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ABSTRACT
Over the past decade there has been growing interest on charac-

terizing which convex cones over R𝑛 are spectrahedral, that is, are

a linear section of the cone of positive semidefinite matrices. This

interest is largely motivated by applications in control theory, opti-

mization and combinatorics. One particular class of convex cones

of interest is the class of hyperbolicity cones, where the (still open)

Generalized Lax Conjecture states that every hyperbolicity cone is

spectrahedral. Recent works [1, 2] have established that the hyper-

bolicity cones of the elementary symmetric polynomials and the

homogeneous multivariate matching polynomial are spectrahedral,

but the question of whether there exists an efficient spectrahedral

representation for such cones remains open. Previous work [11]

has provided exponential lower bounds on the spectrahedral repre-

sentation of non-explicit hyperbolicity cones which are known to

be spectrahedral. The current best lower unconditional bounds for

explicit cones are the linear lower bounds proved by [7].

In this paper we establish the first superpolynomial hardness
of the minimal spectrahedral representation for an explicit family
of hyperbolicity cones, assuming Valiant’s VP vs VNP conjecture is

true, that is, that the permanent polynomial cannot be computed by

algebraic circuits of polynomial size. More precisely, we prove that

the hyperbolicity cone of Amini’s homogeneous matching polyno-
mial must require superpolynomial spectrahedral representations,

assuming that Valiant’s conjecture is true. This is the first work

providing a (conditional) superpolynomial lower bound on the

spectrahedral representation of an explicit hyperbolicity cone.
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1 INTRODUCTION
Let x = (𝑥1, . . . , 𝑥𝑛) be a vector of variables 𝑥1, . . . , 𝑥𝑛 and a =

(𝑎1, . . . , 𝑎𝑛) ∈ R𝑛 be a vector of elements 𝑎1, . . . , 𝑎𝑛 from R. A
homogeneous polynomial ℎ(x) ∈ R[𝑥1, . . . , 𝑥𝑛] is hyperbolic with
respect to a direction e := (𝑒1, . . . , 𝑒𝑛) ∈ R𝑛 if ℎ(e) ≠ 0 and for

all vectors a ∈ R𝑛 , the univariate polynomial 𝑓 (𝑡) := ℎ(𝑡e − a)
only has real zeros. By a result due to Gårding [3], each hyperbolic

polynomial ℎ(x) defines a hyperbolicity cone, a closed convex cone

denoted by Λ+ (ℎ, e) and defined as

Λ+ (ℎ, e) := {a ∈ R𝑛 | all roots of ℎ(𝑡e − a) are non-negative}.
Gårding also showed [3] that Λ+ (ℎ, e) can be equivalently de-

fined as the closure of the connected component of {a ∈ R𝑛 |
ℎ(a) ≠ 0} that contains e.

Hyperbolic polynomials and hyperbolicity cones originated in

the theory of PDE in the works of Petrovsky and Gårding, and are of

importance in combinatorics and optimization. Hyperbolicity cones

are important objects in optimization, as they generalize semidefi-

nite cones and Güler [4] showed that one could generalize interior

point methods of optimization to hyperbolicity cones. Since then

the theory of hyperbolic programming has been vastly expanded,

see [12] and references therein.

Despite much progress on the optimization side of hyperbolic

programming, the geometric and complexity theoretic aspects of

hyperbolicity cones are much less understood.

On the geometric side, an important open question is concerned

with how general the class of hyperbolicity cones is. Spectrahedral
cones, that is, linear sections of the cone of positive semidefinite ma-

trices, form the most well-known examples of hyperbolicity cones.

The generalized Lax conjecture states that every hyperbolicity cone

is also a spectrahedral cone, whereas the projected Lax conjecture

states that every hyperbolicity cone is a linear projection of a spec-

trahedral cone. Despite much recent work and some impressive

progress on these conjectures [8, 10], they remain open.

The origins of these conjectures came from partial differential

equations. When the number of variables of a hyperbolic poly-

nomial is 3, say ℎ(𝑥,𝑦, 𝑧) is hyperbolic in direction (𝑎, 𝑏, 𝑐), Lax
conjectured [9] that any such hyperbolic polynomial could be writ-

ten as a determinant of a linear combination of symmetric matrices

of the form 𝑥𝐴 + 𝑦𝐵 + 𝑧𝐶 such that 𝑎 · 𝐴 + 𝑏 · 𝐵 + 𝑐 · 𝐶 is positive
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definite. This conjecture certainly implies that for 3 variables, every

hyperbolicity cone is a spectrahedral cone. A positive answer to

this conjecture was given by Helton and Vinnikov [5].

On the complexity theoretic side, very little is known about the

complexity of representing hyperbolicity cones which are known

to be spectrahedral. In the recent work [11], the authors prove

exponential lower bounds even for approximate spectrahedral rep-

resentations of non-explicit hyperbolicity cones which are spectra-

hedral. However, prior to the present work, no superpolynomial

lower bound on the spectrahedral representation for an explicit
hyperbolicity cone which is also spectrahedral was known. In the

next section we present our main result and the overview of its

proof, which is given formally in the next sections.

1.1 Main result and proof overview
In this paper, we prove a conditional lower bound on the minimal

spectrahedral representation of the hyperbolicity cone of an explicit
family of spectrahedral polynomials. More precisely, we prove the

following theorem:

Theorem 1.1. There exists an explicit family of hyperbolic polyno-
mials {ℎ𝑛 (x)}𝑛≥1 and directions {e𝑛}𝑛≥1, where ℎ𝑛 (x) has poly(𝑛)
variables and poly(𝑛) degree, whose hyperbolicity cone Λ+ (ℎ𝑛, e𝑛)
is spectrahedral and such that any spectrahedral representation of
Λ+ (ℎ𝑛, e𝑛) must have superpolynomial size in 𝑛, assuming that
VP ≠ VNP.

High-level ideas of the proof: The high level idea guiding the

proof of Theorem 1.1 comes from the combination of the four facts

below:

(1) Every spectrahedral cone has a corresponding definite de-

terminantal representation. This follows by the definition of

the spectrahedral cone.

(2) Irreducible hyperbolic polynomials are the minimal defining

polynomials of their hyperbolicity cones. This fact follows

from standard results in real algebraic geometry, and a proof

is given in [5, Lemma 2.1].

(3) A necessary condition for the hyperbolicity cone of an irre-

ducible hyperbolic polynomialℎ(x) to be spectrahedral is the
existence of a definite determinantal polynomial which is a

multiple ofℎ(x). In Proposition 2.4 a necessary and sufficient

condition is given.

(4) Factors of polynomials of small degree computed by small

algebraic circuits also have small algebraic circuits, as was

proved in the seminal work [6].

The facts above yield a useful necessary condition for a hyperbolic-

ity cone to have a polynomial sized spectrahedral representation,

and this necessary condition comes from algebraic complexity: the

hyperbolic polynomial must be computed by polynomial sized cir-

cuits! This can be seen as follows: given a hyperbolicity cone, take

its minimal defining polynomial ℎ(x). By [5, Lemma 2.1], any other

polynomial 𝑞(x) defining the same hyperbolicity cone must be a

multiple of ℎ(x). If the hyperbolicity cone of ℎ(x) is spectrahedral,
then there is a definite determinantal polynomial 𝐷 (x) defining the
hyperbolicity cone of ℎ(x). If 𝐷 (x) can be defined by polynomial

sized matrices, then the polynomial 𝐷 (x) can be computed by poly-

nomial sized circuits. Thus, Kaltofen’s seminal result (item 4) tells

us that ℎ(x) can also be computed by polynomial sized circuits!

With the necessary condition above, the proof strategy is straight-

forward: simply construct an explicit irreducible hyperbolic poly-

nomial ℎ(x) that requires superpolynomial sized algebraic circuits

to compute it, and whose hyperbolicity cone is spectrahedral. Irre-

ducibility of ℎ(x) implies that it is the minimal defining polynomial

of its hyperbolicity cone, by item 2 above. Hardness of ℎ(x) and
the necessary condition given by the previous paragraph, implies

that any definite determinantal representation of the hyperbolicity

cone of ℎ(x) must have superpolynomial size.

The only task left is to construct an irreducible hyperbolic poly-

nomial which has a spectrahedral hyperbolicity cone and that is

hard to compute by algebraic circuits. And it just so happens that

Amini’s homogeneous matching polynomial over the complete bi-

partite graph has all the properties above. Amini [1] shows that the

homogeneous matching polynomial has a spectrahedral hyperbol-

icity cone. In Section 4 we show that this polynomial is irreducible

for the complete bipartite graph.

Since we do not currently know superpolynomial lower bounds

on the circuit complexity of any explicit polynomial, we will prove

a conditional lower bound, which is based on Valiant’s conjecture

that VP ≠ VNP. Valiant’s conjecture can be stated as: the Perma-

nent polynomial cannot be computed by polynomial sized circuits.

Thus, to prove that Amini’s homogeneous matching polynomial

is hard, we prove a reduction result: we show that if the matching

polynomial of the complete bipartite graph can be computed by

polynomial sized circuits, then there is a polynomial sized circuit

computing the Permanent.

1.2 Related Work
Much work in the past decade has focused on proving generaliza-

tions of the Lax conjecture, whose aim is to relate hyperbolicity

cones to spectrahedral cones. The generalized Lax conjecture states
that every hyperbolicity cone is spectrahedral, while the projected
Lax conjecture states that every hyperbolicity cone is the projection
of a spectrahedral cone.

In [8], the author makes progress towards the generalized Lax

conjecture, proving that every smooth hyperbolic polynomial is

a factor of a definite determinantal polynomial, thus establishing

one part of the equivalence from Proposition 2.4. In [10], the au-

thors prove that smooth hyperbolicity cones are projections of

spectrahedra, thus showing that the projected Lax conjecture is

holds for almost all hyperbolicity cones. However, in these papers

the computational complexity of their constructions is still left un-

explored, and the current work is a step forward in understanding

the computational complexity of these hyperbolicity cones.

On the lower bounds/impossibility side, [13] proves that many

compact convex semialgebraic sets in euclidean space are not pro-

jections of spectrahedra. In [11], the authors prove exponential

lower bounds on the spectrahedral representations of non-explicit

spectrahedral hyperbolicity cones. Their lower bounds are uncon-

ditional, albeit being non-explicit.
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1.3 Organization
In Section 2 we formally define hyperbolic polynomials and their

hyperbolicity cones, spectrahedral cones and definite determinantal

representations, establishing the basic facts about them, as well as

the interconnections between these concepts. In Section 3 we estab-

lish the basic definitions and facts that we will need from Algebraic

Complexity Theory, including the irreducibility and hardness of

a variant of the Permanent polynomial. In Section 4 we prove the

main result of the paper, which is the conditional lower bound on

the spectrahedral representation of the hyperbolicity cone of the

matching polynomial. In Section 5 we conclude and present some

open problems.

2 HYPERBOLIC POLYNOMIALS AND
SPECTRAHEDRALITY

In this section we formally define hyperbolic polynomials, definite

determinantal representations, spectrahedral representations, and

establish the known relationships between these three concepts.

2.1 Hyperbolic Polynomials and Definite
Determinantal Representation

In this section we formally give the main definitions and back-

ground needed from hyperbolic polynomials and definite determi-

nantal representations which will be used in the later sections.

Definition 2.1 (Hyperbolic Polynomial). A homogeneous polyno-

mial ℎ(x) ∈ R[x] of degree 𝑑 is hyperbolic with respect to direction

e ∈ R𝑛 if ℎ(e) ≠ 0 and for every a ∈ R𝑛 , the univariate polynomial

ℎ(𝑡 · e − a) is real rooted (counting their multiplicities). That is,

ℎ(𝑡 · e − a) has exactly 𝑑 real roots.

Definition 2.2 (Hyperbolicity Cone). If ℎ(x) ∈ R[x] is a hyper-
bolic polynomial with respect to direction e, its hyperbolicity cone
is the set defined by

Λ+ (ℎ, e) := {a ∈ R𝑛 | all roots of ℎ(𝑡e − a) are non-negative }.
Definition 2.3 (Definite Determinantal Representation). We say

that a homogeneous polynomialℎ(𝑥) ∈ R[x] has a definite determi-

nantal representation at b ∈ R𝑛 if there are 𝐴1, . . . , 𝐴𝑛 ∈ Sym𝑑 (R)
and 𝜆 ∈ R∗ such that:

(1)

𝑛∑
𝑖=1

𝑏𝑖 · 𝐴𝑖 ≻ 0

(2) ℎ(x) = 𝜆 · det
(
𝑛∑
𝑖=1

𝑥𝑖 · 𝐴𝑖

)
.

Proposition 2.4 (Spectrahedral Representation Eqivalent

Formulation [17]). Let ℎ ∈ R[x] be hyperbolic with respect to
e ∈ R𝑛 . The hyperbolicity cone Λ+ (ℎ, e) is spectrahedral if, and only
if, there is a hyperbolic polynomial 𝑞 ∈ R[x] with respect to e such
that the following two conditions are satisfied:

(1) 𝑞 · ℎ has a definite determinantal representation at e
(2) Λ+ (ℎ, e) ⊆ Λ+ (𝑞, e).
The following follows from [5, Lemma 2.1]. It essentially states

that the hyperbolicity cone Λ+ (ℎ, e) of an irreducible hyperbolic

polynomial ℎ has the polynomial ℎ as its minimal defining polyno-
mial. That is, any other polynomial 𝑔 also defining Λ+ (ℎ, e) must

be a multiple of ℎ.

Proposition 2.5 (Hyperbolic Cones of Irreducible Polyno-

mials). If ℎ ∈ R[x] is an irreducible and hyperbolic polynomial with
respect to e ∈ R𝑛 , and 𝑞 ∈ R[x] is a hyperbolic polynomial such that
Λ+ (ℎ, e) = Λ+ (𝑞, e), then ℎ divides 𝑞.

If a hyperbolicity cone Λ+ (ℎ, e) is spectrahedral, i.e. a linear

section of the positive semidefinite cone, let

Λ+ (ℎ, e) =
{
a ∈ R𝑛 |

∑
𝑖=1

𝑎𝑖 · 𝐴𝑖 ⪰ 0

}
be any spectrahedral representation of the hyperbolicity cone,

where 𝐴𝑖 ∈ 𝑆𝑦𝑚𝐷 (R) are real symmetric matrices of dimension 𝐷 .

In this case, we have that 𝑃 (x) = Det(∑𝑛𝑖=1𝐴𝑖 ·𝑥𝑖 ) is a hyperbolic
poylnomial at e such that Λ+ (𝑃, e) = Λ+ (ℎ, e). Thus, if ℎ(x) is an
irreducible polynomial, by Proposition 2.5, we must have that ℎ(x)
divides 𝑃 (x). We will need this fact in the proof of our main result

in Section 4.

2.2 Homogeneous Multivariate Matching
Polynomial

In this section we describe our candidate hard polynomial, which

was first defined in [1, Definition 2.1] as a multivariate generaliza-

tion of the univariate matching polynomial from algebraic combi-

natorics, and as a variant on the multivariate matching polynomial

of Heilmann and Lieb.

Definition 2.6 (HomogeneousMultivariateMatching Polynomial [1]).
Let 𝐺 (𝑉 , 𝐸) be an undirected graph, x = (𝑥𝑣)𝑣∈𝑉 and w = (𝑤𝑒 )𝑒∈𝐸
be indeterminates. The homogeneous multivariate matching polyno-
mial is defined by

𝜇𝐺 (x,w) =
∑

𝑀 ∈M(𝐺)
(−1) |𝑀 | ·

∏
𝑣∉𝑉 (𝑀)

𝑥𝑣 ·
∏
𝑒∈𝑀

𝑤2

𝑒 , (1)

where in the equation above M(𝐺) is the set of all matchings of

𝐺 (including the empty set), 𝑀 is a matching of 𝐺 (the collection

of edges forming the matching), 𝑉 (𝑀) is the set of vertices partic-
ipating in the matching 𝑀 and |𝑀 | is the number of edges in the

matching.

Remark 2.7. Note that if a graph𝐺 has perfect matchings, they
are captured by 𝜇𝐺 (x,w) by setting x = 0. That is,

𝜇𝐺 (0,w) =
∑

𝑀 is perfect matching

(−1) |𝑀 | ·
∏
𝑒∈𝑀

𝑤2

𝑒

Throughout this section, we let e := (1𝑉 , 0𝐸 ) be the direction
given by the all one’s vector in the variables (𝑥𝑣)𝑣∈𝑉 and the zero

vector in the variables (𝑤𝑒 )𝑒∈𝐸 . In [1, Theorem 2.12], Amini shows

that the hyperbolicity cone Λ+ (𝜇𝐺 , e) is spectrahedral.

Proposition 2.8 (Spectrahedrality of Matching Polyno-

mial [1]). The hyperbolicity cone Λ+ (𝜇𝐺 (x,w), e) is spectrahedral.

From the fact above, together with Proposition 2.4, we obtain

the following corollary.

Corollary 2.9. There exists a hyperbolic polynomial 𝑞 ∈ R[x,w]
w.r.t. direction e such that the polynomial 𝑞 · 𝜇𝐺 (x,w) has a definite
determinantal representation and Λ+ (𝜇𝐺 , e) ⊆ Λ+ (𝑞, e).
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3 ALGEBRAIC COMPLEXITY
In this section, we define the basic notions of algebraic complexity

and establish the basic facts which we will need for the proof of

our main theorem in the next section. We start with the definition

of an algebraic circuit, which can be found in [14].

Definition 3.1 (Algebraic Circuits). An algebraic circuit Φ over a

field F and a set of variables x = (𝑥1, . . . , 𝑥𝑛) is a directed acyclic

graph defined as follows. The vertices of Φ are the gates of the

circuit, and each gate of indegree 0 is labeled by either a variable

from x or by a field element from F. Every other gate in Φ is labeled

by either +,× and has indegree 2.

From the definition above, one can see that an algebraic circuit

computes polynomials in a natural way. Each input gate is either a

variable or a field element, and a + gate computes the polynomial

given by the sum of its input gates, and a × gate computes the

product of its input gates. We say that a circuit Φ computes a

polynomial 𝑝 if there is a gate of Φ which computes the polynomial

𝑝 .

The size of an algebraic circuit is defined as the number of gates

in the circuit. The formal degree of a circuit Φ is defined inductively

as follows: an input gate of Φ has degree 1 if it is a variable, and

0 otherwise. For any + gate 𝑢 = 𝑣 + 𝑤 of the circuit, we make

deg(𝑢) = max{deg(𝑣), deg(𝑤)} and for a × gate 𝑢 = 𝑣 × 𝑤 we

make deg(𝑢) = deg(𝑣) + deg(𝑤). We define the degree of Φ as the

maximum degree among the degrees of the gates of Φ.
We say that a circuit Φ is a homogeneous circuit if each gate of Φ

computes a homogeneous polynomial. Note that in a homogeneous

circuit Φ computing a (homogeneous) polynomial 𝑝 of degree 𝑑

only the gates of degree ≤ 𝑑 are needed from Φ. Hence, if we are
interested in the computation of 𝑝 alone, we can assume that Φ has

degree 𝑑 as well.

Given a polynomial 𝑝 (x), denote its homogeneous component of

degree 𝑟 by𝐻𝑟 [𝑝 (x)]. The following proposition due to [15] tells us

that given an algebraic circuit of polynomial size, we can efficiently

compute its low degree components with algebraic circuits. A proof

can be found in [14, Theorem 2.2].

Proposition 3.2 (Complexity of Computing Homogeneous

Components [15]). If 𝑝 (x) ∈ R[x] can be computed by an algebraic
circuit Φ(x) of size 𝑠 , then for every 𝑟 ∈ N, there is a homogeneous cir-
cuit Ψ(x) of size at most𝑂 (𝑟2𝑠) computing 𝐻0 [𝑝 (x)], . . . , 𝐻𝑟 [𝑝 (x)].

Remark 3.3. Note that in the proposition above, there is no require-
ment on the degree of the circuit Φ, while the homogeneous circuit Ψ
will have degree bounded by 𝑟 .

One of themain goals of algebraic complexity theory is to classify

which families of polynomials {𝑝𝑛}𝑛≥1 where 𝑝𝑛 ∈ F[𝑥1, . . . , 𝑥𝑛]
can be computed by a family of algebraic circuits {Φ𝑛}𝑛≥1 of poly-
nomial size. The theory has mostly been concerned with families

of polynomials {𝑝𝑛}𝑛≥1 with deg(𝑝𝑛) being a polynomial function

of 𝑛.

For such families of polynomials having polynomial degree in

the number of variables, the class of families of polynomials which

can be computed by a family of algebraic circuits of polynomial

size is denoted by VP. This is the class of “efficiently computable”

polynomials.

One of the most important family of polynomials which is in VP

is the family defined by the determinant polynomial: given an 𝑛 ×𝑛
symbolic matrix 𝑋 ,

Det𝑛 (𝑋 ) =
∑
𝜎 ∈𝑆𝑛

(−1)𝜎
𝑛∏
𝑖=1

𝑋𝑖𝜎 (𝑖) .

Another important class of families of polynomials is the class

denoted by VNP, which is the algebraic analogue of the class NP,

and informally speaking is the class of families of polynomials

which can be “defined efficiently.” For a more precise definition

see [14, Definition 1.3].

There is a beautiful theory of completeness and reductions for

these algebraic classes, analogue to the theory developed in the

boolean setting for P and NP, whose origins trace back to the

seminal work of Valiant [16]. One of the major open problems

in algebraic complexity theory, posed by Valiant, is whether the

classes VP and VNP are different or not.

One complete family of polynomials in VNP is defined by the

permanent polynomial: given an 𝑛 × 𝑛 symbolic matrix 𝑋 ,

Per𝑛 (𝑋 ) =
∑
𝜎 ∈𝑆𝑛

𝑛∏
𝑖=1

𝑋𝑖𝜎 (𝑖) ,

and therefore the VP versus VNP question can be stated as:

Conjecture 3.4 (Valiant’s VP ≠ VNP Conjecture). The fam-
ily defined by the permanent polynomials {Per𝑛 (𝑋 )}𝑛 ≥ 1 cannot
be computed by circuits in VP.

For the sake of conciseness, we shall fromnowon refer to a family

of polynomials simply by one of its elements. For instance, when

talking about the family defined by the permanent polynomials

of degree 𝑛, we shall simply talk about the polynomial Per𝑛 (𝑋 ).
The parameter defining the family of polynomials is 𝑛. Thus, we

will refer to the polynomial Per𝑛 (𝑋 ) and the family {Per𝑛 (𝑋 )}𝑛≥1
interchangeably.

The class VP enjoys many closure properties under fundamental

algebraic operations. One of its most remarkable was proved in the

seminal work of Kaltofen [6] and states that the class VP is closed

under factorization.

Proposition 3.5 (Factors are Closed in VP [6]). If a polyno-
mial 𝑝 (x) ∈ R[x] of degree 𝑑 can be computed by an algebraic circuit
of size 𝑠 , then any factor𝑔(x) of the polynomial 𝑝 (x) can be computed
by an algebraic circuit of size poly(𝑛, 𝑠, 𝑑).

We now proceed to establishing two lemmas that shall be im-

portant for us in the subsequent sections. From now on, we will

be working over the base field R. The first lemma establishes the

VNP-hardness of a particular polynomial: the squared permanent

polynomial, which is defined below.

Lemma 3.6 (Complexity of the sqared Permanent). Let𝑊 =

(𝑤2

𝑖, 𝑗
)𝑛
𝑖,𝑗=1

be a symbolic matrix over the variables w = (𝑤𝑖, 𝑗 )𝑛𝑖,𝑗=1. If
VP ≠ VNP then any algebraic circuit computing Per𝑛 (𝑊 ) must have
superpolynomial size.

Proof. Assume, for the sake of contradiction, that there is a

circuit Φ(w) of size 𝑂 (𝑛𝑐 ) computing Per𝑛 (𝑊 ), where 𝑐 ∈ Z is a
positive constant.
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Let 𝑢𝑖, 𝑗 = (1 − 𝑥𝑖, 𝑗 )1/2. Then, Φ(u) = Per𝑛 (𝐽 − 𝑋 ), where 𝐽 is
the all-ones matrix and 𝑋 = (𝑥𝑖, 𝑗 ) is a pure symbolic matrix.

Each 𝑢𝑖, 𝑗 is a univariate real analytic function on the variable

𝑥𝑖, 𝑗 over the ball of radius 1/2 around the origin. Take the Taylor

expansion of 𝑢𝑖, 𝑗 around 𝑥𝑖, 𝑗 = 0. Call this Taylor series 𝑣𝑖, 𝑗 . The

truncated Taylor series 𝑣𝑖, 𝑗 , truncated at degree 𝑛, can be computed

by an algebraic circuit of size𝑂 (𝑛), as it is an univariate polynomial

of degree 𝑛. Let 𝑇𝑖, 𝑗 be the truncation of 𝑣𝑖, 𝑗 at degree 𝑛.

Letting 𝑇 = (𝑇𝑖, 𝑗 )𝑛𝑖,𝑗=1, we have that

(−1)𝑛 · Per𝑛 (𝑋 ) = 𝐻𝑛 [Per𝑛 (𝐽 − 𝑋 )] = 𝐻𝑛 [Φ(𝑇 )] .

Note that Φ(𝑇 ) is a circuit of size1 𝑂 (𝑛𝑐+3), as we replaced each

variable𝑤𝑖, 𝑗 in the cicuit Φ(w) by the truncated Taylor expansion

𝑇𝑖, 𝑗 of 𝑢𝑖, 𝑗 , and we saw that each 𝑇𝑖, 𝑗 can be computed by a circuit

of size 𝑂 (𝑛). As there are 𝑛2 such Taylor expansions, the size is

𝑂 (𝑛𝑐+3).
By applying Proposition 3.2, the homogeneous part of degree 𝑛

of Φ(𝑇 ) can be computed by a homogeneous circuit of size 𝑂 (𝑛2 ·
𝑛𝑐+3) = 𝑂 (𝑛𝑐+5) and degree 𝑛. This implies that Per(𝑋 ) ∈ VP,

which would imply that VP = VNP. □

We will also need to establish that the squared permanent is an

irreducible polynomial. This will be important in our proof that

the homogeneous matching polynomial of the complete bipartite

graph is irreducible.

Lemma 3.7 (Irreducibility of the sqared Permanent). Let
𝑛 ≥ 2 and𝑊 = (𝑤2

𝑖, 𝑗
)𝑛
𝑖,𝑗=1

be a symbolic matrix over the variables
w = (𝑤𝑖, 𝑗 )𝑛𝑖,𝑗=1. Then the polynomial Per(𝑊 ) is irreducible over
R[w].

Proof. Suppose Per(𝑊 ) = 𝑝 (w) · 𝑞(w). Assume there is some

entry (𝑖, 𝑗) ∈ [𝑛]2 such that 𝑝 (w) is linear w.r.t. 𝑤𝑖, 𝑗 . In this case,

𝑞(w) is also linear w.r.t.𝑤𝑖, 𝑗 andwewould have 𝑝 (w) = 𝑎𝑝 ·𝑤𝑖, 𝑗 +𝑏𝑝
and 𝑞(w) = 𝑎𝑞 ·𝑤𝑖, 𝑗 + 𝑏𝑞 , where 𝑎𝑝 , 𝑏𝑝 , 𝑎𝑞, 𝑏𝑞 ∈ R[w] are nonzero
polynomials which do not depend on𝑤𝑖, 𝑗 . In this case, we have that

𝑎𝑝 · 𝑎𝑞 computes the permanent of the (𝑖, 𝑗)-minor of𝑊 (and thus

is a sum of squares polynomial) and we have that 𝑏𝑝 · 𝑏𝑞 computes

another sum of squares polynomial (due to the cofactor expansion

of the Permanent). This implies that 𝑎𝑝 · 𝑎𝑞 > 0 for all its non-zero

values, and so is 𝑏𝑝 · 𝑏𝑞 > 0.

However, as Per(𝑊 ) = 𝑝 (w) · 𝑞(w), the linear term in 𝑤𝑖, 𝑗 in

the multiplication 𝑝 (w) ·𝑞(w) must vanish, thus implying 𝑎𝑝 ·𝑏𝑞 +
𝑎𝑞 · 𝑏𝑝 = 0, which implies that 𝑎𝑝 · 𝑏𝑞 · 𝑎𝑞 · 𝑏𝑝 < 0 for any non-

zero evaluation of these polynomials, contradicting the previous

paragraph.

Thus, we are left with the case where for each𝑤𝑖, 𝑗 , we have that

either 𝑝 (w) = 𝑤2

𝑖, 𝑗
·𝑎𝑝 +𝑏𝑝 and 𝑞(w) = 𝑏𝑞 , where 𝑎𝑝 , 𝑏𝑝 , 𝑏𝑞 ∈ R[w]

do not depend on 𝑤𝑖, 𝑗 , or the other way around (𝑞 is the purely

quadratic polynomial in𝑤𝑖, 𝑗 whereas 𝑝 is constant in𝑤𝑖, 𝑗 ). In this

case, since no linear terms on any𝑤𝑖, 𝑗 appear in the factorization

Per(𝑊 ) = 𝑝 (w) · 𝑞(w), this factorization after doing a change of

variables 𝑥𝑖, 𝑗 = 𝑤
2

𝑖, 𝑗
yields a polynomial factorization of the usual

permanent, which is known to be irreducible for 𝑛 ≥ 2. □

1
The more precise bound is𝑂 (𝑛max(𝑐,3) ) , since the size of a composition of circuits is

simply the sum of the sizes of the circuits being used.

4 COMPLEXITY OF DEFINITE
DETERMINANTAL REPRESENTATIONS

In this sectionwe prove themain result of this paper: the conditional

complexity lower bound on the spectrahedral representation of the

matching polynomial for the complete bipartite graph 𝐾𝑛,𝑛 .

For this section, we will let 𝜇 (x,w) ≜ 𝜇𝐾𝑛,𝑛
(x,w) and e =

(1𝑛, 1𝑛, 0𝐸 (𝐾𝑛,𝑛) ) be the hyperbolicity direction for 𝜇 (x,w) from
Amini’s theorem.

Lemma 4.1 (Complexity of Complete Bipartite Matching

Polynomial). Assuming VP ≠ VNP, that is, that the permanent
polynomial has super-polynomial circuit size, then the polynomial
𝜇 (x,w) requires super polynomial size circuits.

Proof. Let 𝑊 = (𝑤2

𝑖 𝑗
)𝑛
𝑖,𝑗=1

be a symbolic matrix. Note that

𝜇 (0,w) = Per𝑛 (𝑊 ). By Lemma 3.6 and our assumption that VP ≠

VNP, we have that 𝜇 (0,w) requires superpolynomial-sized circuits

to compute it.

If Φ(x,w) is any algebraic circuit computing 𝜇 (x,w) with size 𝑠

(i.e., having 𝑠 gates, one of them computing the polynomial 𝜇 (x,w)),
the circuit Φ(0,w), obtained by setting the input variables x to 0,
also has size ≤ 𝑠 and computes the polynomial 𝜇 (0,w). As Φ(0,w)
requires superpolynomial size, by the previous paragraph, we also

have that Φ(x,w) requires superpolynomial size. □

Lemma 4.2 (Irreducibility of Complete Bipartite Matching

Polynomial). The polynomial 𝜇 (x,w) is irreducible over R[x,w].

Proof. Suppose, for the sake of contradiction, that 𝜇 (x,w) fac-
tors. Then, there exist polynomials 𝑝 (x,w) and 𝑞(x,w) such that

𝜇 (x,w) = 𝑝 (x,w) · 𝑞(x,w). Consider the polynomials above in the

ring (R[w]) [x]. As the constant coefficient of 𝜇 (x,w) is 𝜇 (0,w) =
(−1)𝑛 · Per𝑛 (𝑊 ), which is nonzero, we must have that 𝑝 (0,w) and
𝑞(0,w) are nonzero. However, by Lemma 3.7, we have that Per𝑛 (𝑊 )
is irreducible, which implies w.l.o.g. that 𝑝 (0,w) = (−1)𝑛 ·Per𝑛 (𝑊 )
and 𝑞(0,w) = 1.

Since 𝜇 (x, 0) =
∏

1≤𝑖≤2𝑛
𝑥𝑖 is nonzero, we must have 𝑝 (x, 0) and

𝑞(x, 0) are nonzero. If we look at 𝜇 (x, 0) = 𝑝 (x, 0) ·𝑞(x, 0), we have
that 𝑞(x, 0) must either be constant or a monomial over x. As the
previous paragraph implies 𝑞(0, 0) = 1, 𝑞(x, 0) cannot be a non-

constant monomial over x, as that would imply 𝑞(0, 0) = 0. Hence,

we have that 𝑝 (x, 0) =
∏

1≤𝑖≤2𝑛
𝑥𝑖 .

If 𝑞(x,w) is a non-constant polynomial, any of its non-constant

monomials must depend on both x and w variables, as 𝑞(0,w) =
𝑞(x, 0) = 1. If 𝑞(x,w) depends on some x variable, say 𝑥1 w.l.o.g.,

write 𝑞(x,w) = 𝑞1 (x,w)𝑥1 + 𝑞0 (x, y), where 𝑞0 does not depend
on 𝑥1. As 𝜇 (x,w) is linear in 𝑥1, we must have that 𝑞 is linear in

𝑥1 and 𝑝 does not depend on 𝑥1. However, this contradicts the fact

that 𝑝 (x, 0) =
∏

1≤𝑖≤2𝑛
𝑥𝑖 . Hence, we conclude that 𝑞(x,w) does not

depend on any x variable, which implies 𝑞(x,w) = 𝑞(0,w) = 1,

which proves that 𝜇 (x,w) is irreducible. □

Putting the pieces together, we can now prove our main result:

assuming that VP ≠ VNP, any spectrahedral representation of the

hyperbolicity cone of the complete bipartite matching polynomial

has superpolynomial size.
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Theorem 4.3 (Hardness of Spectrahedral Representation).

Assuming that VP ≠ VNP, the following is true: any spectrahedral
representation of the spectrahedral cone Λ+ (𝜇, e) of the matching
polynomial 𝜇𝐾𝑛,𝑛

(x,w) has superpolynomial dimension.

Proof. Let (𝐴𝑖 )𝑖∈[𝑛] ∪ (𝐵 𝑗 )𝑗 ∈[𝑛] ∪ (𝐶 (𝑖, 𝑗) )(𝑖, 𝑗) ∈[𝑛]2 be a spec-
trahedral representation of the hyperbolicity cone Λ+ (𝜇, e) of the
polynomial 𝜇 (x,w), where 𝐴𝑖 , 𝐵 𝑗 ,𝐶 (𝑖, 𝑗) ∈ 𝑆𝑦𝑚𝑑 (R) are real sym-

metric matrices of dimension𝑑 such that
∑
𝑖∈[𝑛] 𝐴𝑖 +

∑
𝑗 ∈[𝑛] 𝐵 𝑗 ≻ 0.

Let

𝑔(x,w) = Det

©«
𝑛∑

𝑖, 𝑗=1

𝐴𝑖𝑥𝑖 + 𝐵 𝑗𝑥𝑛+𝑗 +𝐶 (𝑖, 𝑗)𝑤 (𝑖, 𝑗)
ª®¬

The irreducibility of 𝜇 (x,w) proved in Lemma 4.2, together with

Proposition 2.5 tell us that 𝜇 (x,w) divides 𝑔(x,w). If 𝑑 = poly(𝑛),
the equality above gives an arithmetic circuit of size poly(𝑑) com-

puting 𝑔(x,w). In this case Proposition 3.5 and 𝜇 (x,w) | 𝑔(x,w)
imply that 𝜇 (x,w) is computed by algebraic circuits of polynomial

size, which contradicts Lemma 4.1. □

5 CONCLUSION AND OPEN PROBLEMS
In this paper we gave the first (conditional) lower bound on the

spectrahedral representation of an explicit hyperbolicity conewhich
is known to be spectrahedral. An important component of our proof

was to observe that the algebraic circuit complexity of the minimal

defining polynomial of this hyperbolicity cone plays an important

role in lower bounding the spectrahedral representation. Removing

the standard complexity assumption on the proof above is the

first open problem left by this work. It would be interesting to see

whether the hyperbolicity assumption, and the special nature of

the spectrahedral (or definite determinantal) representation could

be further used to improve the lower bound above.

Another interesting question, in the viewpoint of optimization,

is whether the complexity of representing a hyperbolicity cone

(the ones known to be spectrahedral) via its hyperbolic polynomial

can in general be much more efficient than representing it via its

spectrahedral representation. This could show that using hyperbolic

polynomials could provide faster ways of testing membership in

in the hyperbolicity cone, than via checking the corresponding

inequality given by the spectrahedral representation.

To achieve such a separation between representation by giving

a circuit for the hyperbolic polynomial, one would have to find a

hyperbolic polynomial (with a spectrahedral hyperbolicity cone)

which can be computed by small algebraic circuits, but any definite

determinantal representation of it is large. The elementary symmet-

ric polynomials are great candidates for such separation, as they can

be computed by algebraic circuits of𝑂 (𝑛3) size. On the other hand,

the best upper bound on the spectrahedral representation of the

hyperbolicity cones of the elementary symmetric polynomials is

exponential [1, 2]. Thus, another open question is to obtain a lower

bound on the spectrahedral representation of these hyperbolicity

cones.

For optimization, the best possible separation which could show

the advantages of hyperbolic programming is with respect to spec-

trahedral shadows. In this case, one would have to exhibit a hyper-

bolicity cone which can be efficiently described through a small

algebraic circuit computing its minimal defining polynomial, but for

which any spectrahedral shadow of this cone is of superpolynomial

size.
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