
Lecture 21: Distributed Algorithms

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 4, 2025

1 / 66

Overview

Distributed Computing: The Models

Consensus with Byzantine Failures

Conclusion

Acknowledgements

2 / 66

What are Distributed Algorithms?
Algorithms which run on a network, or multiprocessors within a
computer which share memory

Problems they solve:
Resource Management
Data Management and Transmission
Synchronization
Consensus
many more

Challenges in this setting:
Concurrent Activity
Uncertainty of order of events
Failure and recovery of processors or channels

Many models
Memory & Communication: shared memory, message-passing
Timing: synchronous (rounds), asynchronous, partially synchronous
(bounds on message delay, processor speeds, clock rates)
Failures: processor (stop, Byzantine), communication (message
loss/altered), system state corruption

3 / 66

What are Distributed Algorithms?
Algorithms which run on a network, or multiprocessors within a
computer which share memory

Problems they solve:
Resource Management
Data Management and Transmission
Synchronization
Consensus
many more

Challenges in this setting:
Concurrent Activity
Uncertainty of order of events
Failure and recovery of processors or channels

Many models
Memory & Communication: shared memory, message-passing
Timing: synchronous (rounds), asynchronous, partially synchronous
(bounds on message delay, processor speeds, clock rates)
Failures: processor (stop, Byzantine), communication (message
loss/altered), system state corruption

4 / 66

What are Distributed Algorithms?
Algorithms which run on a network, or multiprocessors within a
computer which share memory

Problems they solve:
Resource Management
Data Management and Transmission
Synchronization
Consensus
many more

Challenges in this setting:
Concurrent Activity
Uncertainty of order of events
Failure and recovery of processors or channels

Many models
Memory & Communication: shared memory, message-passing
Timing: synchronous (rounds), asynchronous, partially synchronous
(bounds on message delay, processor speeds, clock rates)
Failures: processor (stop, Byzantine), communication (message
loss/altered), system state corruption

5 / 66

What are Distributed Algorithms?
Algorithms which run on a network, or multiprocessors within a
computer which share memory

Problems they solve:
Resource Management
Data Management and Transmission
Synchronization
Consensus
many more

Challenges in this setting:
Concurrent Activity
Uncertainty of order of events
Failure and recovery of processors or channels

Many models
Memory & Communication: shared memory, message-passing
Timing: synchronous (rounds), asynchronous, partially synchronous
(bounds on message delay, processor speeds, clock rates)
Failures: processor (stop, Byzantine), communication (message
loss/altered), system state corruption

6 / 66

Synchronous Model

processors are vertices of directed graph

Memory: each processor has its own memory
Communication: each processor can send messages to its outgoing
neighbours
Timing: processors communicate in synchronous rounds
Failures: may or may not have failures (different settings today)

Σ is the message alphabet, plus special symbol ⊥
For each vertex i ∈ [n], a processor consists of:

Si = non-empty set of states
σi = a start state
µi : Si × outi → Σ ∪ {⊥} Message function
τi : Si × (Σ ∪ {⊥})ini → Si Transition function

Complexity Measure: number of rounds (total data communicated)
needed to solve problem

processors have unlimited internal resources (i.e., can compute
anything)
For today, will assume each processor deterministic

7 / 66

Synchronous Model

processors are vertices of directed graph

Memory: each processor has its own memory
Communication: each processor can send messages to its outgoing
neighbours
Timing: processors communicate in synchronous rounds
Failures: may or may not have failures (different settings today)

Σ is the message alphabet, plus special symbol ⊥

For each vertex i ∈ [n], a processor consists of:

Si = non-empty set of states
σi = a start state
µi : Si × outi → Σ ∪ {⊥} Message function
τi : Si × (Σ ∪ {⊥})ini → Si Transition function

Complexity Measure: number of rounds (total data communicated)
needed to solve problem

processors have unlimited internal resources (i.e., can compute
anything)
For today, will assume each processor deterministic

8 / 66

Synchronous Model

processors are vertices of directed graph

Memory: each processor has its own memory
Communication: each processor can send messages to its outgoing
neighbours
Timing: processors communicate in synchronous rounds
Failures: may or may not have failures (different settings today)

Σ is the message alphabet, plus special symbol ⊥
For each vertex i ∈ [n], a processor consists of:

Si = non-empty set of states
σi = a start state
µi : Si × outi → Σ ∪ {⊥} Message function
τi : Si × (Σ ∪ {⊥})ini → Si Transition function

Complexity Measure: number of rounds (total data communicated)
needed to solve problem

processors have unlimited internal resources (i.e., can compute
anything)
For today, will assume each processor deterministic

9 / 66

Synchronous Model

processors are vertices of directed graph

Memory: each processor has its own memory
Communication: each processor can send messages to its outgoing
neighbours
Timing: processors communicate in synchronous rounds
Failures: may or may not have failures (different settings today)

Σ is the message alphabet, plus special symbol ⊥
For each vertex i ∈ [n], a processor consists of:

Si = non-empty set of states
σi = a start state
µi : Si × outi → Σ ∪ {⊥} Message function
τi : Si × (Σ ∪ {⊥})ini → Si Transition function

Complexity Measure: number of rounds (total data communicated)
needed to solve problem

processors have unlimited internal resources (i.e., can compute
anything)
For today, will assume each processor deterministic

10 / 66

Example: Leader Election (i.e. breaking symmetry)

Input: network of processors

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

processors numbered clockwise (but they don’t know their numbers)

Fact: all processors identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processors
will always be at identical states.

11 / 66

Example: Leader Election (i.e. breaking symmetry)

Input: network of processors

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

processors numbered clockwise (but they don’t know their numbers)

Fact: all processors identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processors
will always be at identical states.

12 / 66

Example: Leader Election (i.e. breaking symmetry)

Input: network of processors

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

processors numbered clockwise (but they don’t know their numbers)

Fact: all processors identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processors
will always be at identical states.

13 / 66

Example: Leader Election (i.e. breaking symmetry)

Input: network of processors

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

processors numbered clockwise (but they don’t know their numbers)

Fact: all processors identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processors
will always be at identical states.

14 / 66

Example: Leader Election (i.e. breaking symmetry)

Input: network of processors

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

processors numbered clockwise (but they don’t know their numbers)

Fact: all processors identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processors
will always be at identical states.

15 / 66

Leader Election: Algorithm

Let’s assume that each processor also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
When processor receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ processor declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

Complexity:

Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)

16 / 66

Leader Election: Algorithm

Let’s assume that each processor also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.

When processor receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ processor declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

Complexity:

Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)

17 / 66

Leader Election: Algorithm

Let’s assume that each processor also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
When processor receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ processor declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

Complexity:

Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)

18 / 66

Leader Election: Algorithm

Let’s assume that each processor also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
When processor receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ processor declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

Complexity:

Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)

19 / 66

Leader Election: Algorithm

Let’s assume that each processor also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
When processor receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ processor declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

Complexity:

Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)

20 / 66

Leader Election: Algorithm

Let’s assume that each processor also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
When processor receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ processor declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

Complexity:

Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)

21 / 66

Leader Election: Algorithm

Let’s assume that each processor also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each processor sends its UID in a message, to be relayed
step-by-step around the ring.
When processor receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ processor declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other processor will)

Complexity:

Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)

22 / 66

Distributed Computing: The Models

Consensus with Byzantine Failures

Conclusion

Acknowledgements

23 / 66

Consensus Problem - Setup

Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don’t attack)

Output: same decision bit b satisfying strong validity.

if all processors start with bit b, then b is only allowed decision
if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

24 / 66

Consensus Problem - Setup

Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don’t attack)

Output: same decision bit b satisfying strong validity.

if all processors start with bit b, then b is only allowed decision
if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

25 / 66

Consensus Problem - Setup

Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don’t attack)

Output: same decision bit b satisfying strong validity.

if all processors start with bit b, then b is only allowed decision
if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

26 / 66

Consensus Problem - Setup

Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don’t attack)

Output: same decision bit b satisfying strong validity.

if all processors start with bit b, then b is only allowed decision
if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

27 / 66

Consensus Problem - Setup

Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don’t attack)

Output: same decision bit b satisfying strong validity.

if all processors start with bit b, then b is only allowed decision
if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

28 / 66

Consensus Problem - Setup

Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don’t attack)

Output: same decision bit b satisfying strong validity.

if all processors start with bit b, then b is only allowed decision
if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

29 / 66

Consensus Problem - Setup

Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy

Some generals may not have their armies ready...

Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
know bound on time it takes for message to be delivered successfully

For them to attack, all generals must agree to attack

Model: synchronous model, arbitrary number of message failures.

Input: Each processor has one bit. 1 (attack) or 0 (don’t attack)

Output: same decision bit b satisfying strong validity.

if all processors start with bit b, then b is only allowed decision 1

if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

1Weak validity: the agreed upon output should be the initial value of some
non-faulty processor

30 / 66

Consensus Problem - Byzantine Failures
Unbounded message failures ⇒ impossible, even for 2 generals

In the end → have to make a decision without communicating

Not very illuminating.

What if we allow only a finite number of failures?

Two types of failures:
Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don’t
attack). Faulty processors can behave arbitrarily.
Output: all non-faulty processors should terminate and have

1 Agreement: same decision bit b
2 Strong Validity: if all non-faulty processors start with bit a, then b

must be equal to a.

Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).

31 / 66

Consensus Problem - Byzantine Failures
Unbounded message failures ⇒ impossible, even for 2 generals

In the end → have to make a decision without communicating

Not very illuminating.

What if we allow only a finite number of failures?

Two types of failures:
Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don’t
attack). Faulty processors can behave arbitrarily.
Output: all non-faulty processors should terminate and have

1 Agreement: same decision bit b
2 Strong Validity: if all non-faulty processors start with bit a, then b

must be equal to a.

Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).

32 / 66

Consensus Problem - Byzantine Failures
Unbounded message failures ⇒ impossible, even for 2 generals

In the end → have to make a decision without communicating

Not very illuminating.

What if we allow only a finite number of failures?

Two types of failures:
Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don’t
attack). Faulty processors can behave arbitrarily.
Output: all non-faulty processors should terminate and have

1 Agreement: same decision bit b
2 Strong Validity: if all non-faulty processors start with bit a, then b

must be equal to a.

Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).

33 / 66

Consensus Problem - Byzantine Failures
Unbounded message failures ⇒ impossible, even for 2 generals

In the end → have to make a decision without communicating

Not very illuminating.

What if we allow only a finite number of failures?

Two types of failures:
Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don’t
attack). Faulty processors can behave arbitrarily.

Output: all non-faulty processors should terminate and have
1 Agreement: same decision bit b
2 Strong Validity: if all non-faulty processors start with bit a, then b

must be equal to a.

Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).

34 / 66

Consensus Problem - Byzantine Failures
Unbounded message failures ⇒ impossible, even for 2 generals

In the end → have to make a decision without communicating

Not very illuminating.

What if we allow only a finite number of failures?

Two types of failures:
Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don’t
attack). Faulty processors can behave arbitrarily.
Output: all non-faulty processors should terminate and have

1 Agreement: same decision bit b
2 Strong Validity: if all non-faulty processors start with bit a, then b

must be equal to a.

Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).

35 / 66

Consensus Problem - Byzantine Failures
Unbounded message failures ⇒ impossible, even for 2 generals

In the end → have to make a decision without communicating

Not very illuminating.

What if we allow only a finite number of failures?

Two types of failures:
Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each processor has one bit of input. 1 (attack) or 0 (don’t
attack). Faulty processors can behave arbitrarily.
Output: all non-faulty processors should terminate and have

1 Agreement: same decision bit b
2 Strong Validity: if all non-faulty processors start with bit a, then b

must be equal to a.

Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).

36 / 66

Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn’t work - violated the agreement property!

New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge

After a number of rounds, everyone must make a decision

Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?

37 / 66

Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn’t work - violated the agreement property!

New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge

After a number of rounds, everyone must make a decision

Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?

38 / 66

Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn’t work - violated the agreement property!

New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge

After a number of rounds, everyone must make a decision

Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?

39 / 66

Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn’t work - violated the agreement property!

New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge

After a number of rounds, everyone must make a decision

Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?

40 / 66

Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn’t work - violated the agreement property!

New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge

After a number of rounds, everyone must make a decision

Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?

41 / 66

Byzantine Consensus - Bad Example
3 vertices {v1, v2, v3}, 1 faulty vertex

Scenario 1: v1, v2 good with value 1, v3 faulty with value 0
1 Round 1: all vertices truthful
2 Round 2: v3 lies to v1, saying that v2 said 0, all other communications

truthful
3 Validity ⇒ v1, v2 must decide 1

42 / 66

Byzantine Consensus - Bad Example
3 vertices {v1, v2, v3}, 1 faulty vertex

Scenario 2: v2, v3 good with value 0, v1 faulty with value 1
1 Round 1: all vertices truthful
2 Round 2: v1 lies to v3, saying that v2 said 1, all other communications

truthful
3 Validity ⇒ v2, v3 must decide 0

43 / 66

Byzantine Consensus - Bad Example
3 vertices {v1, v2, v3}, 1 faulty vertex

Scenario 3: v1, v3 good with values 1, 0 (resp.), v2 faulty with value 0
1 Round 1: v2 tells v1 its value is 1, tells v3 its value is 0
2 Round 2: all truthful

44 / 66

Byzantine Consensus - Bad Example
3 vertices {v1, v2, v3}, 1 faulty vertex

Scenario 1: v1, v2 good with value 1, v3 faulty with value 0
1 Round 1: all vertices truthful
2 Round 2: v3 lies to v1, saying that v2 said 0, all other communications

truthful
3 Validity ⇒ v1, v2 must decide 1

Scenario 2: v2, v3 good with value 0, v1 faulty with value 1
1 Round 1: all vertices truthful
2 Round 2: v1 lies to v3, saying that v2 said 1, all other communications

truthful
3 Validity ⇒ v2, v3 must decide 0

Scenario 3: v1, v3 good with values 1, 0 (resp.), v2 faulty with value 0
1 Round 1: v2 tells v1 its value is 1, tells v3 its value is 0
2 Round 2: all truthful

Scenarios 1 and 3 identical to v1, so it must return 1 (validity)

Scenarios 2 and 3 identical to v3, so it must return 0 (validity)

Contradicts agreement in Scenario 3!
45 / 66

Byzantine Consensus - Algorithm

Assumption:2 n > 3f (number of bad vertices < third total vertices)

How to perfectly gossip?

Data structure: Exponential Information Gathering (EIG) tree Tn,f

Depth: f + 1 (so f + 2 node levels)
Each tree node at level k + 1 labeled by string i1i2 · · · ik (ia ̸= ib)

Node i1i2 · · · ik will store value v if the following happens: ik told you
that ik−1 told ik that ik−2 told ik−1 ... that i1 told i2 that its initial
value was v

2It turns out that n ≤ 3f ⇒ no algorithm can reach consensus!
46 / 66

Byzantine Consensus - Algorithm

Assumption:2 n > 3f (number of bad vertices < third total vertices)

How to perfectly gossip?

Data structure: Exponential Information Gathering (EIG) tree Tn,f

Depth: f + 1 (so f + 2 node levels)
Each tree node at level k + 1 labeled by string i1i2 · · · ik (ia ̸= ib)

Node i1i2 · · · ik will store value v if the following happens: ik told you
that ik−1 told ik that ik−2 told ik−1 ... that i1 told i2 that its initial
value was v

2It turns out that n ≤ 3f ⇒ no algorithm can reach consensus!
47 / 66

Byzantine Consensus - Algorithm

Assumption:2 n > 3f (number of bad vertices < third total vertices)

How to perfectly gossip?

Data structure: Exponential Information Gathering (EIG) tree Tn,f

Depth: f + 1 (so f + 2 node levels)
Each tree node at level k + 1 labeled by string i1i2 · · · ik (ia ̸= ib)

Node i1i2 · · · ik will store value v if the following happens: ik told you
that ik−1 told ik that ik−2 told ik−1 ... that i1 told i2 that its initial
value was v

2It turns out that n ≤ 3f ⇒ no algorithm can reach consensus!
48 / 66

Byzantine Consensus - Algorithm

Assumption:2 n > 3f (number of bad vertices < third total vertices)

How to perfectly gossip?

Data structure: Exponential Information Gathering (EIG) tree Tn,f

Depth: f + 1 (so f + 2 node levels)
Each tree node at level k + 1 labeled by string i1i2 · · · ik (ia ̸= ib)
Node i1i2 · · · ik will store value v if the following happens: ik told you
that ik−1 told ik that ik−2 told ik−1 ... that i1 told i2 that its initial
value was v

2It turns out that n ≤ 3f ⇒ no algorithm can reach consensus!
49 / 66

Byzantine Consensus - EIG Algorithm
1 Each vertex has:

1 own EIG tree Tn,f , with root labeled by its own value
2 a hardcoded bit v⊥

2 Relay messages for f + 1 rounds

At round r , each vertex sends the values of level r of its EIG tree
Each vertex decorates values of its (r + 1)th level with values from
messages

3 After f + 1 rounds, redecorate tree bottom-up, taking strict majority
of children (if there is no strict majority set value of tree node to v⊥)

50 / 66

Byzantine Consensus - EIG Algorithm
1 Each vertex has:

1 own EIG tree Tn,f , with root labeled by its own value
2 a hardcoded bit v⊥

2 Relay messages for f + 1 rounds

At round r , each vertex sends the values of level r of its EIG tree
Each vertex decorates values of its (r + 1)th level with values from
messages

3 After f + 1 rounds, redecorate tree bottom-up, taking strict majority
of children (if there is no strict majority set value of tree node to v⊥)

51 / 66

Byzantine Consensus - EIG Algorithm
1 Each vertex has:

1 own EIG tree Tn,f , with root labeled by its own value
2 a hardcoded bit v⊥

2 Relay messages for f + 1 rounds

At round r , each vertex sends the values of level r of its EIG tree
Each vertex decorates values of its (r + 1)th level with values from
messages

3 After f + 1 rounds, redecorate tree bottom-up, taking strict majority
of children (if there is no strict majority set value of tree node to v⊥)

52 / 66

EIG Algorithm - Example
n = 4, f = 1

p3 is faulty, initial values are p1 = p2 = 1, p3 = p4 = 0

round 1: p3 lies to p2 and p4

round 2: p3 lies to p2 about p1 and lies to p1 about p2

53 / 66

EIG Algorithm - Analysis
Lemma (Consistency of Non-Faulty Messages)

If i , j , k are non-faulty, then Ti (x) = Tj(x) whenever label x ends with k.

(This is value of the tree before relabeling)

54 / 66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i , j the new values of Ti (x) and Tj(x) are the same.

Base case: if x is the label of leaf, previous lemma handles it.

Inductive step: |x | = t < f (x not a leaf)

By induction, if ℓ is a non-faulty element the new value of Ti (x ◦ ℓ) is
the same for any non-faulty i ∈ [n].

So label x has same labeled ”honest” children across trees
Number of children of x :

= n − t > 3f − f = 2f

At most f are faulty. By taking majority, we get that new values
Ti (x) = Tj(x)

55 / 66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i , j the new values of Ti (x) and Tj(x) are the same.

Base case: if x is the label of leaf, previous lemma handles it.

Inductive step: |x | = t < f (x not a leaf)

By induction, if ℓ is a non-faulty element the new value of Ti (x ◦ ℓ) is
the same for any non-faulty i ∈ [n].

So label x has same labeled ”honest” children across trees
Number of children of x :

= n − t > 3f − f = 2f

At most f are faulty. By taking majority, we get that new values
Ti (x) = Tj(x)

56 / 66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i , j the new values of Ti (x) and Tj(x) are the same.

Base case: if x is the label of leaf, previous lemma handles it.

Inductive step: |x | = t < f (x not a leaf)

By induction, if ℓ is a non-faulty element the new value of Ti (x ◦ ℓ) is
the same for any non-faulty i ∈ [n].

So label x has same labeled ”honest” children across trees
Number of children of x :

= n − t > 3f − f = 2f

At most f are faulty. By taking majority, we get that new values
Ti (x) = Tj(x)

57 / 66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i , j the new values of Ti (x) and Tj(x) are the same.

Base case: if x is the label of leaf, previous lemma handles it.

Inductive step: |x | = t < f (x not a leaf)

By induction, if ℓ is a non-faulty element the new value of Ti (x ◦ ℓ) is
the same for any non-faulty i ∈ [n].
So label x has same labeled ”honest” children across trees

Number of children of x :

= n − t > 3f − f = 2f

At most f are faulty. By taking majority, we get that new values
Ti (x) = Tj(x)

58 / 66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i , j the new values of Ti (x) and Tj(x) are the same.

Base case: if x is the label of leaf, previous lemma handles it.

Inductive step: |x | = t < f (x not a leaf)

By induction, if ℓ is a non-faulty element the new value of Ti (x ◦ ℓ) is
the same for any non-faulty i ∈ [n].
So label x has same labeled ”honest” children across trees
Number of children of x :

= n − t > 3f − f = 2f

At most f are faulty. By taking majority, we get that new values
Ti (x) = Tj(x)

59 / 66

EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processors i , j the new values of Ti (x) and Tj(x) are the same.

Base case: if x is the label of leaf, previous lemma handles it.

Inductive step: |x | = t < f (x not a leaf)

By induction, if ℓ is a non-faulty element the new value of Ti (x ◦ ℓ) is
the same for any non-faulty i ∈ [n].
So label x has same labeled ”honest” children across trees
Number of children of x :

= n − t > 3f − f = 2f

At most f are faulty. By taking majority, we get that new values
Ti (x) = Tj(x)

60 / 66

EIG Algorithm - Analysis

So far we have managed to prove:
1 Termination: after f + 1 rounds, all of them will decide.

every label x which has no faulty processor is able to update its value

2 Validity: if all nodes start with b, then each label x with no faulty
processor will be updated to b

proof analogous to the proof of previous lemma
just note that all values will be b, as it is value being propagated by
non-faulty nodes

3 Agreement: all nodes must agree on same value

By first lemma, all values in the leaves x are consistent across
processors so long as x ends on a non-faulty process
By second lemma, majority will cause all values in nodes from level r
ending in non-faulty nodes to be the same across processors
Induction and n > 3f ensures that labels in level 1 will look the same
on non-faulty nodes ⇒ agreement

61 / 66

EIG Algorithm - Analysis

So far we have managed to prove:
1 Termination: after f + 1 rounds, all of them will decide.

every label x which has no faulty processor is able to update its value

2 Validity: if all nodes start with b, then each label x with no faulty
processor will be updated to b

proof analogous to the proof of previous lemma
just note that all values will be b, as it is value being propagated by
non-faulty nodes

3 Agreement: all nodes must agree on same value

By first lemma, all values in the leaves x are consistent across
processors so long as x ends on a non-faulty process
By second lemma, majority will cause all values in nodes from level r
ending in non-faulty nodes to be the same across processors
Induction and n > 3f ensures that labels in level 1 will look the same
on non-faulty nodes ⇒ agreement

62 / 66

EIG Algorithm - Analysis

So far we have managed to prove:
1 Termination: after f + 1 rounds, all of them will decide.

every label x which has no faulty processor is able to update its value

2 Validity: if all nodes start with b, then each label x with no faulty
processor will be updated to b

proof analogous to the proof of previous lemma
just note that all values will be b, as it is value being propagated by
non-faulty nodes

3 Agreement: all nodes must agree on same value

By first lemma, all values in the leaves x are consistent across
processors so long as x ends on a non-faulty process
By second lemma, majority will cause all values in nodes from level r
ending in non-faulty nodes to be the same across processors
Induction and n > 3f ensures that labels in level 1 will look the same
on non-faulty nodes ⇒ agreement

63 / 66

Conclusion

Today we learned about distributed computation

It is cool

Widely used in practice

Cryptocurrencies - all of them need to solve Byzantine Agreement!

Happening at UW: Sergey Gorbunov (Algorand & Axelar)

Other peer-to-peer systems
Multi-core programming

Happening at UW: Trevor Brown

Biology (social insect colony algorithms)
many more...

Learned an (inefficient) algorithm for Byzantine Agreement (check
out the more efficient one in [Attiya and Welch 2004])

64 / 66

Acknowledgement

Lecture based largely on:

Nancy Lynch’s 6.852 Fall 2015 course - lectures 1 and 6
Lecture 1

https://learning-modules.mit.edu/service/materials/groups/

103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link?

errorRedirect=%2Fmaterials%2Findex.html&download=true

Lecture 6

https://learning-modules.mit.edu/service/materials/groups/

103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link?

errorRedirect=%2Fmaterials%2Findex.html&download=true

65 / 66

https://learning-modules.mit.edu/service/materials/groups/103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/271154f5-ea0f-41a0-9ed9-6f83a5222d8b/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link?errorRedirect=%2Fmaterials%2Findex.html&download=true
https://learning-modules.mit.edu/service/materials/groups/103042/files/95f71f5e-7791-4a1a-aeb5-e3d97afb167f/link?errorRedirect=%2Fmaterials%2Findex.html&download=true

References I

Attiya, H. and Welch, J., 2004.

Distributed computing: fundamentals, simulations, and advanced topics (Vol. 19).

John Wiley & Sons.

66 / 66

	Distributed Computing: The Models
	Consensus with Byzantine Failures
	Conclusion
	Acknowledgements

