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THE STRUCTURE OF POLYNOMIAL IDEALS AND GROBNER
BASES*

THOMAS W. DUBIt
Abstract. This paper introduces the cone decomposition of a polynomial ideal. It is shown

that every ideal has a cone decomposition of a standard form. Using only this and combinatorial
methods, the following sharpened bound for the degree of polynomials in a Grhbner basis can be
produced. Let K[xl,... ,Xn] be a ring of multivariate polynomials with coefficients in a field K,
and let F be a subset of this ring such that d is the maximum total degree of any polynomial in F.
Then for any admissible ordering, the total degree of polynomials in a Grhbner basis for the ideal

generated by F is bounded by 2((d2/2)
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1. Introduction. Many problems of symbolic computation can ultimately be
reduced to determining if a given polynomial p is contained in the ideal generated by
a set of polynomials F. Grhbner bases are special bases for polynomial ideals with
several important computational properties including the ability to rapidly determine
ideal membership. The term Grhbner basis was coined by Buchberger, who earlier
had pioneered the idea in his thesis. Grhbner bases differ only slightly from the
standard bases defined by Hironaka, and many of these concepts can be traced back
to the H-bases of Macaulay.

The increasing interest in Grhbner bases as a computational tool is in large part
due to the algorithm provided by Buchberger whereby for any set of polynomials F,
it is possible to construct a Grhbner basis for the ideal generated by F.

Although modified versions of Buchberger’s algorithm have shown success in prac-
tice (including some commercial systems), the complexity of the algorithm has not
been well understood. Giusti [6] has shown a Grhbner basis construction that always
produces a Grhbner basis containing only polynomials of the lowest possible degree.
A first step in understanding the complexity of the algorithm then is to bound the
degree of polynomials that occur in a minimal Grhbner basis.

It has been widely known (thanks to [8] and [10]) that in the worst case the
degree of polynomials in a Grhbner basis is at least double exponential in the number
of indeterminates in the polynomial ring. This lower bound precludes the existence of
an upper bound that would show the Grhbner basis algorithm to be tractable, but it
does not answer the following question: "How large can the polynomials in a Grhbner
basis be?"

The direction for producing an upper bound was provided by Bayer [1]. Bayer’s
thesis, together with the results of [6] and [10], shows that the degree bound of ele-
ments in a Gr6bner basis is bounded by (2d) (2n+2)n+i

The steps in producing this former bound may be summarized as follows:
(1) Begin with a basis F for I C_ K[xl,..., Xn], with d the maximum degree of

polynomials in F.
(2) If the ideal I is affine, introduce a new variable xn+l to homogenize the ideal

/to hi.

Received by the editors June 27, 1988; accepted for publication October 5, 1989. This work was
supported in part by National Science Foundation grants DCR-84-01898 and DCR-84-01633.

Courant Institute, New York University, New York, New York 10012.

75O

D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

29
.9

7.
17

0.
18

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



IDEALS AND GR6BNER BASES 751

(3) Place hi into generic coordinates [1]. Here it must be assumed that K is of
characteristic zero.

(4) In generic coordinates the degree of polynomials required in a Grhbner basis
with respect to reverse lexicographic ordering is bounded by (2d)2n-1 ([6]).

(5) The degree bound in generic coordinates also serves as a bound on the regu-
larity of hi ([6]). (An ideal has regularity m if for every degree m polynomial p, the
ideal (I,p) has a different Hilbert polynomial than I.) Since hi has n + 1 variables,
the regularity m of hi is bounded by (2d)2n

(6) A polynomial ideal over n variables with regularity m has its Macaulay
constant (bl as used in this paper) bounded by (m + 2n / 2) (2n+2)n ([10]). The
Macaulay constant of hi is therefore bounded by D ((2d)2 + 2n + 2) (2n+2)
,,,-- (2d)(2n+2)n+l

(7) For any admissible ordering, the degree of polynomials in a Grhbner basis for
hi is bounded by the maximum of m and bl ([1]). The degree of these polynomials
is therefore bounded by the value D given above.

(8) Specializing hi back to I by setting xn+ 1 produces a Grhbner for I whose
polynomials also satisfy this same degree bound.

A first remark concerning this procedure is that bounding the regularity of hi is
an unnecessary detour. Reference [6] shows that in generic coordinates with respect
to reverse lexicographic ordering a Grhbner basis G can contain a polynomial g with
Hterm(g) E PP[x,... ,xi] only if for every degree z such that d _< z _< deg(g), G
contains a polynomial gd with deg(gd) d and Hterm(gd) E PP[x,...,xi]. This
condition is nearly equivalent to what is defined in this thesis as a standard cone
decomposition, and in fact the standard cone decomposition was developed as a way
to mimic this behavior. Directly from Giusti’s decomposition, the Hilbert polynomials
of and K[X]/[ can be written in the forms needed to produce the bound on the
Macaulay constant given in Chapter 3.

Furthermore, the methods for obtaining the old bound use fairly specialized
branches of commutative algebra and algebraic geometry. Expertise in these areas
is not common among computer scientists. Since there are a growing number of com-
puter scientists who will want to use Grhbner bases, there is a need for a self-contained
treatment. The methods of algebraic geometry are concise and elegant, but there is
often much more insight gained by using brute force.

A major result of this current study was to obtain a new upper bound for Grhbner
basis degree. If F is a set of n variable polynomials of degree at most d, then we prove
that a reduced Grhbner basis for the ideal generated by F has degree at most

I believe that the method of obtaining this bound is perhaps of greater impor-
tance than the bound itself. The method, which involves decomposing the ideal into
disjoint cones, avoids the need to change to generic coordinates. This greatly sim-
plifies the description of the proof and eliminates the requirement that the field K
have characteristic zero. Moreover, it sheds much light onto the structure of an ideal
I and the quotient ring K[X]/I, and it is expected that further applications for cone
decompositions could be found.

2. Background. The material in this section is presented primarily for the pur-
pose of establishing notations and terminology. For a more thorough introduction to
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752 THOMAS W. DUB]

Grbbner basis, the reader is directed to [2], [3], [4], or [9]. The notations for homo-
geneity and nilbert functions are borrowed primarily from [12] and [11], and a more
detailed summary of all this information can be found in [5].

2.1. Admissible orderings and Gr6bner bases.
DEFINITION. A total ordering _> on the power products PP[X] PP[xl,." ,xn]

A

of the ring Jt is called an admissible ordering if the following axioms hold:
(1) For all power products a, b, c e PP[X], a>b ==ez ca>cb.

A A

(2) For all variables xi, xi>l.
A

Closely related to the concept of admissible orderings is that of head terms.
The >-greatest power product contained in a monomial of a polynomial h is called

A

the head term of h with respect to > and is denoted by HtermA(h). For an ideal I,
A

HeadA(I) is used to denote the ideal generated by the set {HtermA(h) h 6 I}.
DEFINITION. Let G be a basis for the ideal I and let > be an admissible ordering.

A

G is called a Gr6bner basis of I (with respect to >) if HeadA (I) is generated by the
A

set (Hterm(g) g e G}.
Let F be a set of polynomials and > a fixed admissible ordering. A polynomial

A

h is said to be F-reducible, if there exists f F, and monomial c jt such that
HtermA(cf) is a monomial of h. The polynomial g h- cf is then called a reduct

of h, and this relationship is denoted as hF g. The transitive closure hF g of the

reduction operation is defined to mean that there exists a sequence of polynomials
F

Pl,’’’,Pk such that pl h, Pk g, and for all < k, p ---,p+l. Finally, g is called
an F-normal form of h if

f and(1) h ----, g,

(2) g is not F-reducible.
The following conditions are all equivalent (e.g., [3], [9]):

(1) G is a Grbbner basis for I with respect to >
A

(2) G C I and for every h I there exists a g G such that HtermA (g) divides
HtermA(h).

(3) For all h 6 A, 0 is a G-normal form of h if and only if h I.
(4) G is a basis for I and every h ,4 has a unique G-normal form that may be

denoted as nfG (h).
One of the most important features of Grbbner bases is the existence of unique

normal forms. The following lemma shows that these normal forms provide a system
of representatives for the residue class ring

LEMMA 2.1. Let G be a Grbbner basis for I with respect to the admissible ordering
>. Then the following properties hold for all s, t .4:
A

(1) s- nfv(s) I.
(2) s--teI nfG(s)=nf(t).
(3) nfG(s + t) nfG(s)+ nfG(t).
In a slight abuse of notation NI will be used to denote the set of normal forms

NI (nfv(a) ae.4},

where G is an arbitrary fixed Grbbner basis for I.
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IDEALS AND GRBNER BASES 753

2.2. Direct decompositions. Let T be a subset of the polynomial ring jl, and
let $1,..., Sm be a (possibly infinite) family of subsets of T. The sets Si are said
to be a direct decomposition of T if every p E T can be uniquely expressed in the
form p -]ir__l Pi, where pi Si and r is finite. The fact that the Si form a direct
decomposition of T is expressed using the notation

T S@S2@’.’@Sm.

The following two important properties of direct decompositions can be easily veri-
fied.

(1) Let S,..., Sk be a direct decomposition for T, and let R,..., Rm be a direct
decomposition for S. Then $2,..., Sk, RI,..., Rm is a direct decomposition for T.

(2) Let P {hf h T} for some polynomial f, and let S,..., Sk be a direct
decomposition of T. Then the sets Q {hf h S} form a direct decomposition
of P.

Example 1. For any ideal I C_ Jr, I and NI form a direct decomposition of 4.
Proof. Let G be the GrSbner basis of I used to form NI nfG(A). Since G is a

GrSbner basis, each polynomial h has a unique G-normal form, and the decomposition
h nfG(h) + (h- nfG(h)) is unique.

DEFINITION. Let I be any ideal of 4, and h .4. The ideal quotient operation
I" hisdefinedbyI" h {f A fh e I}. Note that it trivially follows that
(I" g) h I" (gh).

Example 2. For an ideal J C ,4 and f ,4, let

I (J,f), L J’f,
{aI aeg};

then I J @ S.
Proof. Let G be the GrSbner basis for L used to form NL and S fNL. The

sets J and S are clearly subsets of I, so it need only be shown that each h I can be
uniquely expressed as h hj + hs. It will first be shown that such a decomposition
exists, and then that the decomposition is unique.

Every polynomial h I can be written as h aj + aff with aj J. It is now
claimed that a decomposition of h exists with hj h-nfG(af)f and hs nfG(af)f.
Since the sum of these two polynomials is trivially h, it must only be shown that
hj J. This follows directly from the definitions of the sets involved:

ai-nfv(ai) e L,
(ai nf(af))f J,
hj aj + (ai nfv(ai))f e J.

Now consider any two decompositions of h:

h a + nfv(b)fr a2 + nfG(b2)fr

where a, a2 J.

(nf((bl) nf((b2))fr a2 a E J,
nfv(b) nfv(b2) L,
nfG(b) nfv(b2) 0.
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754 THOMAS W. DUBI

Therefore the decomposition is unique.
Applying this technique recursively, we obtain the following decomposition of an

ideal.
Example 3. Let F {fl,..., fr} be a basis for an ideal I. Let $1 be the principal

ideal (fl), and for each 2,..., r, let

L (fl,’",f-l)" f, and

S {hf hENL,}.

Then, I- S ... @ St.
In summary, for any ideal I, the ring jt can be decomposed into I and NI.

Furthermore, I itself can be decomposed into sets of the form S {hf h NL },
which in turn could be further decomposed if we could decompose NL. Sets of the
form NI need to be studied more closely.

2.3. Homogeneity. Let f be a polynomial in ,4; then f can be written as a finite
sum f fk + fk- +’’" + f0, where each fz is either zero, or a sum of monomials each
of which has total degree z. In such a decomposition of f, each nonzero fz is called
the homogeneous component of f of degree z. The nonzero homogeneous component
fk of greatest total degree is called the initial form of f and is denoted by in(f). A
polynomial f is called a homogeneous polynomial if f consists of at most one nonzero
homogeneous component.

DEFINITION. A set S C_ .4 is called homogeneous if it satisfies the following two
properties"

(1) f S implies that each homogeneous component of f is also in S.
(2) f is a K-module.

A homogeneous set S that is an ideal of jt is called simply a homogeneous ideal.
A direct decomposition S,..., Sr of a homogeneous set T is called a homogeneous
direct decomposition if each S is homogeneous.

For a homogeneous set T, the subset of degree z homogeneous polynomials will
be denoted by Tz, i.e.,

Tz {f e T f is homogeneous of degree z}

If T is closed under addition, then the collection of sets {T0, T,...} trivially form a
homogeneous direct decomposition of T.

For p a polynomial in the affine ring 4 K[xl,..., xn], let p be written as a sum
of monomials p pl +"" + Pm. The homogenization function hp is a mapping from
the affine ring jt to the projective ring K[xl,..., Xn;y] where y is a new variable and
the mapping is defined as

m

hp piydeg(p)-deg(p
i--1

Throughout this paper, y will be used to denote the extra variable, which is intro-
duced by homogenization, hA will denote the projective ring hA K[xl,...,xn; y],
which results from the introduction of y.

To return from hA to the original ring, use the natural homomorphism ap defined
by partially evaluating p at y 1. For example, h(x -X2) X31 + x2y2, and

+ +
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IDEALS AND GRbBNER BASES 755

2.4. Hilbert functions. The Hilbert function of a homogeneous set T is de-
noted by T(Z) and is defined as follows:

T(Z) the dimension of Tz as a vector space over K.

Equivalently, let > be any fixed admissible ordering. The Hilbert function may be
A

defined to be the number of degree z power products that occur as the head monomial
of a polynomial of T. That is,

T(Z) I{PePP[X] peHeadA

The definitions of homogeneous direct decompositions and Hilbert functions lead im-
mediately to Lemma 2.2.

LEMMA 2.2. Let $1,..., Sr be a homogeneous direct decomposition of T; then
(z).

Let I C_ hA be a homogeneous ideal. If N is any homogeneous set of representa-
tives for the quotient ring hA/I, then I @ N is a homogeneous direct decomposition
for the entire ring hA. Therefore the Hilbert function of N (and hence hA/I) satisfies
the relation

v (z)

In particular, since I is a homogeneous ideal, a homogeneous system of representatives
for the ring hjt/I can be constructed as

N1 {nfo(a)" a e hA},

where G is any Grhbner basis for I.
It is a classic result that for any ideal I, at sufficiently large z, the Hilbert functions

i(z) and h4/(z become polynomials in z. These polynomials will be denoted

using the notation i(z) and g hA/i(z).
3. Cone decompositions of the polynomial ring. The main goal in finding

a direct decomposition for an ideal I is to partition I into subsets whose Hilbert
function can easily be described. In particular, the types of elements desired are sets
of the form {ah a E g[u]}, where h is a homogeneous polynomial and u is a subset
of X {x,...,x,}.

DEFINITION. For h a homogeneous polynomial and u C_ X, the set {ah a K[u]}
is called a cone and is denoted by C(h, u).

Some insight into the behavior of cones can be gained from considering mono-
mial ideals with n 2. This case can be well understood because the cones may
be depicted graphically. However, since many interesting phenomena occur only at
the higher dimensions this simple case can at times be misleading. For example, in
two dimensions all Borel-fixed ideals are lexicographic. Furthermore, there are many
features of general polynomial ideals that do not appear in the monomial case. This
problem is not so important here though, because the cone decomposition will be
applied mainly to monomial ideals.

The graphical representation in two dimensions is illustrated in Fig. 1. The power
products are represented in a triangular grid with 1 at the bottom. Powers of x run
along the left side of the grid, and powers of y to the right. To reach the vertex
associated with a given power product xayb count a places upward to the left and then
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756 THOMAS W. DUBl

FIG. 1. The power-products of K[x, y].

FIG. 2. Examples of cones.D
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IDEALS AND GRBNER BASES 757

b places upward to the right. Figure 2 illustrates that cones may then be represented
in the diagram by encircling the power products which the cones contain.

For a cone C(h, u), the nilbert function of C(h, u) is dependent only on deg(h)
and lu I. Counting the number of power products in Head(C(h, u)), we find that if
u q}, then

and for [u > O,

0, z :/= deg(h),C(h,O)(z) 1, z deg(h),

{ 0

i )
z<deg(h),

C(h,u)(Z) z- deg(h)+ lul- 1

lul-1 z>_deg(h).

DEFINITION. Let hi,’", hr be homogeneous polynomials of A, and let ul,..., ur
be subsets of X. A finite set P ((hi, u1),..., (h, u)} is a cone decomposition of
T C_ Jt if the cones C(hi, ui) form a direct decomposition of T.

The cones (hi, ui) E P that have ui form a finite part of T and do not
contribute to the Hilbert polynomial of T. The remaining cones, for which ui
form a direct decomposition of a set that is equivalent to T at large degrees. This
portion of the cone decomposition will be denoted as

P+ {(h,u) EP u=q}.

A cone decomposition P for T is said to be k-standard k an integer) if the
following two conditions hold:

(1) There is no pair (h, u) e P+ with deg(h) < k.
(2) For every (g, v) P+ and degree d such that k _< d _< deg(g), P contains a

pair (h, u) with deg(h)= d and lul >_
Note that if P+ is the empty set, then P is k-standard for all natural numbers k.

On the other hand, if P+ is nonempty, the only possible value for k is min{deg(h)
(h,u) e P+}.

The following list contains an assortment of easily verifiable properties of cone
decompositions and k-standard cone decompositions.

(1) q} is a 0-standard cone decomposition for
(2) { (h, u)} is a deg(h)-standard cone decomposition of C(h, u).
(3) { (1, X)} is a 0-standard cone decomposition of ,4.
(4) Let $1 and $2 be a direct decomposition of T, and let P1 and P2 be cone

decompositions of $1 and $2, respectively. Then P1 U P2 is a cone decomposition of
T.

(5) Let $1 and $2 be a direct decomposition of T, and let P1 and P2 be k-standard
cone decompositions of $1 and $2, respectively. Then P P1 U P2 is a k-standard
cone decomposition of T.

(6) If P {(hi,u1),..’, (hs,us)} is a k-standard cone decomposition for T,
then for any homogeneous polynomial c, the set P’ {(chl, ul),..., (chs, us)} is a
(k + deg(c))-standard cone decomposition for {ch h e T}.

There is one special cone decomposition that provides a useful function for ma-
nipulations.

DEFINITION. Let u {xjl,..., xj,} C_ X. Then define the set E(h, u) as

E(h,u) {(h,)}i{(xjh,{xi,...,x,} i= l,...,m}
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758 THOMAS W. DUBI

It is easy to verify that E(h, u) is a (deg(h) + 1)-standard cone decomposition of
C(h,u).

LEMMA 3.1. Let P be a k-standard cone decomposition for T. Then, for any
d >_ k, there exists a d-standard cone decomposition Pd for the set T.

Proof. If P+ , then the result holds trivially, so assume that P+ is nonempty.
It suffices to show that (k + 1)-standard cone decomposition exists for T. Let R
{(h, u) E P deg(h) k}, and S P- R. The original set P was k-standard, so
after removing the cones in R, the remaining set S is (k + 1) standard.

Since R contains only pairs (h, u for which deg(h) k, R is trivially k-standard.
The set spanned by the cones in R also has a (k + 1)-standard cone decomposition,
namely,

R’ U E(h,u)
(h,u}eR

Finally, Pk+l R U S is a (k + 1)-standard cone decomposition for T.
COROLLARY 3.2. Let St,..., Sr be a direct decomposition of T, where for each

Si there exists a ki-standard cone decomposition Pi. Then there exists a k-standard
cone decomposition P of T with k max{k,..., kr}.

4. Splitting a system of representatives. In this section it will be shown
that for any homogeneous ideal I, it is possible to construct a 0-standard cone de-
composition for Nx. Recall that once the ordering > and a Grhbner basis G for I

A

are fixed, then NI and NHeadA(G) have a termwise agreement as sets. Thus, only
monomial ideals need be considered.

Let I be an ideal of ,4 generated by the set of monomials F {fl,...,
given variable xfi, there is a direct decomposition of I consisting of I0 and I1, where

and,

Io I N K[X {xj}]

I I N (xj) {xjh h E .4 and xjh e I}

Clearly, I0 is an ideal of g[x {xj }] generated by F g[x {xj }]. It is also easy
to verify that I is an ideal of A generated by the set G {g,..., gr }, where

xjfi, Yieg[X-{xj}],
gi

fi otherwise.

Comparing the ideal I defined above with the quotient I xj, shows that I
{xh h I" xy}. Furthermore, this leads to the fact that I" xj is generated by
H {hl,...,hr} where

I e g[x
xj gi

xj f otherwise.

This method of forming a basis for I" xj is restated as an algorithm in Fig. 3.
DEFINITION. Let P U Q be a cone decomposition of T C_ jr, and let I be an ideal

of ,4. Then P and Q are said to split T relative to I if {h, u) P implies C(h, u) C_ I
(i.e., h E I), and (h, u) Q implies C(h, u) I- {0}. We may easily verify that P is
a cone decomposition of T I. Furthermore, the following lemma shows that under
proper restrictions Q is a cone decomposition for T NI.
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IDEALS AND GRBNER BASES 759

QUOTIENT_BASIS(F, x)
Input F a monomial basis for I C_ ,4

xj 6 X a variable
Output F’ a monomial basis for I’x..

For f/ e F
if f/ 6 K[X {xj}] then F’ F’U {fi}

else P’ P’U{xIf/}
return (F’)

End.

FIG. 3. The algorithm for forming a basis for I" xj.

LEMMA 4.1. Let P {<gl, Ul},’", <gr, Ur}} and Q {<hi, Vl},’", {he, vs}} split
T relative to a monomial ideal I, where for each {hi, vi} Q, hi is a monomial. Then
Q is a cone decomposition for T N NI.

Proof. If i is a monomial ideal, then regardless of admissible ordering > and
A

GrSbner basis G,

f 6 NI = each monomial of f is not in/..

Furthermore, if hi is a monomial then

f 6 C(hi, vi) each monomial of f is in C(hi, vi).

By the definition of a splitting set of cones, C(hi, vi) N I {0}, so

f 6 C(hi, vi) =:v no monomial of f is in I.

Let f 6 T NI. f 6 T implies that f can be written uniquely as

f fP1 +fP2 +’"+fP "Ji"f(l -’’"Jf-fQ.s"

The partial sum f fp + fP2 +"" + fP is in I and therefore is a sum of monomials
in I. Since no such monomials appear in the cones C(hi, vi), all monomials of f
must also appear in f. But f 6 NI and can include no monomial of I. Hence, f 0
and f can be written uniquely as f fQ +... + fQs. D

As an example, consider the monomial ideal I (x4y, xy3, y5). This ideal has a
cone decomposition given by the set

{x}), c(x4 {x}), C(x {x,

This particular cone decomposition is illustrated in Fig. 4. Viewing this figure should
make it clear that this cone decomposition is not unique.

For example, the cones C(xy3, {x, y}) and C(y5, {y}) can be equivalently replaced
by C(xy3, {x}), C(xy4, {x}), and C(y5, {x, y}).

Now, let T be the ideal generated by x2. Then T 6 I has a cone decomposition
described by the set

P {<x4y, {x}>, <x4y2, {x}>, <x2y3, {x,y}>}.
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760 THOMAS W. DUBl

{x})\o o o/ -. .////

FIG. 4. The cone decomposition o] I (x4y, xy3, yh).

This cone decomposition is illustrated in Fig. 5.
But splitting I requires not only a cone decomposition P for the ideal, but also

a cone decomposition Q for T N NI. In this example, Fig. 6 shows that Q may be
chosen as the set of cones described by

Q {<x, {x}>, <xy, >, <x:y, >, <xay, >, <xay, >}
From the definition of what is meant by a cone decomposition P J Q splitting a

set relative to an ideal I, it is immediate that a cone C(h, u) can belong to such a
decomposition only if either C(h, u) c_ I or C(h, u) I . The following lemma
shows that if the ideal I is a monomial ideal and h is also a monomial, then this
condition can be effectively determined. This will provide an algorithm to split the
ring J[ relative to a monomial ideal I.

LEMMA 4.2. Let I be a monomial ideal, h E PP[X], u C X, and let F be a power
product basis for I h. Then,

(1) C(h, u) C_ I if and only if 1 e F.
(2) C(h, u) I if and only if F
Proof. (1) IF == lI:h =:v hI C(h,X) C_I.

(2) (==) Assume C(h, u) I q}. Then for g e PP[u],

hg E C(h,u) == hg . I

== g I h

:: g_F.

(2) (==) Assume Fee[u] 0. Then for g ee[u], g cannot be in I: h
since otherwise F would have to contain a divisor of g and this divisor would also be
in Pe[u]. So

gC.I:h == hg.I.
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FIG. 5. The cone decomposition of (x2) r’l I.

By the definition of C(h, u), every polynomial contained in this cone is of the form
hg with g E PP[u] and hence not in the ideal I. rl

Figure 7 provides an algorithm SPLIT for splitting a cone C(h, u) with respect to
a monomial ideal I.

LEMMA 4.3. The algorithm SPLIT terminates.

Proof. For a set of arguments h, u, and F, define the rank of the arguments as

lul + feFdeg(f). It is now claimed that if SPLIT is invoked with arguments of
rank r, then the two recursive calls (if reached) have arguments of rank _< r- 1.
For the first call, this is trivial. For the second call, it must be shown that there is
some f e F such that f PP[X {xj}]. But, this must be true since otherwise
F C g[s U {xj }] i, contradicting the choice of s, and hence xj.

If r 0, then F must either be {1}, or . In either case, the recursion stops.
Therefore the depth of recursion is at most r, and hence the algorithm terminates. D

LEMMA 4.4. The algorithm SPLIT is correct.
Proof. The previous lemma assures the termination of the algorithm, so the

correctness of the algorithm can be proven using induction on the depth of recursion.
The basis case in which no recursive calls are made occurs if 1 F or F N PP[u]. In both of these cases, Lemma 4.2 shows that the trivial decomposition (P, Q)

satisfies the definition for splitting C(h, u) relative to I.
Otherwise, the cone C(h, u) is decomposed into

C(h, u) C(h, u {xj}) (9 C(xh, u)

Since F is a power product basis for I" h, the function OIIOTIENT_B/SIS produces
a power product basis F for the ideal I xjh. Inductively, the algorithm SPLIT
returns

(1) (P0, Q0), which splits C(h, u- {x}) relative to I, and
(2) (P1, Q1), which splits C(xh, u) relative to I.

These two decompositions are then joined to produce the desired decomposition of
C(h, u). D
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762 THOMAS W. DUBI

FIG. 6. The cone decomposition o] (x2) rh NI.

In the SPLIT algorithm, the choice of s C u such that F N PP[s] as a maximal
subset is not a necessary condition for the correctness of the algorithm in producing a
splitting decomposition. However, it will soon be shown that the set Q returned by this
algorithm has the additional property of being deg(h)-standard. To prove that this
is indeed true, we begin with a simple lemma regarding the condition F n PP[s] .

LEMMA 4.5. Let h, u, I, and F be as in algorithm SPLIT. Then for any v C_ X,

C(h, v) C_ C(h, u) rq Ni = v C_ u and F rh PP[v] O

Proof. (==) C(h, v) C_ C(h, u) clearly implies v C_ u. To see that F r3 PP[v] ,
let f be any nonzero element of g[v]. Then hf E C(h, v) C_ NI. But I rq NI {0}
and neither h nor f is zero, so hf [ I. Then,

h:1 == :_I’h
=:. :.F.

(=) v C_ u implies C(h,v) c_ C(h,u), so it only remains to be shown that
C(h, v) C_ Nz. To prove this, it is sufficient to show that no monomial of C(h, v)
belongs to 1. Each monomial of C(h, v) is of the form hf with f a monomial of K[v].
Then,

FnPP[v]= fI.h
== hf I.

LEMMA 4.6. Let h, u, I, and F be valid input for algorithm SPLIT, and let
(P, Q) denote the sets returned by SPLIT(h,u,F). Then for any power product g,
C(g, v) c_ C(h, u)r3 NI implies that Q contains a pair {h, s) with

Proof. Using the previous lemma,

C(g, v) c_ C(h, u) rq gi == C(h, v) c_ C(h, u) rq gi

== vC_uandFNPP[v]=
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SPLIT(h,u,F)
Input

Output

PP[X]
X is a set of variables
power product basis for I" h

(P,Q) which split C(h,u) relative to I.

If leF then return (P {<h, u)}, Q @)
If FCIPP[u]=@ then return (P=qi, Q={(h,u)))
Otherwise
Choose 8 C u a maximal subset such that F N PP[s]
Choose xj 6 u-s [If s=u this point would not be reached.]

(P0, Qo) SPLIT(h,u- {xj}, F)

End.

F’ QUOTIENT_BASIS(F, xj)
(P1,Q1) SPLIT(xjh,u, F’)
return (P=PoLP1, Q=QoLQ1)

FIG. 7. The algorithm for splitting C(h, u) relative to I.

We proceed inductively on lul- Ivl. If v u, then the algorithm returns Q { (h, u>},
satisfying the lemma. Otherwise, the choice of s as a maximal subset such that
F C PP[s] @ implies that Isl > Ivl. The previous lemma can now be applied in the
opposite direction to get

C(h, s) C_ C(h, u {xj}) C NI

Using the induction hypothesis, the set Qo formed by the recursive call
SPLIT(h,u- {xj},F)contains a pair (h,w)with Iwl _> Isl > Ivl. The lemma then
follows from the fact that Qo is a subset of Q. F1

A basis R {fl,..., fk} for an ideal I is called a reduced basis if each fi satisfies
fi (R- {fi}). On the other hand, suppose that F is not a reduced basis, and that
fi 6 (F-{fi}). Then, F-{fi} is also a basis for I. Successively removing redundant
generators produces a subset of F that is a reduced basis for I.

LEMMA 4.7. Let R be a reduced power product basis for a monomial ideal I,
and let P {(hl,ul),"’, (h,u)} be any cone decomposition of I where the hi’s are
power products. Then, for each f 6 R, there is a pair (f, u) 6 P.

Proof. Let f be any element of R. Since f 6 I, there is some (h, u) 6 P such
that f 6 C(h, u). But, now h is also in I, so h bg for some g 6 R. But f 6 C(h, u),
so f can be written as f ah abg. Since R is reduced, we have ab 1,
and f h. [3

LEMMA 4.8. Let F be a power product basis for I jr, (P, Q) SPLIT(l, X, F),
and let R C_ F be a reduced basis for I. Then for every f 6 R, Q contains a pair
<h, u) with deg(h) deg(/)- 1.

Proof. Let f be any element of R. By the preceding lemma there is a pair
(f, v) 6 P. Consider how this pair got into P. Since deg(f) > 0, there must have
been a recursive call SPLIT(f, v, F’), where F’ is a basis for I" f. This invocation of
SPLIT must have been the child of either

(i) SPLIT(x71f, v,F"), or

D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

29
.9

7.
17

0.
18

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



764 THOMAS W. DUBI

(2) SPLIT(f, v D {xj }, F’).
Using the first possibility as a basis case, inductively, we may step backward through
the computation of SPLIT(1, X,F) to find an invocation SPLIT(x-lf, v’,F’’) with
vDv.

The cone C(xif, v) could not have been a subset of I, since then a recursive
call would not have been generated. Therefore, if

(P’,Q’) SPLIT(x’lf, v’,F"),

then Q is nonempty. But then Lemma 4.6 assures that Q contains a pair of the form
(xf, sl. Since deg(x-f) deg(f)- 1, the existence of this pair in Q’ c_ Q satisfies
the lemma.

COROLLARY 4.9. Let F be a power product basis for I, and let (P, Q)
SPLIT(1, X,F). Then if d 1 + max{deg(h) (h, u) e Q}, I can be generated by the
set {f e F deg(f) g d}.

LEMMA 4.10. Let (P,Q) SPLIT(h,u,F). Q is a deg(h)-standard cone de-
composition.

Proof. If Q is either q} or {(h, u)}, then the lemma follows trivially. Otherwise,
assume inductively (on the number of recursions) that Q0 and Q satisfy the lemma.
That is Q0 and Q1 are, respectively, deg(h)-standard and (deg(h) / 1)-standard.

To show that Q is a deg(h)-standard cone decomposition, it must be shown that
for any (g,v) E Q and degree d such that deg(h) _< d g deg(g), there is a pair
(p, t) e Q with deg(p) d and Itl >_ Ivl. Since Q Q0 D Q, there are two cases to
consider.

(1) {g, v) Q0. Since Q0 is itself a deg(h)-standard cone decomposition, Q0
contains all the pairs needed to satisfy the condition for (g, v), and Q0 is a subset of
Q.

(2) (g, v)
contains the pairs needed to satisfy the condition for (g, v) for deg(h)+ 1 g d g deg(g).
For d deg(h), Lemma 4.6 assures that Q contains the needed pair. [:l

The remarks at the beginning of this section allow these results to be extended
beyond monomial ideals.

THEOREM 4.11. Let G be a Grb’bner basis for I with respect to >. Let (P, Q)
A

SPLIT(1, X, HtermA(G)). Then Q is a O-standard cone decomposition ofNi nfG(4).
Furthermore, if d-- 1 + max{deg h (h, u) e Q}, then G’ {g e G deg(g) g d} is
also a Grb’bner basis for I with respect to >.

A

Proof. HtermA(G) is a basis for inA(I). Therefore the SPLIT algorithm returns a
0-standard cone decomposition for NinA(i) NI.

By Corollary 4.9, the set

{h E HtermA(G) deg(h) g d} C_ HtermA(G’)

is a basis for inA(I), and hence G’ is a Grhbner basis for I. D

5. Splitting a homogeneous ideal. So far we have seen that for any ideal I,
there exists a 0-standard cone decomposition of NI. But what about I itself? The
construction SPLIT provides a cone decomposition of I that is only valid for monomial
ideals, and even this does not produce a standard cone decomposition. The answer is
found in the following lemma.
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LEMMA 5.1. Let F (fl,’", fr} be a homogeneous basis .for an ideal I; then
there exists a k-standard cone decomposition P for I with

k max{deg(fi) i- 1...r}.

Proof. Let $1 (f), and for 2...r let Ji (f,...,fi_), Li Ji fi
and Si {cfi c E NL}. The sets S,..’,Sr form a direct decomposition of
I. $1 is a principal ideal that has the deg(f)-standard cone decomposition P
{(f,X)}. Using the construction provided by SPLIT, we form a 0-standard cone
decomposition Qi for each NL. If Qi {(h, ul),..., (As, us)}, then it follows that
P {(frh, u),..., (frhs, us)} is a deg(fi)-standard cone decomposition for S.

It then follows from Corollary 3.2 that there exists a k-standard cone decompo-
sition P for I. rl

For I (0}, it will be preferable to use a slightly modified version of this result.
When the sets Pi are united to form P, do not include P in the union. This produces
the following modified result.

COROLLARY 5.2. Let F {f,...,fr} be a homogeneous basis for an ideal I
with r > O, and let St,..., Sr be as above. Then there exists a direct decomposition
of I consisting of the primary ideal S (f), and a k-standard cone decomposition
P for $2 @ $3 @’" ( Sr with

k-- max(deg(fi) i-- 1...r}.

6. The exact cone decomposition.
DEFINITION. For T C_ K[X], Q is called an exact cone decomposition of T if Q is

a k-standard cone decomposition of T for some k, and additionally for every degree
d, Q+ contains at most one pair (h, u) with deg(h) ----d.

If Q+ is nonempty, then there is a unique value of k for which Q is k-standard.
Let Q denote this value of k. In the case that Q+ is empty, let Q .0. Both of
these cases can be captured with the single definition: q is the least value of k such
that Q is k-standard. However, this unified definition fails to emphasize the fact that
in the more important case (Q+ q}) the value of k is unique.

For 0,...,n / 1, let

bi-min(d>_Q (h,u) EQandlul_>i = deg(h)<d}.

It is a simple consequence of this definition that the bi’s satisfy bo >_ b >_ >_ bn+
Q. Furthermorei

1 + max{deg(h) (h,u) e Q+},
bl O,

LEMMA 6.1. Let Q be an exact cone decomposition, and let b0,’.’, bn+ be defined
as above. Then for each 1,...,n and degree d such that bi+ <_ d < bi, there is
exactly one pair (h, u) e Q+ such that deg(h) d and in that pair lul i.

Proof. If Q+ is empty, then b b2 bn+ 0 and the lemma follows
vacuously. Otherwise, for each 1,..., n, the definition of bi requires that b 1
be the largest degree such that Q contains a pair (g, v) with Ivl >_ i. Since Q is
bn+l-standard, each degree d bn+,"" ,bi 1 must have a pair (hd, Ud) Q with
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766 THOMAS W. DUBt

deg(hd) d and lUdl >_ Ivl >_ i. Since Q is an exact cone decomposition (hd, Ud) is
the only pair (h, u) e Q+ with deg(h) d.

Now if bi bi+l the range d bi+l,..., bi 1 is vacuous. Otherwise, for each d
in this range lUdl since lUdl > would contradict the definition of bi+l. S

The following trivial lemma provides a tool by which any standard cone decom-
position may be transformed into an exact cone decomposition.

LEMMA 6.2. Let Q be a k-standard cone decomposition of T, and let (f,s),
(g, v)E Q such that deg(f)= deg(g), and Ivl >_ Isl > O. Then for any xj e s,

Q’ (Q {(f, {(f,, (x f,

is also a k-standard cone decomposition of T.
Proof. It must be shown that for every pair (, w) Q’ and degree d k,..., deg(i)

there is a pair (h, u) Q’ with deg(h) d and lul _> Iwl. For (, w) Q N Q’, Q’ in-
herits all the required pairs from Q. For the two new pairs, the presence of (g, v) Q
is sufficient to show that Q must again contain the required pairs. []

This lemma provides a tool to shift pairs away from degrees occupied by other
pairs.

One new term will be introduced only for the purposes of proving the correctness
of the following algorithm. A k-standard cone decomposition P is called m-exact if for
each degree d there is at most one pair (h, u) E P such that deg(h) -d and lul > m.
With this definition, a cone decomposition is exact if and only if it is 0-exact. It also
follows vacuously that any cone decomposition is n-exact. Consider the algorithm of
Fig. 8.

SHIFT (Q, k, m)
Input
Output

Q a k-standard m-exact cone decomposition for T
Q’ a k-standard (m-1)-exact cone decomposition for T.

If ((h, u) e Q lul _> m} q} then return(Q’).
c := I{(h,u>eQ lul_>
For d:=k to k+c-1 do
B := ((h,u) e Q’ deg(h) d and lul _> m}
While IBI > 1 loop

Choose (h,u> 6 B with lul m
Choose xj 6 u
B := B-{(h,u)}
Q’ := (Q’ {(h, u>}) t2 {(h, u {xj}>, <xjh, u>}

End While loop
End For d loop
return (Q’)

End.

FIG. 8. The algorithm for shifting pairs in a standard cone decomposition.

LEMMA 6.3. The algorithm SHIFT is correct.
Proof. If Q is a k-standard partition, then it follows from the previous lemma

that the set Q will also be k-standard. Furthermore, the action of the algorithm
assures that for each degree d < k + c, Q will contain at most one pair (h, u) with
deg(h) d and lul >_ m. But what about degrees >_ k + c? Checking the line at
which Q is modified will show that throughout the execution of this algorithm the
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IDEALS AND GRBNER BASES 767

size of the set {(h, u> e Q’ [u[ > m} remains invariantly c. Now since Q’ is k-
standard, a pair (g, v> 6 Q’ with [v[ > m requires that Q’ contain a pair (hd, Ud> with
[Ud[ > m and deg(hd) d, for every degree d k,...,deg(g). The c pairs in the
set { (h, u> 6 Q’ [u[ > m} must then include the deg(g) k + 1 pairs of the form
(hd, Ud>. Therefore, deg(g) < c + k 1. [3

Now, the SHIFT algorithm can be used to produce an exact cone decomposition
using the algorithm in Fig. 9. Note that the action of the EXACT and SHIFT algorithms

EXACT (Q, k)
Q a k-standard cone decomposition for T
Q’ an exact cone decomposition for T.

For m := n down to i do
Qm-1 := SHXFT(Qm, km)

End For m loop
return(Q0)

End.

FIG. 9. The algorithm for producing an exact partition.

assures that if Q’ is the exact cone decomposition produced by EXACT(Q, k), then the
Macaulay constant b0 for Q’ satisfies

b0 > 1 + max{deg(h) <h,u} e Q}.

7. Exact cone decomposition and Hilbert function. For any cone decom-
position P of a set T, the Hilbert function of T can be described by summing the
Hilbert functions of the cones in P:

(h,u>eP

For degrees z greater than or equal to

z’ max{deg(h) <h,u) e P}

each of the cones has a Hilbert function described by the binomial coefficient

qOC(h,u)
z- deg(h)+ lul- x )

I 1-1 )
and so

T(Z) z- deg(h)+ lul- 1 ’lul- 1 J

But, if P is exact, then the constants bl,’", bn+l describe all of the cones in P+, so

n bj

j=l d=bj+l

z-d+j- 1 )j_
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768 THOMAS W. DUBl

Furthermore, the constant b0 is defined to be the same as the constant z given above,
so the Hilbert function attains this polynomial form for degrees z >_ b0.

Using the combinatorial identity

b

d----bj+

the Hilbert function of T can be written in the form:

"[( ) (i’= z-bj+.12 +j z-bj.2 +j

(z-bn+l+n)_(z-b+l)n1

+[( z-bj+l +j ) ( z-bj+ +j + l )1
J=

j j+l

n 1
J=

j+l

1_ )n j+l
j=0

Replacing the summation variable with j + 1, this can be restated as

( 1 )Z bn+l Jr" n z bi + 1
n

i-1

In the classic paper [7], Macaulay first proved that for sufficiently high degree
z, the Hilbert function of a polynomial quotient ring always attains the form of a
polynomial such as the one given in (,). For this reason the constants bo,... ,bn+
will be referred to as the Macaulay constants of T. The formulation given above has
the added benefit of the additional constant b0, which provides a bound on the point
at which the Hilbert function T(Z) attains its polynomial form T(Z) as given in (,).

For z in the range b g z < b0, the Hilbert functions of the cones in P+ attain
the polynomial forms used in calculating T(Z). For z in this range however, there
are also some cones C(h, )- E P P+, which contribute to the Hilbert function of
T. Therefore, for z _> bl the following form of the Hilbert function is valid:

T(Z)+ I{(h,O) e P deg(h) z}.

LEMMA 7.1. Let P be any exact cone decomposition for a set T. Once the
constant bn+ -5Q is fixed, the constants bo, b,..., bn are uniquely determined.

Proof. The Hilbert polynomial of T can be written in the form

zn--1 2zn’-2T(Z) an-1 + an- +"" + alz + ao
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IDEALS AND GR}BNER BASES 769

Assume inductively that the constants bj+l,..., bn+l have been uniquely determined
such that Hilbert function given by (.) agrees with the coefficients an-I,’", aj. The
binomial coefficient

z-bi+i-1 )
is a degree monic polynomial in z. So, the coefficients bj-1,..., bl do not effect the
coefficient of zj-1 in the Hilbert polynomial (.). Therefore, matching the coefficient
aj-1 requires a unique choice for bj.

We may then also uniquely determine b0 as

b0 min{d >_ 51 Vz)dT(Z) T(Z)}
LEMMA 7.2. Let I be a homogeneous ideal, then the Hilbert function of NI is

described by a unique set of Macaulay constants bo >_ bl >_... >_ bn+l O. Further-
more, for any admissible ordering > the degree of polynomials in a reduced Grhbner

A

basis for I with respect to > is bounded by bo.
A

Proof. Since NI has a 0-standard cone decomposition, it is possible to find an
exact cone decomposition for NI with bn+l O. Once bn+l is fixed as zero, the other
Macaulay constants are uniquely determined.

Let G be a Grhbner basis for I w.r.t. >. The set NI admits a 0-standard cone
A

decomposition Q, which may be found using the algorithm SPLIT(l, X, HtermA(G)).
Let d l+max{deg(h) (h, u) e Q}. Theorem 4.11 assures that {g e G" deg(g) _< d}
is also a Grhbner basis for I. The construction using algorithm EXACT then shows that
the unique Macaulay constant b0 is _> d, and hence is also a bound on the degree of
polynomials required in the Grhbner basis.

8. A bound for Grhbner basis degree. Let F {fl,’",fr} be a homoge-
neous basis for an ideal I. Assume without loss of generality that fl has the largest
degree deg(fl) d. In the previous section, it has been shown that for any ideal I,
there exists an exact partition Q for NI in which the constant aQ is zero. Further-
more, if the Macaulay constants associated with Q are bo >_ bl >_ >_ bn+l O, then
for degrees z _> b0, the Hilbert function of NI attains the polynomial form

N’^--xz z+n z-b+i-1
n

It also has been shown that i itself has a direct decomposition consisting of the
principal ideal (fl) and an exact partition P with p d. Let a0 _> al _> >_
a+l d be the Macaulay constants for the portion of I partitioned by P. Then, for
degrees z _> a0 the Hilbert function of I is equal to the polynomial

z-d+n- 1 z-d+n z-ai +i- 1
-t- -1-

Now since I and NI form a direct decomposition of K[X], the sum of their Hilbert
functions must be equal to the Hilbert function of K[X], which is

flK[XI(Z) ( z W n-1 )n--1
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770 THOMAS W. DUBl

Therefore, for z _> max{a0, b0},

(i) +(zWn)-2n
i1 Z-hi + 1 + z bi + 1

The backwards difference operator V is defined for any function F(z) by VF(z)
F(z) F(z- 1), and VJF(z) V(VJ-IF(z)). Using the identity

(z) _(,z-l,) _(z-l)_l
we have

(z)__(_)n n-1

It then follows inductively that

()_ (z_).-If F(z) F2(z) for z > k, then clearly VFI(z) VF2(z) for z > k + 1. For
each j in the range j 0,..., n- 1, apply the operator Vj to (1). This yields the
following set of equations for j 1,..., n 1, which are valid for large enough z:

(__1), (z___)1 (--)_.

Z-hi +i-j- 1 z-bi +i-j- 1
i-g i-)

i=j+l

Each side of these equations is a polynomial in z, so they must agree for each power
of z. In particular, they must have the same constant term. Note that the constant

termf(+k)isgivenbyn

(o) , o,
n (_1) n--

n
k<0.

Taking the constant terms of the previous set of equations, we obtain

n- j 1 + (-1)n-J n-’

(_1- [()
The technique of using the backwards difference operator has been used in a slightly different

manner in [10].
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IDEALS AND GRbBNER BASES 771

At j n- 1, this is simply

1-(d-ll-l+an+bn=l1

So an + bn d. Together with the conditions an >_ d and bn >_ 0, this implies that
an d. When we substitute these values, the series of equations becomes

( [( )]2(_l)n_j_ d 1
n-1

n j 1 z_ "--l’-J j j
i--j+l

Let cj+l denote the sum aj+l + bj/l. Solving for this expression yields

ej+l ( [( )]2(_l)n_j d- 1
n-1

n 1
,__,i-j

j j
2 +

i=j+2

At this point, we may note that the sum on the right is vacuous for j n- 2 and
conclude that Ca-1 2 + 2(d- 1) 2d. And since

() k

is true for all i, for j n- 3 we have

Ca-2 <_ 2--2( d-1
d2 + 2d.

The remaining equations (j < n- 3), all contain the expression

2 + (-1)n-J [2(
The magnitude of this combination is bounded by

so the inequalities above may be replaced with the weaker inequalities:

ej+l

n-2

(en-1)n-j-1 + (-1)i-J i-j + i-j
i--j+2

The term in the sum for j + 3 has a negative sign, and hence this term may be
discarded. Giving all the remaining terms a positive sign produces the following still
weaker inequalities"

Cn
n--2

ai bi
cj+l <_ (n-j-I)+ [( aJ2+2 )+ (bJ2+2)1 +i--’+4 [( i-j )+ (i-j)]

n--1

<_ c2 + i-j
i=j+4

D
ow

nl
oa

de
d 

05
/2

9/
23

 to
 1

29
.9

7.
17

0.
18

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



772 THOMAS W. DUBt

Or, upon repairing the subscripts by the change j j 1"

n-1

Cj
i--j+3

These inequalities may now be solved inductively to provide a bound on the magnitude
of cj.

LEMMA 8.1. For j

_
n- 2, the value of cj satisfies the inequality cj

_
Dj, where

Dj=2 -+d
2n-j-1

Proof. It was already determined that Ca-2 <_ d2 + 2d, satisfying this claim. Now,
assume inductively that ci has the indicated bound for j < <_ n- 2.

For _> j + 3 the inequality 2i-j-1 >_ i-j + 1 can be used to see that (2n--i--)(i--
j + 1) <_ 2n-j-2. Therefore,

I I -J+ D2-J-1 2-Di Di < -- Dj+Ii-j+l -< (i-j+l)! (i-j+l)! (i-j+1)!

And so,

cj

<
Dj+.2.

Dj.
2

From this, we may conclude that the Macaulay constants a and b are each less
than D 2((d2/2) + d)2n-2. But what about the constants ao and bo that did not
appear explicitly in the Hilbert function? For z in the range max(a,b} < z <_
max(ao, bo), use the equality

+ v v,   :ixl(z)

to obtain the relation

(i(z) + [{(h, q}) e P deg(h) z}[)
+(LI (z) + [{(h, q}) e Q deg(h) z}[) [xl(z).
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IDEALS AND GR6BNER BASES 773

At this point, we may note that the relationship I(Z) + LI (Z) K[X](Z), which
was claimed valid for z > max{a0, b0} actually holds for z >_ max{a1, bl}. Therefore,
for z in the range max{a, b} < z _< max{a0, b0}, it must be the case that

(l{(h, 0) e P deg(h) z}l + (]{(h, O) e Q deg(h) z}l 0.

This implies that PuQ contains no pair (h, q}) with deg(h) > max{a, b}. Therefore,
the constant D1 is also a bound on the value of b0. Using this bound within Lemma
7.2 provides the proof of the following theorem.

THEOREM 8.2. Let I be an ideal of K[X] K[x,... ,Xn] generated by a set of
homogeneous polynomials F. Let d max{deg(f) f E F}. Then for any admissible
ordering >, the degree of polynomials required in a Grd’bner basis for I with respect

A

to > is bounded by 2((d2/2)+ d)2n-.
A

For I an affine ideal, we can homogenize a basis F for I using one additional
variable xn+. Therefore, for any set of polynomials F we have Corollary 8.3.

COROLLARY 8.3. Let F C K[X], I the ideal generated by F, and let d be the
maximum degree of any f F. Then for any admissible ordering >, the degree

A

of polynomials required in a Gr6bner basis for I with respect to > is bounded by
A

2((d2/2) + d)2n-1
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