
SlAM J. COMPUT.
Vol. 5, No. 4, December 1976

FAST PARALLEL MATRIX INVERSION ALGORITHMS*

L. CSANKY

Abstract. The parallel arithmetic complexities of matrix inversion, solving systems of linear

equations, computing determinants and computing the characteristic polynomial of a matrix are shown
to have the same growth rate. Algorithms are given that compute these problems in O(log n) steps
using a number of processors polynomial in n. (n is the order of the matrix of the problem.)

Key words, complexity of parallel computation, parallel algorithms, functions of matrices

1. Introduction. The parallel arithmetic complexity of solving systems of
linear equations has been an open question for several years. The gap between the
complexity of the best algorithms (2n + 0(1), where n is the number of unknowns/
equations) and the only proved lower bound (2log n (all logarithms in this paper
are of base two)) was huge. Csanky exhibited an algorithm for solving systems
of linear equations in 2n- O(log2 n) steps. This also proved that Gaussian
elimination, Jordan elimination, Jacobi’s method and Strassen’s method are not
the fastest for parallel computation.

2. The model of parallel computation and some basic definitions. The model has
an arbitrary number of identical processors with independent control and an
arbitrarily large memory with unrestricted access. Each processor is capable of
taking its operands from the memory, performing any one of the binary operations
+, -, *, ! and storing the result in the memory in unit time. This unit time is
called a step. (The bookkeeping overhead is ignored.) Before starting the computa-
tion, the input data is stored in the memory. The parallel arithmetic complexity of
the computation is the least number of steps necessary to produce the result in the
memory.

If C is a computational problem of size n, then the parallel arithmetic computa-
tional complexity C(n) of C is the least number of steps necessary to compute C
for any possible input.

Let A be an order n matrix. Let det (A), adj (A), tr (A) denote the determinant
of A, the adjoint of A and the trace of A, respectively. Unless specified otherwise,
capital letters denote matrices, lower case letters denote scalars.

Let I(n), E(n), D(n), P(n) denote the parallel arithmetic complexity of inverting
order n matrices, solving a system of n linear equations in n unknowns, computing
order n determinants and finding the characteristic polynomials oforder n matrices,
respectively.

3. Results.
LEMMA 1.2 log n =< I(n), E(n), D(n), P(n).
Proof. The proof is direct from the fact that in each case, at least one partial

result is a nontrivial function of at least n2 variables and fan in argument. Q.E.D.

Received by the editors June 10, 1975, and in revised form September 3, 1975.

f Concord, California. This work was supported in part by National Science Foundation under
Grant DCR72-03725-A02.

618

D
ow

nl
oa

de
d

11
/2

4/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

FAST PARALLEL MATRIX INVERSION ALGORITHMS 619

THEOREM 2. I(n) O(f(n)) , E(n) O(f(n)) , D(n) O(f(n)) P(n)
O(f(n)).

Proof. (i) D(n) <__ E(n) + log n + O(1). Let Dt denote an order determinant
and let D, be the determinant to be computed. Define Xk D,-k/D,-k+ 1, where

=< k =< n and D._ is a properly chosen minor of D._ k+l. Since H(k)Xk
D1/D,, D, D1/I-Ik) Xk. Thus to compute D,, compute Xk for all k in E(n k + 1)
parallel steps by solving the corresponding systems of equations, then in

=< log n + O(1) additional steps, compute D,.
(ii) E(n) _< I(n) + 2. Bring Ax b to the form A’x (1),1 in two steps by

row operations, then invert A’ in I(n) steps, x (A’-1),1. ((A),j denotes the jth
column of A.)

(iii) I(n)<= P(n)+ 1. Invert A by the classical inverse formula using that
g(0) det (B), where g is the characteristic polynomial of B.

(iv) P(n) D(n) + log n + O(1). To compute the characteristic polynomial g
of A, first compute g(wi) for all distinct w parallel, where w is a primitive (n + 1)st
root of unity, by using the algorithm for computing determinants. This computa-
tion takes D(n) + steps. Then compute the coefficients of g by fast fourier trans-
form. This takes log n + O(1)steps.

From Lemma and the four inequalities above, the theorem follows. Q.E.D.
THEOREM 3. I(n) <= O(log2 n), and the number of processors used in the algorithm

is a polynomial in n.

Proof. Let 21, ..’, 2, denote the roots of the characteristic polynomial f(2)
of A. Let

s= 2 forl__<k__<n.
i=1

Then

sk=tr(Ak) forl =<k <n

and

S 2

S2 S 3

S3 S2 S1

Sn Sn 2 Sn 3

or in a more compact form,

4

Sn 4 S n

C1 S1

C2 S2

C3 $3

C4 $4

(These formulas constitute Leverrier’s method (Faddeev-Faddeeva [2]) for finding
the coefficients of the characteristic polynomial of a matrix.)D

ow
nl

oa
de

d
11

/2
4/

20
 to

 1
29

.9
7.

19
3.

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

620 L. CSANK

To invert A, first compute sk for =< k =< n; this takes log2 n + O(log n) steps
and 1/2n4 processors. Then invert triangular matrix S in logZn + O(log n) steps
using O(n3) processors (Heller [4] and Csanky [1] have independently developed
such algorithms). Compute ci for __< =< n in log n + 0(1) steps from e S- is
using O(n2) processors. A is invertible ,% - 0 and

A + clA 2 .__ Cn 11
Cn

This formula, since Az, A are already available, can be evaluated in
log n + 0(1) steps using O(n3) processors. Thus

I(n) =< 2 log2n + O(log n)

and

p =< 1/2n’. Q.E.D.

Alternate proof. Let A be the order n matrix to be inverted. Let the character-
istic polynomial f(2) of A be

f(2) det(21 A) 2" + c12"-1 + + c,_12 + c,.

Let

adj (2I A)= I2"-1 + B22"-2 + + B,_12 + B,.

Using the idea of one of the simplest proofs of the Cayley-Hamilton theorem
(Marcus-Ming [5]), the following formulas were obtained:

(1) B1 I,

I
(2) B ABe,_1 k---Z tr (ABe,_

(3) ci --tr (ABi)

and

(4) A- n
tr (AB.)"

(A number of people derived essentially the same formulas in recent years. Frame
[3] seems to have been the first.)

Define operator T as

TN tr (N),

(I/ MT)N= N+ MTN N / Mtr(N),

where M, N are order n matrices. Then

I
k-1 T) ABk_D

ow
nl

oa
de

d
11

/2
4/

20
 to

 1
29

.9
7.

19
3.

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

FAST PARALLEL MATRIX INVERSION ALGORITHMS 621

and

(5) B
n--2---T){A[... (I IT){A[I]} .]}I}

In this formula, A can be thought of as a second operator, its action being
multiplication on the left.

Observe that

(6) T(A T) (TA)T,

that is, operators T and A associate. This implies that the factors in the expression
for B, associate, i.e.,

n- n- 2
rA A - TA (A- IRA).

Thus B, can be computed in roughly log n stages by the well-known binary tree
method.

Stage 1. For all + 2t, compute from (A [l/(i + 1)]TA)(A (I/i)TA)
the form

A2 M?)2tTA2 M?)2tTA.
As a consequence of (6), matrices M]h)t can be computed independently.

The powers of A can also be computed independently.

Stage j. For all 2Jr, compute from

(A2j-’ a/t(1) 2JtTA2-’ M(2-’) TA)

(A2-’ MI) TA2-’ A/t2-’) TA),,aj_ 2J(t-1) j-1 2J(t-1)

the form

A2 M2)j,TA2 M2)j,TA2-, a/t,2) TAj2.

As a consequence of (6), matrices Mf)2 can be computed independently.
The powers of A can also be computed independently.

The number of steps stage j takes is roughly

logn+ +logn+ +log2j=logn+logn+2+j,

where the first two terms are the number of steps the multiplication on the right
by A2J-1 and matrices Mh) takes, the third term is the number of steps computing
the traces takes, multiplication by the trace takes 1 step and addition of the
matrices takes j steps. Thus the total number of steps for all stages is roughly

(log n)(2 log n + 2) + + 2 + 3 + + logn 2.5 logZn + 2.5 logn.

Since nBn/(TABn) (TAB 4: 0,, A is invertible) can be computed in O(logn)
additional steps, we have

I(n) <= 2.5 log2n + O(log n).D
ow

nl
oa

de
d

11
/2

4/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

622 L. CSANKY

A very crude upper bound on the number of processors can be obtained by
observing that in any stage, the multiplication phase takes the maximum number of
processors.

In stage j, the number of matrix multiplications is roughly

n
22j-22s-1 +

Thus, for the number of processors p, we obtain

{ } ln3p__<max n32J-1+-722J-2 n + Q.E.D.
(J)

COlOtA,v 4. E(n), D(n), P(n) <= O(log2 n), and the number of processors used
in the algorithms is a polynomial in n.

Proof. Solve Ax b, where b is a column vector by inverting A ;then x A- b.
Compute det(A) from det(A)=-c, (TAB,)/n. Compute f(2) from c
-(TAB,)/i. Q.E.D.

Let PWR(n) denote the parallel arithmetic complexity of computing An.
Then we have the next theorem.

TH;O,EM 5. I(n) _< 2PWR (n) + O(log n).
Pro@ To invert A, first compute the triangular matrix S in PWR (n)+

log n + O(1) steps. Then compute S2, S3, ..., S" in PWR (n) additional steps.
Since log n =< PWR(n) and one can compute the coefficients di ofthe character-

istic polynomial g(2) of S from the roots of g(2) (these roots are 1, 2, ..-, n) in
2 log n + O(1) steps (Csanky [1]), by the time the powers of S are computed, the
coefficients of g(2) are also computed. Then

S"- + d S 2 ._}_ "t- d,_ 1I
dn

and S- can be computed in log n + 0(1) additional steps. Compute ci for =< _<_ n
from c S-xs in log n + 0(1) steps.

An-1 nt_ Cl An-2 .nt-... nt-Cn_I I

Cn

can be computed in log n + 0(1) additional steps. Q.E.D.

4. Conclusions. This work has decreased the gap between the lower and upper
bounds on the parallel arithmetic complexity of problems I, E, D, P. Indeed,
we have

O(log n) <= I(n), E(n), D(n), P(n) _<_ O(PWR (n)) N O(log2 n).

It is our belief that if I(n) O(log n), then the algorithm which establishes ttis
will have to use some new, surprising and fundamental result.

Acknowledgments. I am indebted to Professor Phil Spira for his friendship
and constructive criticism during the initial stage of this research. I wish to thank
Professor Manuel Blum for his encouragement and interest in this work.D

ow
nl

oa
de

d
11

/2
4/

20
 to

 1
29

.9
7.

19
3.

44
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

FAST PARALLEL MATRIX INVERSION ALGORITHMS 623

REFERENCES

1] L. CSaNKY, On theparallelcomplexity ofsome computationalproblems, Ph.D. dissertation, Computer
Sci. Div., Univ. of Calif., Berkeley, 1974.

[2] D. K. FaDDEFV AND V. N. FaDDEVa, Computational Methods ofLinear Algebra, W. H. Freeman,
San Francisco, 1963.

[3] J. S. FRAME, A simple recurrent formula for inverting a matrix, Bull. Amer. Math. Soc., 55 (1949),
p. 1045.

[4] D. HEIIR, A determinant theorem with applications to parallel algorithms, Dept. ofComputer Sci.,
Carnegie-Mellon Univ., Pittsburgh, 1973.

[5] M. MARCUS AND H. MING, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon,
Boston, 1964.

D
ow

nl
oa

de
d

11
/2

4/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

