � f .eZ0/

kr0k
2
g

2˛

!
> �f .eZ0/

kr0k
2
g

˛
;
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where in the last step we used the assumption on the initial gradient and Taylor
approximation. Now by the descent property of A, we get

logf .eZT / � logf .eZ0/ 6
X
t<T

logf .eZtC1/ � logf .eZt / 6 �T
kr0k

2
g

4L
;

where in the last step we used the assumption that krtk
2
g > 1

2
kr0k

2
g for all t < T .

Combining with the lower bound and rearranging, we get

�f .eZ0/
kr0k

2
g

˛
6 �T

kr0k
2
g

4L
H) T 6 f .eZ0/

4L

˛
:

Letting Tk be the first time krTk
k2g 6 2�kkr0k

2
g and continuing by induction,

we get the result.

Going back to Theorem 3.2.9, we can show by Theorem 3.2.11 that x� D

eZ� � x is strongly convex. To show that the iterates of Flip-Flop become strongly
convergent, we use the level set strategy of Theorem 3.1.8.
Lemma 3.2.14. Let f W P ! R be a geodesically convex function with optimizer
at the identity. Assume further that the geodesic ball

B WD fZ 2 g j kZkg 6 Rg

is an ˛-strongly convergent zone. Then
1. The level set L WD fZ 2 g j f .eZ/ � f � 6 ˛R2=2g is ˛-strongly conver-

gent.

2. If Z 2 g is such that krf .eZ/kg 6 ˛R, then Z 2 L.
Proof. Both statements follow from Lemma 2.6.3 applied to h.�/ WD f .e�Z/ for
kZkg D 1 which is ˛-strongly convex for � 2 Œ0; R�.

With these tools, we can generalize Theorem 3.1.11 to the tensor setting.
Theorem 3.2.15. Let x 2 .CD/K have size s.x/ D 1 and assume x is ˛-strongly
convex for

˛2 &
s X

a2Œm�

dakrxkg:

By Theorem 3.2.9, there exists a balanced scaling x� WD eZ� � x.
Then for any ı > 0, T .. m

˛
log 1

ı
iterations of Flip-Flop suffice to produce

xT WD eZT � x� such that
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1. (Distance): kZT k
2
g 6

�P
a2Œm� da

��1
ı2.

2. (Function): logfx.eZT / � logf � .
�P

a2Œm� da

��1
ı2˛.

Proof. We first apply Theorem 3.2.9 to show that eZ� is the optimizer of fx and
satisfies

kZ�kg 6
ekrxkg

˛
:

By Lemma 3.2.7, this gives bound

kZ�k
2
op 6

0@ X
a2Œm�

da

1A kZ�k
2
g 6

0@ X
a2Œm�

da

1A ekrxk
2
g

˛
:

By the assumption that ˛2 is large enough, Theorem 3.2.11 implies that x� WD

eZ� � x is a balanced tensor that is also ˛
2
-strongly convex.

In order to apply Lemma 3.2.13, we want to show that eventually all iterates of
the Flip-Flop algorithm are ˝.˛/-strongly convergent. By the above discussion,
fx�

is ˛
2
-geodesically convex at the origin, and therefore by Lemma 3.2.8 all points

kZkop 6 1 are ˛
2e
-strongly convergent. By Lemma 3.2.7, this means that the

geodesic ball

B WD

8̂<̂
:eZ

2 G j kZk2g 6

0@ X
a2Œm�

da

1A�1
9>=>;

is ˛
2e
-strongly convergent. Lemma 3.2.14 then shows

krfx�
.eZ/k2g 6

0@ X
a2Œm�

da

1A�1

˛2

4e2

is a sufficient condition for linear convergence of Flip-Flop. So let T be the first
time this occurs. Note that the proof of Theorem 3.2.9 in fact shows that the ini-
tial point Z0 WD �Z� is such that x D eZ0 � x� and is ˛

2
-strongly convergent.

Therefore Lemma 3.2.12 shows

s.x�/ > s.x/ �
krfx�

.eZ0/k2g

˛
:
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We can rewrite this in terms of logfx�
as

logfx�
.ID/� logfx�

.eZ0/ > log

 
1 �
krfx�

.eZ0/k2g

s.x/˛

!
> �

2krfx�
.eZ0/k2g

˛
;

where we used s.x/ D 1 and krxkg � ˛ for the Taylor approximation. Since
Flip-Flop is a descent method, this gives a nearly tight bounds for all iterates

1 �
krxk

2
g

˛
6 s.x�/ 6 s.xt / 6 s.x/ D 1:

By the fact that rf D f � r logf , this allows us to show that Flip-Flop makes
progress with respect to rf . So for any t < T we have

logfx�
.eZt /� logfx�

.eZtC1/ & min

(
krfx�

.eZt /k2g

m
;

1

dmax

)
&

˛2

m
P

a2Œm� da
;

where in the final step we used the bound on the objective function and gradient.
Combining this with the lower bound, we get

2krxk
2
g

˛
> log s.x/ � log s.x�/ > log s.x0/ � log s.xT / &

T ˛2

m
P

a2Œm� da
:

H) T .

0@ X
a2Œm�

da

1A mkrxk
2
g

˛3
:

By the assumption on ˛2, this is O.m˛/, which is usually negligible. In fact,
even under the weaker assumption ˛ >

qP
a2Œm� dakrxkg, we can conclude

that T 6 O.m/
˛

, which is negligible for small ı.
After this point, every iterate Zt>T is ˝.˛/-strongly convergent, so we can

conclude that there is t � T . m
˛
log 1

ı
such that

krfx�
.eZt /k2g 6 kr logfx�

.eZt /k2g 6 ı2
kr logfx�

.eZT /k2g . ı2 ˛2P
a2Œm� da

;

where the first step was by the bounds on s.xt / shown above, the second step was
by Lemma 3.2.13, and the final step was by the gradient bound on ZT derived
above. The bounds on kZtkg and fx�

.eZt / then follow from Lemma 3.2.12.
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Remark 3.2.16. Note that the requirement on ˛ is larger by a quadratic factor,
because we need to show x� WD eZ� � x is still geodesically strongly convex.
But even with this weaker assumption, the number of iterations before we reach
˝.˛/-strongly convergent is only O.m/

˛
. In our application in the next chapter, we

will have ˛ � 1 strong convexity, so this will not make much difference. This
quadratic loss is crucial in e.g. the application to the Paulsen problem.



4 Applications to
statistics

This chapter is based on the work of Franks et al. (2021), which presents improved
results in full details. So the reader can consult the more thorough treatment of
Franks et al. (ibid.), we will attempt to maintain notational consistency with this
work as far as possible

4.1 Statistical Background

4.1.1 Statistical Inference
Many problems in statistics relate to identifying an unknown distribution based on
samples from that distribution. A statistical model is a set of assumptions which
constrains the possible family of distributions F that we are dealing with. Given
a model, the task of statistical inference is to extract some concrete information
about the fixed unknown distribution D 2 F . The quality of this estimate can
be measured according to various metrics depending on the application require-
ments, and the theoretical goal is to give an upper bound on the number of samples
required to give a good estimator.

Example 4.1.1. Bernoulli Estimation
Input: X1; :::; Xn � Ber.p/ from a Bernoulli distribution with bias p.
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Output: The sample mean �p WD 1
n

P
iD1 Xi is a natural high-quality estimator

for the bias.

Example 4.1.2. Gaussian Estimation
Input: X1; :::; Xn � N.0; ��1/ from an unknown centered Gaussian distribution
with positive definite precision matrix � 2 Mat.d/. This is the inverse of the
covariance matrix.
Output: The inverse sample covariance �� WD �

1
n

P
iD1 XiX

�
i

��1 is a natural
high-quality estimator for the precision matrix.

4.1.2 Maximum Likelihood Estimation

In this section, we can derive the natural estimator used in Example 4.1.2 as the
solution to an optimization problem.

Suppose we are given sampleX 2 Rd from some unknown centered Gaussian
distribution, and we guess that the true distribution N.0; ��1/. In this case, the
probability density function (pdf) would be given by

f�.x 2 Rd / D

s
det.�/

.2�/d
exp

�
�

1

2
x��x

�
:

So if X��X is very large, then the pdf states that this sample was very unlikely,
and in some sense � is a bad guess. This intuition is formalized below.

Definition 41. Given samples X1; :::; Xn 2 Rd from some unknown distribution
in F WD fD!g!2˝ , the likelihood function of guess � 2 ˝ is

L.�/ WD f� .X1; :::; Xn/;

where f� is the pdf of D� . We also often consider the log-likelihood function
`.�/ WD logL.�/ because independent terms become additive.

The maximum likelihood estimator (MLE) is the choice that maximizes the
likelihood function �� WD arg max

!2˝
L.!/:

It turns out that the natural estimator given in Example 4.1.2 can be derived
using this MLE perspective.



4.1. Statistical Background 59

Proposition 4.1.3. Given samples X1; :::; Xn 2 Rd from an unknown centered
Gaussian distribution, the log-likelihood function for � 2 PD.d/ is given by

`.�/ D
n

2
log det.�/ �

nd

2
log.2�/ �

1

2

*
nX

iD1

XiX
�
i ; �

+
;

and the inverse sample covariance �� WD �1
n

P
iD1 XiX

�
i

��1 is the MLE.

Proof. By independence, the log-likelihood of � for samples X1; :::; Xn is just
the sum of log-likelihoods for each individual sample. So we compute

logf�.x/ D
1

2
log det.�/ �

d

2
log.2�/ �

1

2
x��x

H) `.�/ D
n

2
log det.�/ �

nd

2
log.2�/ �

1

2

nX
iD1

X�
i �Xi :

To find the MLE, we want to find the maximizer of L.�/. We will perform
some simple transformations to simplify this optimization problem andmore clearly
show the similarity to our scaling perspective. We can drop the nd

2
log.2�/ term,

since it does not depend on �, and renormalize to find the MLE as

arg min
�2PD.d/

FX .�/ WD �
2

n
`.�/ � log 2� D

*
1

n

nX
iD1

XiX
�
i ; �

+
� log det.�/;

where we have used the natural Frobenius (entrywise) inner product on Mat.d/.
We can find the optimizer by solving for critical points.

0 D r�FX .�/ D
1

n

nX
iD1

XiX
�
i ���1

H) �� D  1

n

nX
iD1

XiX
�
i

!�1

:

To show that this is in fact the MLE, we can compute the second order derivative
and show it is the global minimizer. We leave this computation as an exercise.

This problem and the optimization formulation for estimation enjoy a certain
linear invariance.
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Proposition 4.1.4. For samplesX1; :::; Xn 2 Rd andA 2 GL.d/, let Yi WD AXi .
Then

FY .�/ D FX .A�A�/C log det.AA�/:

Therefore, ��Y is the MLE for Y iff ��X D A��Y A� is the MLE for X .

Proof. This is a simple change of variable calculation.

FY .�/ D
1

n

nX
iD1

hYiY
�
i ; �i � log det.�/

D
1

n

nX
iD1

hXiX
�
i ; A�A�

i � log det.A�A�/C log det.AA�/

D FX .A�A�/C log det.AA�/:

Since this log det.AA�/ does not depend on �, we can drop this term without
changing the optimizer, so the second statement follows.

4.1.3 Quality of Gaussian Covariance Estimator
There are many ways to measure how good an estimator of covariance is. One
natural measure of error is the following.

Definition 42. ForA; B 2 PD.d/, we define relative Frobenius and operator error

dF .A; B/ D kId�B�1=2AB�1=2
kF ; dop.A; B/ D kId�B�1=2AB�1=2

kop:

Thesemeasures are not symmetric, but noted.A; B/ D d.B�1=2AB�1=2; Id /.
Intuitively, this gives a multiplicative form of error between A; B . For example

sup
v2Rd

hvv�; Id � B�1=2AB�1=2i

kvk22
D sup

u2Rd

hu; Bui � hu; Aui

hu; Bui
;

where the last line was a change of variable v D B1=2u. Therefore dop.A; B/ 6 "

implies a multiplicative approximation of the quadratic form

8u 2 Rd
W hu; Aui 2 .1˙ "/hu; Bui:

This kind of approximation is common in the literature on Laplacian solvers and
graph sparsification (e.g. Spielman and Teng (2014), Spielman and Srivastava
(2011)).



4.1. Statistical Background 61

This definition is also a natural measure of distance from the geodesic perspec-
tive we will consider. Recall from Definition 15 that the unique geodesic curve
from B ! A is defined


.t/ WD B1=2 exp.tX/B1=2

where X WD log.B�1=2AB1=2/ so that 
.0/ D B; 
.1/ D A. If X is small, then
up to constant factors, we can rewrite the error measures as

d.A; B/ D kId � exp.X/k . kXk;

where the last step was by Taylor approximation for small enough kXkF ; kXkop

respectively. Since our results will rely on geodesic convex optimization, we will
achieve strong bounds on geodesic distance, which then implies strong bounds on
dF ; dop by the above calculation.

4.1.4 Analysis of the MLE
In this section, we will give explicit sample complexity bounds for the MLE to
be a high-quality estimator for the covariance on an unknown centered Gaussian
distribution.

Theorem 4.1.5. Let X1; :::; Xn 2 Rd be samples from Gaussian distribution
N.0; ��1/, and let �� be the MLE for the precision matrix. If " 6 1

10
and

n > d
"2 , then the MLE has the following error bounds with probability at least

1 � 2 exp.�"2n=2/:

dop.��; �/ . "; dF .��; �/2 . d"2:

We will use the linear invariance of the MLE and distance measure to reduce
to the case when � D Id . The result will then follow from the following standard
result on Gaussian matrix concentration.

Theorem 4.1.6 (Corollary 5.35 of Vershynin (2012)). Let G 2 Mat.d; n/ be a
randommatrix with standard Gaussian entries, or equivalently standard Gaussian
columns g1; :::; gn � N.0; Id /. Then for any t > 0,

p
n �
p

d � t 6 �min.G/ 6 �max.G/ 6
p

nC
p

d C t

with probability at least 1 � 2e�t2=2:
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Proof of Theorem 4.1.5. The distribution of X � N.0; ��1/ is equivalent to the
distribution of ��1=2Y where Y � N.0; Id /. By the discussion in Proposi-
tion 4.1.4, the MLE of X and Y are related as follows:��X D ��1=2��Y ��1=2:

The error measures also satisfy a similar invariance

d.��X ; �/ D d.��1=2��X��1=2; Id / D d.��Y ; Id /:

So to prove the theorem, it is enough to show the error bound in the case when
� D Id . In this case, the sample covariance has spectrum concentrated close to
one. Specifically, if t D "

p
n in Theorem 4.1.6, then with probability at least

1 � 2 exp.�"2n=2/, we have the bound

�min

 
1

n

nX
iD1

YiY
�
i

!
D

�
�min.Y /
p

n

�2

>
 

1 �

p
d C "

p
n

p
n

!2

> 1 � 5";

where in the last step we used the assumption that n > d="2 and the Taylor ap-
proximation for .1� 2"/2 for small ". By the same calculation, we have an upper
bound

�max

 
1

n

nX
iD1

YiY
�
i

!
6 1C 5":

Therefore, when this event occurs we can bound

dop.��Y ; Id / D








 

1

n

nX
iD1

YiY
�
i

!�1

� Id








op

D maxfj��1
max�1j; j��1

min�1jg 6 10";

where again in the last step we used the Taylor approximation for 1
1˙x

and the fact
that 5" 6 1

2
. Similarly, we can calculate

dF .��Y ; Id /2
D








 

1

n

nX
iD1

YiY
�
i

!�1

� Id








2

F

6 d.10"/2:
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This is in fact best possible error bound up to constant factors. In fact, the
sample covariance is non-invertible for n < d samples so in this case we cannot
have any constant error estimator. The sample complexity requirement can be
rewritten nd & d2, where the right hand side represents the degrees of freedom
of the unknown precision matrix, and the left hand side is the information content
of n samples of d -dimensional vectors. This intuition will generalize to sample
complexity results on the matrix and tensor normal model.

4.2 Matrix and Tensor Normal Model

4.2.1 Setup
In the previous section, we saw tight results for Gaussian covariance estimation.
In this section we will consider the case when our random data is in the form of a
matrix or tensor. Explicitly X 2 RD where RD WD Rda ˝ ::: ˝ Rdm for some
m > 2. The discussion after Theorem 4.1.5 shows that in this setting, n & D DQ

a2Œm� da samples are required in order to get any reasonable estimator.
In order to bypass this sample lower bound, we can add constraints to the

model. The tensor normal model is one such natural assumption where the preci-
sion matrix also respects the tensor structure.

Definition 43 (Matrix and Tensor Normal Model). The tensor normal model with
m > 2 and dimensions d1; :::; dm is the family of centered Gaussian distributions
N.0; ��1/ where

� D �1 ˝ :::�m

for some f�a 2 PD.da/ga2Œm�. When m D 2, this is known as the matrix normal
model.

Definition 44 (Covariance Estimation for Matrix and Tensor Normal Model). In-
put: Samples X1; :::; Xn � N.0; ��1/ where � D �1 ˝ :::�m.
Output: �� WD ��1; ::::; ��m such that

8a 2 Œm� W d.��a; �a/

is small for d D dop; dF . A weaker requirement is for d.��; �/ to be small.

In the Gaussian model in Example 4.1.2, the inverse sample covariance was a
natural estimator which had optimal error. In the tensor setting, this is not even a
feasible solution as the sample covariance will almost surely not factorize into a
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tensor product. Another natural guess would be the set of marginals of the tensor
product.

8a 2 Œm� W ��a WD

 
T ra

"
1

n

nX
iD1

XiX
�
i

#!�1

:

By properties of Gaussian concentration, this estimator has very good error prop-
erties when the true covariance is ID . But it does not enjoy the same linear invari-
ance properties discussed in Proposition 4.1.4, and so in general we cannot derive
strong error bounds with high probability.

We illustrate this for the case RD D Rd ˝ Rn and � D �1 ˝ �2. In this
case, X is distributed as ��1=2Y where Y � N.0; ID/. Letting Gi WD Mat.Yi / 2

Mat.d; n/ be a random matrix with standard Gaussian entries, the marginal is dis-
tributed as

T r2

"
nX

iD1

XiX
�
i

#
D T r2

"
nX

iD1

��1=2YiY
�
i ��1=2

#
D

nX
iD1

�
�1=2
1 G��1

2 G��
�1=2
1 :

Standard Gaussian concentration results show that the variation of this marginal
is on the order of �.�2/ WD k�2kopk�

�1
2 kop. So for general �, the error could

be arbitrarily bad, and this will not be a good estimator in general.
On the other hand, the MLE is still well-defined for this problem, though it is

more difficult to compute than Proposition 4.1.3.

Proposition 4.2.1. For samples X1; :::; Xn 2 RD from the tensor normal model,
the MLE is given by the minimizer of the following function,

FX .�1; :::; �m/ WD
1

nD

nX
iD1

hXiX
�
i ;˝a2Œm��ai �

1

D
log det.˝a2Œm��a/

(4.2.1)

D

D 1

nD

nX
iD1

XiX
�
i ;˝a2Œm��a

E
�
X

a2Œm�

1

da
log det.�a/:

(4.2.2)

over all f�a 2 PD.da/ga2Œm�.

The above should look very familiar. In fact this is almost exactly the Kempf-
Ness function for tensor scaling given in Definition 31. Therefore, by applying
the strongly convex analysis of Theorem 3.2.9, we can derive strong error bounds
for the MLE.
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Theorem 4.2.2. Let X1; :::; Xn 2 RD be samples from the tensor normal model
RD WD Rd1 ˝ :::Rdk with m > 2 and distribution N.0; ��1/ with � WD �1 ˝

::: ˝ �m. If "2 .
�
m2

P
a2Œm� da

��1
, and nD & d2

max
"2 , then the MLE �� WD��1 ˝ :::˝ ��k satisfies

dF .��; �/2 . Dm"2

with probability at least 1 � k2 exp.�˝.dmin//.

The tensor normal model has
P

a2Œm� d2
a degrees of freedom, so intuitively

this result is only a small polynomial factor away from optimal. These same tech-
niques also show similar results for each tensor factor. Also, in the Matrix Normal
Model setting, we can apply the sharper analysis of Kwok, Lau, and Ramachan-
dran (2019) to derive strong error bounds in the operator norm for each factor.
These and other results are given in full detail in Franks et al. (2021).

As a further contribution, we also show that the MLE in this sample regime
is efficiently computable. In fact, we give a rigorous analysis for a well-studied
algorithm used in practice.

Theorem 4.2.3. With the same conditions as Theorem 4.2.2, for any 1
2

> ı > 0

the Flip-Flop algorithm in Definition 39 produces an estimator �T such that

dF .��T ; ��/2 . Dı2

in T . m
˛
log mdmax

ı
iterations.

In the rest of this section, we will explicitly show the connection between the
MLE and tensor scaling. Then we will use properties of Gaussian concentration
to show that the input to the tensor normal model satisfies the conditions of Theo-
rem 3.2.9 with high probability, which allows us to prove strong error bounds.

4.2.2 Reduction
To make the relation to scaling clearer, we first reduce to the set of determinant
one matrices.

Lemma 4.2.4. For samples X1; :::; Xn 2 RD for the tensor normal model, let
f��1; :::; ��mg be the minimizers of

inffX .�/ WD
1

nD

nX
iD1

hXiX
�
i ; �1 ˝ :::˝�mi;
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over all choices f�1 2 SPD.d1/; :::; �m 2 SPD.dm/g of unit determinant positive
definite matrices, and let f � be the minimum value. Then the MLE is

�� WD e�� � ��1 ˝ :::˝ ��m;

where �� WD � logf � and FX .��/ D 1C logf �.

Proof. For any � 2 PD.d1/˝ :::˝ PD.dm/, we can decompose � D e� ��1 ˝

:::˝�m where det.�a/ D 1. If we fix f�aga2Œm�, then this becomes

FX .�/ D
e�

nD
h

nX
iD1

XiX
�
i ;˝a2Œm��ai �

1

D
log det.�/ D e�� � �;

where we denote � WD 1
nD
h
Pn

iD1 XiX
�
i ;˝a2Œm��ai, and the other terms vanish

by the determinant condition. The global minimum of this univariate function is
calculated simply.

0 D @�.e�� � �/ D e�� � 1 H) �� D � log �; @2
�.e�� � �/ D e�� > 0:

H) inf
�

FX .e��/ D e��� � �� D 1C log �:

Therefore in order to find the MLE, we can equivalently optimize

fX .�1; :::; �m/ WD
1

nD
h

nX
iD1

XiX
�
i ;˝a2Œm��ai

for f�a 2 SPD.da/ga2Œm�, and then choose the appropriate value of ��.

This is exactly the Kempf-Ness function from the tensor scaling problem, and
we reduce from FX to fx because we can derive stronger convexity properties in
this SPD setting.

In order to apply Theorem 3.2.9, we would like to show that random inputs
are nearly balanced and strongly convex. Just as in Theorem 4.1.5, we can reduce
to the case where � D ID . Therefore, in the next two sections, we will show
the conditions of Theorem 3.2.9 using properties of Gaussian concentration for
N.0; ID/ inputs.
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4.2.3 Bounding the Gradient
We showed earlier that the marginals of �X are have arbitrarily bad error for gen-
eral �. On the other hand, when � D ID we can use Gaussian concentration to
show that these estimators concentrate well. This is equivalent to showing strong
bounds on the gradient rX .

Proposition 4.2.5. For X1; :::; Xn � N.0; ID/, if nD > d2
max
"2 , then the following

bounds hold simultaneously with probability at least 1 � 2k exp.� "2nD
dmax

/:

1. 1
nD
js.X/ � nDj . ".

2. X is an O."/-balanced tensor.

Proof. For x D 1p
nD
fX1; :::; Xng and any a 2 Œm�, by Proposition 3.2.5 we have

r
.a/
x D da�.a/

x � s.x/Ia:

In order to use standard concentration ofGaussianmatrices, we can defineG1; :::; Gn 2

Mat.da; D=da/ as
Gi Œja; .j /� WD .Xi /j1;:::;ja;:::;jm

where j D fjbgb¤a runs over all possible indices jb 2 Œdb�.
Then we can rewrite the gradient as

r
.a/
x D

da

nD

nX
iD1

GiG
�
i �

1

nD
T r

"
nX

iD1

GiG
�
i

#
Ia:

The spectrum can nowbe bounded usingGaussian concentration. Explicitly, choos-
ing t D "

q
nD
dmax

in Theorem 4.1.6, we can bound the singular values of G WD

ŒG1; :::; Gn� 2 Mat.da; nD
da

/.

�min

�
da

nD
GG�

�
D

da

nD
�min.G/2 >

da

nD

 s
nD

da
�
p

da � "

s
nD

dmax

!2

> 1�5";

where in the last step we used "2nD > d2
max > dmaxda and the assumption that

" 6 1
20
. By the same calculation we get an upper bound

�max

�
da

nD
GG�

�
6 1C 5":
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Putting these two together, we have

kr
.a/
x kop 6

ˇ̌̌̌
�max

�
da

nD
GG�

�
� �min

�
da

nD
GG�

�ˇ̌̌̌
6 10":

To bound s.X/ D
Pn

iD1 kXik
2
2, we can take the trace of the inequality derived

for any marginal. We can in fact derive even stronger bounds on s.X/ using stan-
dard concentration of �-square variables, but this will not be necessary for our
application.

4.2.4 Spectral Gap for Random Input

We will show strong convexity using the following theorem.

Proposition 4.2.6. For X1; :::; Xn � N.0; ID/ from the tensor normal model, if
nD & d2

max
"2 , then X satisfies the �-spectral condition in the ab part with

� .
da C db
p

nD
. ";

for all a ¤ b 2 Œm� simultaneously with probability at least 1�k2 exp.�˝.dmin//.

The proof follows from a powerful theorem by Pisier.

Theorem 4.2.7 (Pisier (2012, 2014)). Let G1; :::GN 2 Mat.d; d 0/ be independent
random matrices with independent standard Gaussian entries. Then with proba-
bility at least 1 � exp.�˝.d C d 0//,

sup
PN

iD1hY; GiY
0G�

i i

kY kF kY 0kF
.
p

N .d C d 0/;

where the supremum is over all traceless matrices Y 2 Mat.d/; Y 0 2 Mat.d 0/

such that T rŒY � D T rŒY 0� D 0.

Proof of Proposition 4.2.6. For x D 1p
nD
fX1; :::; Xng and any a ¤ b 2 Œm�, x

satisfies the �-spectral condition in Definition 37 if

sup
.Za;Zb;0/2g

h�
.ab/
x ; Za ˝Zbi

kZakF kZbkF
6

�p
dadb

:
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In order to use Theorem 4.2.7, we rewrite the samples as random matrices. So for
each Xi2Œn� define G

j
i 2 Mat.da; db/ as

G
j
i Œja; jb� WD .Xi /j1;:::;jm

where j runs over all choice of indices or indexes fjc 2 Œdc�gc¤a;b . Then we can
rewrite the spectral condition as

h�.ab/
x ; Za ˝Zbi D

1

nD

nX
iD1

X
j 2ŒN �

hZa; Gij ZbG�
ij i:

By assumption T rŒZa� D T rŒZb� D 0, so we can use Theorem 4.2.7 to show

sup
.Za;Zb;0/2g

1
nD

Pn
iD1

P
j 2ŒN �hZa; Gij ZbG�

ij i

kZakF kZbkF
.

s
nD

dadb

da C db

nD
D

da C dbp
nDdadb

;

i.e. x satisfies the spectral property for the ab part with � . daCdbp
nD

. ", by
the assumption that "2nD > d2

max. This event occurs with probability at least
1 � exp.�˝.da C db//. Therefore by the union bound x satisfies the �-spectral
condition for all parts with the required probability.

4.2.5 Proof of Main Results
We can now show that our MLE optimization problem is strongly convex.

Lemma 4.2.8. ForX1; :::; Xn � N.0; ID/ from the tensor normal model, if nD &
d2
max
"2 , then 1p

nD
X is 1 � O.m"/-strongly convex with probability at least 1 �

2m2 exp.�˝.dmin//.

Proof. By Proposition 4.2.5, x WD 1p
nD

X is O."/-balanced, and by Proposi-
tion 4.2.6 x satisfies theO."/-spectral gap condition. Therefore by Proposition 3.2.6,
x is ˛-strongly convex for

˛ > s.x/.1 �O."// � .m � 1/O."/ > 1 �O.m"/:

Now to prove ourmain sample complexity theorems, we can apply the analysis
of strongly convex tensor scaling.
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Proof of Theorem 4.2.2. We first reduce to the case of � D ID . The distribution
of X is equivalent to ��1=2Y1; :::; ��1=2Yn where Y � N.0; ID/. If ��X ; ��Y

are the MLE for X; Y respectively, then by Proposition 4.1.4 we have the relation��X D �1=2��Y �1=2:

Further, the relative error also has the same invariance

d.��X ; �/ D d.��1=2��X��1=2; ID/ D d.��Y ; ID/:

So to prove the error bounds in the theorem, it is enough to analyze the case when
Y � N.0; ID/.

For this case, consider the tensor x WD 1p
nD

X . By the condition "2nD >
d2
max, we can apply Proposition 4.2.5 to show

s.x/ > 1 �O."/; kr.a/
x kop 6 O."/;

simultaneously for all a 2 Œm�with probability at least 1�2k exp.�˝."2nD=dmax//.
Similarly, by Proposition 4.2.6, x satisfies the spectral condition with parameter

O.dmax/
p

nD
6 O."/

with probability at least 1� k2 exp.�˝.dmin/. Therefore by the union bound and
Proposition 3.2.6, x is ˛-strongly convex for

˛ > s.x/.1 �O."// � .m � 1/O."/ > 1 �O.m"/;

with probability at least 1 � k2 exp.�˝.dmin//. This satisfies the conditions of
Theorem 3.2.9 as0@ X

a2Œm�

da

1A krxk
2
g 6

0@m
X

a2Œm�

da

1A krxk
2
op . 1 �O.m"/ 6 ˛2;

where the first step was by Lemma 3.2.7, the second step was by the assumption
that " is small enough, and the final step was by the calculation above for ˛ >
1�O.m"/. Therefore by Theorem 3.2.9, there is a balanced scaling x� WD eZ� �x

such that

kZ�k
2
g 6

e2krxk
2
g

˛2
6

e2mkrxk
2
op

.1 �O.m"//2
6 O.m"2/;
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where we again used Lemma 3.2.7 and the fact that x is "-balanced.
To turn this into a bound on relative error, we use Lemma 4.2.4, which shows

that the MLE is e�� � eZ� for �� D � logf �. We can bound this by

j��j D j log s.x�/j 6
O.m"2/

˛
CO."/ 6 O."/;

where we used the function lower bound in in Theorem 3.2.9 to bound log s.x�/

and the error bound derived above to bound log s.x/. Finally we can bound the
error of the MLE as

dF .e��eZ� ; ID/2 .







��ID C
X

a2Œm�

Ia ˝ .Z�/a








2

F

D D.�2
�CkZ�k

2
g/ . Dm"2;

where the first step used the Taylor approximation eX � I C X by the remark
after Definition 42, and the second step used the fact that kZkg is the standard
Frobenius norm on the embedding Z !

P
a2Œm� Ia ˝Za.

We can similarly use the strong convexity analysis of Theorem 3.2.15 to show
convergence of the Flip-Flop algorithm.

Proof of Theorem 4.2.3. Recall that we have parametrized the MLE optimization
by

� D e�
��1 ˝ :::˝�m

where �a 2 SPD.da/. We will use Theorem 3.2.15 to show that the SPD portion
of the Flip-Flop algorithm converges quickly to theMLE, and then use Lemma 4.2.4
to compute the normalizing factor.

Once again we can reduce to the case of � D ID . We omit the details
since the argument is exactly the same. The proof of Theorem 4.2.2 for samples
X1; :::; Xn � N.0; ID/ shows that x WD 1p

nD
X satisfies the conditions of Theo-

rem 3.2.15. Therefore let x� WD eZ� �x be the balanced scaling for Z� 2 g. Then
by Lemma 4.2.4, the MLE is

�� D e�� � eZ�

for �� D � log s.x�/.
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We denote the iterations of Flip-Flop from this perspective so xt WD eZt � x�.
Then Theorem 3.2.15 shows that T . m

˛
log mdmax

ı
iterations suffice to produce

kZT k
2
g . ı2; log s.xT / � log s.x�/ . ı2:

Therefore we can bound the relative error as

dF .�T ; ��/2 . k.�T � ��/ID CZT k
2
F

6 D.log s.xT / � log s.x�//2
CDkZT k

2
g . Dı2;

where we used the normalization �T WD � log s.xT / from Lemma 4.2.4 in the
second step, and the bounds above for the final step.
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