Lecture 20: Matrix Multiplication & Exponent of
Linear Algebra

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

July 4, 2025

1/77

Overview

Matrix Multiplication

The Exponent of Linear Algebra

Matrix Inversion

Determinant and Matrix Inverse

Computing Partial Derivatives

Conclusion

2/77

Matrix Multiplication

@ Input: matrices A, B € F"™"
o Output: product C = AB

3/77

Matrix Multiplication

@ Input: matrices A, B € F"*"
o Output: product C = AB
@ Naive algorithm:

Compute n matrix vector multiplications.

4/77

Matrix Multiplication

Input: matrices A, B € ™"
Output: product C = AB

Naive algorithm:

Compute n matrix vector multiplications.
Running time: O(n®)

Can we do better?

5/77

Matrix Multiplication

@ Input: matrices A, B € F"*"
o Output: product C = AB
@ Naive algorithm:
Compute n matrix vector multiplications.
e Running time: O(n®)
Can we do better?
@ Strassen 1969: YES!

@ ldea: divide matrix into blocks, and reduce number of multiplications
needed!

6/77

Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

Al A Bi1 B2 Ci1 C12)
A= , B= , C=
<A21 A22) (521 322> <C21 o

7/77

Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

Air A Bi1 B2 Ci1 C12)
A= , B= , C=
<A21 A22) (le 322> <C21 o

@ Define following matrices:
S1=An+Axn, S5=5 —Au, S3=A1n A, S4=An—-5

T =B —B11, To=Bx—T1, T3 =Bxn— B, T4 =Tr— By

8/77

Strassen's Algorithm

@ Suppose that n = 2k

o Let A B, C € F™" such that C = AB. Divide them into blocks of
size n/2:

Al A Bi1 Bi <C11 C12)
A= , B= , C=
<A21 A22) <B21 322> 1
@ Define following matrices:

S1=An+Axn, S5=5 —Au, S3=A1n A, S4=An—-5

T =B —B11, To=Bx—T1, T3 =Bxn— B, T4 =Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12B21, P3 = 54Bx, Py = ATy

Ps =51T1, Po=5T,, Pr=53T3

9/77

Strassen's Algorithm
@ Define following matrices:
S1=An+An, S2=5 A1, S3=A11— A, S4=An—-%

T1=Bio—B11, To=Bxp—T1, T3 =Bx — B, T4 = Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12B21, P3 = 54Bx, Py = ATy

Ps =51T1, Po=5T,, P;=25T3

10/77

Strassen's Algorithm
@ Define following matrices:
S1=An+An, S2=5 A1, S3=A11— A, S4=An—-%

T1=Bio—B11, To=Bxp—T1, T3 =Bx — B, T4 = Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12B21, P3 = 54Bx, Py = ATy

Ps =51T1, Po=5T,, P;=25T3
o (i1 = AuBi1 + ApBoy = P+ P>

11/77

Strassen's Algorithm

@ Define following matrices:

S1=An+Axn, S5=5 A, S3=A1n A, Sa=An-5

T1=Bio—B11, To=Bxp—T1, T3 =Bx — B, T4 = Tr— By

@ Compute the following 7 products:
P1 = A11B11, P> = A12B21, P3 = 54Bx, Py = ATy

Ps =51T1, Po=5T,, P;=25T3

o (i1 = AuBi1 + ApBoy = P+ P>
o Cip=A1Bio+A12Bn =P+ P+ Ps+ Ps

12/77

Strassen's Algorithm
@ Define following matrices:
S1=An+An, S2=5 A1, S3=A11— A, S4=An—-%

T1=Bio—B11, To=Bxp—T1, T3 =Bx — B, T4 = Tr— By

Compute the following 7 products:
P1 = A11Bi1, P2 = A12Bo1, P3 = 54B, Py =AnT,

Ps =51T1, Po=5T,, P;=25T3
Ci1 = Au1Bi1 + ApBoy = P+ P>
Ci2 = A11Bi2 + A12Boo = P1 + P3 + Ps + Ps
Co1 = Ao1Bi1 + AxBo1 = Pr — Pa+ Ps + Py

13/77

Strassen's Algorithm

@ Define following matrices:
S1=An+Axn, S5=5 A, S3=A1n A, Sa=An-5

T1=Bio—B11, To=Bxp—T1, T3 =Bx — B, T4 = Tr— By

Compute the following 7 products:
P1 = A11Bi1, P2 = A12Bo1, P3 = 54B, Py =AnT,

Ps =51T1, Po=5T,, P;=25T3
Ci1 = Au1Bi1 + ApBoy = P+ P>
Ci2 = A11Bi2 + A12Boo = P1 + P3 + Ps + Ps
1 = A2 Bi1 +AxBor = P1 — Ps+ Ps+ P7
Coo = A21B12 + ApBoo = P1 + Ps + Ps + P7

14 /77

Strassen's Algorithm
@ Define following matrices:
S1=An+An, S2=5 A1, S3=A11— A, S4=An—-%

T1=Bio—B11, To=Bxp—T1, T3 =Bx — B, T4 = Tr— By

Compute the following 7 products:
P1 = A11Bi1, P2 = A12Bo1, P3 = 54B, Py =AnT,

Ps =51T1, Po=5T,, P;=25T3
o (i1 = AuBi1 + ApBoy = P+ P>
o Cip =A11Bi2+A12Bx =P +P3+ Ps+ Ps
0 (o1 = AnBi1 +AxnBoy =P1 — Ps+ Ps+ P
0 Gy = A B2+ AxBy =P+ Ps+ Ps+ P
o

Correctness follows from the computations

15/77

Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

H oA
n onon

16 /77

Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

@ Recurrence:

H oA
nw on oun

MM(n) <7-MM(n/2) + 18- c - (n/2)?

17/77

Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

@ Recurrence:

H oA
nw on oun

MM(n) <7-MM(n/2) + 18- c - (n/2)?

MM(2K) < 7- MM(2K-1) + 18 - ¢ - 22k=2

18/77

Analysis of Strassen's Algorithm

@ To compute AB = C we used:

© 8 additions S;
@ 7 multiplications
© 10 additions

@ Recurrence:

H oA
nw on oun

MM(n) <7-MM(n/2)+18 - c-(n/2)?
MM(2¥) < 7- MM(2*71) + 18 - ¢ - 2242

e Could also use Master theorem to get MM(n) = O(n'°87) =~ O(n?807)

19/77

Matrix Multiplication Exponent

o We can define w (or wmyit) as the matrix multiplication exponent.
An algebraic algorithm for matrix multiplication is an algorithm which
only uses the algebraic operations +, —, x, +.

@ If an algebraic algorithm for n x n matrix multiplication uses O(n®)
operations, then w < a.

@ For any € > 0, there is an algebraic algorithm for n x n matrix
multiplication which uses O(n“*¢) algebraic operations

20/77

Matrix Multiplication Exponent

o We can define w (or wmyit) as the matrix multiplication exponent.
An algebraic algorithm for matrix multiplication is an algorithm which
only uses the algebraic operations +, —, x, +.
@ If an algebraic algorithm for n x n matrix multiplication uses O(n®)
operations, then w < a.
@ For any € > 0, there is an algebraic algorithm for n x n matrix
multiplication which uses O(n“*¢) algebraic operations
@ As we will see today, w is a fundamental constant in computer
science!

21/77

Matrix Multiplication Exponent

o We can define w (or wmyit) as the matrix multiplication exponent.
An algebraic algorithm for matrix multiplication is an algorithm which
only uses the algebraic operations +, —, x, +.
@ If an algebraic algorithm for n x n matrix multiplication uses O(n®)
operations, then w < a.
@ For any € > 0, there is an algebraic algorithm for n x n matrix
multiplication which uses O(n“*¢) algebraic operations
@ As we will see today, w is a fundamental constant in computer
science!

o Currently we know 2 < w < 2.376

Open Question

What is the right value of w?

22/77

Historical Remarks

@ Strassen’s work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

23/77

Historical Remarks

@ Strassen’s work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

@ Motivated work on better algorithms for all other linear algebraic
problems

24/77

Historical Remarks

@ Strassen’s work is not only important because it gives a faster matrix
multiplication algorithm, but because it startled the community that
the trivial cubic algorithm could be improved!

@ Motivated work on better algorithms for all other linear algebraic
problems

@ introduced complexity of computation of bilinear functions and the
study of complexity of tensor decompositions

25/77

@ The Exponent of Linear Algebra

26 /77

The Exponent of Linear Algebra

@ We just saw how to multiply matrices faster than the naive algorithm
@ We also learned about wpy ;= w

@ How fundamental is the exponent of matrix multiplication?

27/77

The Exponent of Linear Algebra

@ We just saw how to multiply matrices faster than the naive algorithm
@ We also learned about wpy ;= w
@ How fundamental is the exponent of matrix multiplication?

@ We can similarly define wp for a problem P

Wdeterminant; Winverse; Wilinear system; Wcharacteristic polynomial

28/77

The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm
We also learned about wp, := w

How fundamental is the exponent of matrix multiplication?

We can similarly define wp for a problem P

Wdeterminant; Winverse; Wilinear system; Wcharacteristic polynomial

As we will see today (and in homework):

W = Winverse = Wdeterminant

29/77

The Exponent of Linear Algebra

We just saw how to multiply matrices faster than the naive algorithm
We also learned about wp, := w

How fundamental is the exponent of matrix multiplication?

We can similarly define wp for a problem P

Wdeterminanty; Winverse; Wlinear systems Wcharacteristic polynomial

As we will see today (and in homework):

W = Winverse = Wdeterminant

@ More generally, all of these wp's are related to w!

Matrix multiplication exponent fundamental to linear algebral

30/77

@ Matrix Inversion

31/77

Matrix inverse vs matrix multiplication

@ Matrix inverse is at least as hard as matrix multiplication
@ How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

32/77

Matrix inverse vs matrix multiplication

Matrix inverse is at least as hard as matrix multiplication

How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices
quickly.

Suppose we had an algorithm for inverting matrices

Consider

/
A= 10
0

o - >

0
B
/

33/77

Matrix inverse vs matrix multiplication

@ Matrix inverse is at least as hard as matrix multiplication
@ How to prove this? reductions!
If we can invert matrices quickly, then we can multiply two matrices
quickly.
@ Suppose we had an algorithm for inverting matrices
o Consider
I A0
A=10 I B
0o 0 |/
@ Then
I —A AB
Al=10 I -B
0 0 /

34/77

Matrix inverse vs matrix multiplication

@ Matrix inverse is at least as hard as matrix multiplication
@ How to prove this? reductions!
If we can invert matrices quickly, then we can multiply two matrices
quickly.
@ Suppose we had an algorithm for inverting matrices
o Consider
I A0
A=10 I B
0o 0 |/
@ Then
I —A AB
Al=10 I -B
0 0 /

@ So if we could invert in time T, then we can multiply two matrices in
time O(T).

35/77

Matrix Multiplication vs Matrix Inversion

@ Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”

36/77

Matrix Multiplication vs Matrix Inversion

@ Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”
@ Suppose we have an algorithm that performs matrix multiplication.
o Let n = 2%, divide matrix M into blocks of size n/2

- (2)

37/77

Matrix Multiplication vs Matrix Inversion

@ Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.
@ Suppose we have an algorithm that performs matrix multiplication.
o Let n = 2%, divide matrix M into blocks of size n/2

A B
M= (2 o)
@ The inverse of M in block form is given by:

-t (! —A-1Bs-1 Al 0
—\o s-1 ‘\—cat |

Assuming A and S := D — CA™!B are invertible

38/77

Matrix Multiplication vs Matrix Inversion
@ Matrix multiplication is at least as hard as matrix inversion

“If we can multiply two matrices fast, we can also invert them fast.”

Suppose we have an algorithm that performs matrix multiplication.
Let n = 2, divide matrix M into blocks of size n/2

v=(C o)
@ The inverse of M in block form is given by:
Y= <I —A‘lBS_1> . < AL 0)
0 st —CA™L
Assuming A and S := D — CA!B are invertible

@ How do we compute this? Schur Complement

Similar to how we would invert regular matrices! Just pay attention
to non-commutativity.

39/77

Runtime Analysis

@ The inverse of M in block form is given by:

w-i— (! —ATIBSTH (AL 0
—\0 st —CA™L |

Assuming A and S := D — CA!B are invertible.

4077

Runtime Analysis
@ The inverse of M in block form is given by:
-1 </ —A1851> . < Al 0>
0 st —CA™L
Assuming A and S := D — CA!B are invertible.

@ To invert M, we needed to:
o Invert A

41/77

Runtime Analysis

@ The inverse of M in block form is given by:

w-i— (! —ATIBSTH (AL 0
0 st —CA Y |
Assuming A and S := D — CA!B are invertible.

@ To invert M, we needed to:

o Invert A
e Compute S:=D — CA™'B

42/77

Runtime Analysis

@ The inverse of M in block form is given by:

w-i— (! —ATIBSTH (AL 0
0 st —CA Y |
Assuming A and S := D — CA!B are invertible.

@ To invert M, we needed to:

o Invert A
e Compute S:=D — CA™'B
o Invert S

43/77

Runtime Analysis
@ The inverse of M in block form is given by:
w-i— (! —ATIBSTH (AL 0
0 st —CA™L

Assuming A and S := D — CA!B are invertible.
@ To invert M, we needed to:

e Invert A

e Compute S:=D — CA™'B

o Invert S

e perform constant number of multiplications above

44 /77

Runtime Analysis
@ The inverse of M in block form is given by:
w-i— (! —ATIBSTH (AL 0
0 st —CA™L

Assuming A and S := D — CA!B are invertible.
@ To invert M, we needed to:

e Invert A

e Compute S:=D — CA™'B

o Invert S

e perform constant number of multiplications above

@ Recurrence relation:

I(n) <2-1(nj2) + C - (n/2)*

4577

Solving Recurrence

@ Recurrence relation:
I(n) <2-1(n/2)+ C-(n/2)"

@ We know that 2 <w < 3 w is a constant

46 /77

Solving Recurrence

@ Recurrence relation:
I(n) <2-1(n/2)+ C-(n/2)"

@ We know that 2 <w < 3
@ Recurrence relation:

1(2K) <212k 4 ¢ . 2w(k=D)

w is a constant

4777

Solving Recurrence

@ Recurrence relation:

I(n) <2-1(n/2)+ C-(n/2)"
@ We know that 2 <w < 3 w is a constant
@ Recurrence relation:

1(2K) <212k 4 ¢ . 2w(k=D)
@ Thus

I(n) = 1(2¥) < 2% . (1) + C - Zzw

2w’<—1
<2k
<o (24 557

< Cl/ 2wk C// w

4877

Determinant vs Matrix Multiplication

@ One can similarly prove that wgeterminant < W

@ This is your homework! :)

49 /77

@ Determinant and Matrix Inverse

50 /77

Determinant of a Matrix
o Given matrix M € F™" the determinant is

det(M) := > (=1)7 - [Mio(s)
i=1

UESn

51/77

Determinant of a Matrix
@ Given matrix M € F"*", the determinant is

det(M) := > (=1)7 - [Mio(s)
o€ES, i=1
e Given matrix M € F™" and (i,) € [n]?, the (i,)-minor of M,
denoted M(J) is given by

Remove t"

row and j* column of M

52/77

Determinant of a Matrix
@ Given matrix M € F"*", the determinant is

n
det(M) = Z (—1)0 . H M,-J(,-)
oc€ESy i=1
e Given matrix M € F™" and (i,) € [n]?, the (i,)-minor of M,
denoted M(J) is given by
Remove it" row and j* column of M
@ Determinant has a very special decomposition by minors: given any
row i/, we have

th

det(M Z(1) M, - det(MU))

known as Laplace ExpanSIon

53 /77

Determinant of a Matrix
@ Given matrix M € F"*", the determinant is

det(M) := > (=1)7 - [Mio(s)
o€ES, i=1
e Given matrix M € F™" and (i,) € [n]?, the (i,)-minor of M,
denoted M(J) is given by

Remove t"

row and j* column of M
@ Determinant has a very special decomposition by minors: given any
row i/, we have

det(M Z(1) M, - det(MU))

known as Laplace ExpanSIon
@ Determinants of minors are very much related to derivatives of the
determinant of M

det(MUD) = (=1)§; ; det(M)

54 /77

Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

55 /77

Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

@ In particular, let N € F"™" be the adjugate matrix

Nij = (~1)"" det(MU))

56 /77

Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

@ In particular, let N € F"™" be the adjugate matrix
N,'J' = (—1)i+j det(l\/l(j’i))

@ Note that
MN = det(M) - |

5777

Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.

@ In particular, let N € F"™" be the adjugate matrix
N,'J' = (—1)i+j det(M(j’i))

@ Note that
MN = det(M) - |

@ Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(MU¥)) = (=1)9; ; det(M)

58 /77

Determinant and Inverse

@ The determinant is intrinsically related to the inverse of a matrix.
@ In particular, let N € F"™" be the adjugate matrix

N,'J = (—1)i+j det(M(j’i))
@ Note that

MN = det(M) - |

Entries of the adjugate (determinants of minors) are very much
related to derivatives of the determinant of M

det(MU¥)) = (=1)9; ; det(M)

@ So, if we knew how to compute the determinant AND ALL its partial
derivatives, we could:

@ Compute the adjugate
@ Compute the inverse

59 /77

Computing the Determinant

@ Suppose we have an algorithm which computes the determinant in
O(n“) operations

60 /77

Computing the Determinant

@ Suppose we have an algorithm which computes the determinant in
O(n“) operations

@ Can compute the determinant and all its partial derivatives in O(n®)
operations!

61/77

Computing the Determinant

@ Suppose we have an algorithm which computes the determinant in
O(n“) operations

@ Can compute the determinant and all its partial derivatives in O(n®)
operations!

o Compute the inverse by simply dividing det(M())/ det(M)

62/77

@ Computing Partial Derivatives

63/77

Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial

64 /77

Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with
e input gates labelled by variables xi, ..., x, or elements of R

6577

Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial
o Algebraic Circuit: directed acyclic graph ® with

e input gates labelled by variables xi, ..., x, or elements of R
e other gates labelled +, x, +
o -+ gate takes two inputs, which are labelled numerator/denominator

66 /77

Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial

o Algebraic Circuit: directed acyclic graph ® with
e input gates labelled by variables xi, ..., x, or elements of R
e other gates labelled +, x, +
o -+ gate takes two inputs, which are labelled numerator/denominator
e gates compute polynomial (rational function) in natural way

67/77

Algebraic Circuits - base ring R

@ Models the amount of operations needed to compute polynomial

o Algebraic Circuit: directed acyclic graph ® with
e input gates labelled by variables xi, ..., x, or elements of R
e other gates labelled +, x, +
o -+ gate takes two inputs, which are labelled numerator/denominator
e gates compute polynomial (rational function) in natural way

@ circuit size: number of edges in the circuit, denoted by S(®)

68 /77

Computing Partial Derivatives

If f(x1,...,%n) can be computed by an algebraic circuit of size < L then
there is an algebraic circuit of size < 4L that computes ALL partial
derivatives O1f,...,0nf simultaneously!

69 /77

Computing Partial Derivatives

If f(x1,...,%n) can be computed by an algebraic circuit of size < L then
there is an algebraic circuit of size < 4L that computes ALL partial
derivatives O1f,...,0nf simultaneously!

@ This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

@ gradient descent methods
@ Newton iteration

70,77

Computing Partial Derivatives

If f(x1,...,%n) can be computed by an algebraic circuit of size < L then
there is an algebraic circuit of size < 4L that computes ALL partial
derivatives O1f,...,0nf simultaneously!

@ This is very remarkable, since partial derivatives ubiquitous in
computational tasks!

@ gradient descent methods
@ Newton iteration

@ Algorithm we will see today discovered independently in Machine
Learning - known as backpropagation

7177

Computing Partial Derivatives

@ We are going to use the chain rule:

m

aff(g17g27 s 7gm) = Z(ajf)(g]-?gZa R ;gm) ' 8Igj
=1

72/77

Computing Partial Derivatives

@ We are going to use the chain rule:

m

aff(g17g27 s 7gm) = Z(ajf)(g]-?gZa R ;gm) ' 8Igj
=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?

73/77

Computing Partial Derivatives

@ We are going to use the chain rule:

m

aff(g17g27 s 7gm) = Z(ajf)(g]-?gZa R ;gm) ' 8Igj
=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?
@ Main intuitions:

@ if each function we have has m being constant (depend on constant #
of variables), then chain rule is cheap!

7477

Computing Partial Derivatives

@ We are going to use the chain rule:

m

aff(g17g27 s 7gm) = Z(ajf)(g]-?gZa R ;gm) ' 8Igj
=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?
@ Main intuitions:
@ if each function we have has m being constant (depend on constant #

of variables), then chain rule is cheap!
@ many of the partial derivatives along the computation will either be
zero or have already been computed!

7577

Computing Partial Derivatives

@ We are going to use the chain rule:

m

aff(g17g27 s 7gm) = Z(ajf)(g]-?gZa R ;gm) ' 8Igj
=1

@ But wait, doesn't the chain rule makes us compute 2m partial
derivatives?
@ Main intuitions:
@ if each function we have has m being constant (depend on constant #
of variables), then chain rule is cheap!
@ many of the partial derivatives along the computation will either be
zero or have already been computed!
© Have to compute partial derivatives “in reverse’

7677

Conclusion

@ Today we learned how fundamental matrix multiplication is in
symbolic computation and linear algebra

@ Used fast computation of partial derivatives to compute the inverse
from the determinant

7777

	Matrix Multiplication
	The Exponent of Linear Algebra
	Matrix Inversion
	Determinant and Matrix Inverse
	Computing Partial Derivatives
	Conclusion

