Lecture 20: Matrix Multiplication & Exponent of Linear Algebra

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

July 4, 2025

Overview

- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Computing Partial Derivatives
- Conclusion

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB
- Naive algorithm:

Compute n matrix vector multiplications.

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB
- Naive algorithm:

Compute *n* matrix vector multiplications.

• Running time: $O(n^3)$

Can we do better?

- Input: matrices $A, B \in \mathbb{F}^{n \times n}$
- **Output:** product C = AB
- Naive algorithm:

Compute *n* matrix vector multiplications.

• Running time: $O(n^3)$

Can we do better?

- Strassen 1969: YES!
- Idea: divide matrix into blocks, and reduce number of multiplications needed!

- Suppose that $n = 2^k$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that C = AB. Divide them into blocks of size n/2:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

- Suppose that $n = 2^k$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that C = AB. Divide them into blocks of size n/2:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

- Suppose that $n = 2^k$
- Let $A, B, C \in \mathbb{F}^{n \times n}$ such that C = AB. Divide them into blocks of size n/2:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

$$P_1 = A_{11}B_{11}, \ P_2 = A_{12}B_{21}, \ P_3 = S_4B_{22}, \ P_4 = A_{22}T_4$$
 $P_5 = S_1T_1, \ P_6 = S_2T_2, \ P_7 = S_3T_3$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

$$P_1 = A_{11}B_{11}, \ P_2 = A_{12}B_{21}, \ P_3 = S_4B_{22}, \ P_4 = A_{22}T_4$$
 $P_5 = S_1T_1, \ P_6 = S_2T_2, \ P_7 = S_3T_3$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

• Compute the following 7 products:

$$P_1 = A_{11}B_{11}, \ P_2 = A_{12}B_{21}, \ P_3 = S_4B_{22}, \ P_4 = A_{22}T_4$$
 $P_5 = S_1T_1, \ P_6 = S_2T_2, \ P_7 = S_3T_3$

 $\bullet \ \ C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_1 + P_2$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

$$P_1 = A_{11}B_{11}, \ P_2 = A_{12}B_{21}, \ P_3 = S_4B_{22}, \ P_4 = A_{22}T_4$$
 $P_5 = S_1T_1, \ P_6 = S_2T_2, \ P_7 = S_3T_3$

- $\bullet \ \ C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_1 + P_2$
- $\bullet \ \ C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_1 + P_3 + P_5 + P_6$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

$$P_1 = A_{11}B_{11}, \ P_2 = A_{12}B_{21}, \ P_3 = S_4B_{22}, \ P_4 = A_{22}T_4$$
 $P_5 = S_1T_1, \ P_6 = S_2T_2, \ P_7 = S_3T_3$

- $\bullet \ \ C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_1 + P_2$
- $\bullet \ \ C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_1 + P_3 + P_5 + P_6$
- $\bullet \ \ C_{21} = A_{21}B_{11} + A_{22}B_{21} = P_1 P_4 + P_6 + P_7$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

$$P_1 = A_{11}B_{11}, \ P_2 = A_{12}B_{21}, \ P_3 = S_4B_{22}, \ P_4 = A_{22}T_4$$
 $P_5 = S_1T_1, \ P_6 = S_2T_2, \ P_7 = S_3T_3$

- $C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_1 + P_2$
- $\bullet \ \ C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_1 + P_3 + P_5 + P_6$
- $\bullet \ \ C_{21} = A_{21}B_{11} + A_{22}B_{21} = P_1 P_4 + P_6 + P_7$
- $\bullet \ \ C_{22} = A_{21}B_{12} + A_{22}B_{22} = P_1 + P_5 + P_6 + P_7$

Define following matrices:

$$S_1 = A_{21} + A_{22}, \ S_2 = S_1 - A_{11}, \ S_3 = A_{11} - A_{21}, \ S_4 = A_{12} - S_2$$

 $T_1 = B_{12} - B_{11}, \ T_2 = B_{22} - T_1, \ T_3 = B_{22} - B_{12}, \ T_4 = T_2 - B_{21}$

$$P_1 = A_{11}B_{11}, \ P_2 = A_{12}B_{21}, \ P_3 = S_4B_{22}, \ P_4 = A_{22}T_4$$
 $P_5 = S_1T_1, \ P_6 = S_2T_2, \ P_7 = S_3T_3$

- $C_{11} = A_{11}B_{11} + A_{12}B_{21} = P_1 + P_2$
- $\bullet \ \ C_{12} = A_{11}B_{12} + A_{12}B_{22} = P_1 + P_3 + P_5 + P_6$
- $\bullet C_{21} = A_{21}B_{11} + A_{22}B_{21} = P_1 P_4 + P_6 + P_7$
- $\bullet C_{22} = A_{21}B_{12} + A_{22}B_{22} = P_1 + P_5 + P_6 + P_7$
- Correctness follows from the computations

• To compute AB = C we used:

1	8	additions
---	---	-----------

2 7 multiplications

10 additions

 S_i, T_i 's P_i 's

 C_{ii} 's

• To compute AB = C we used:

- 8 additions
- 2 7 multiplications
- 10 additions
- Recurrence:

$$MM(n) \leq 7 \cdot MM(n/2) + 18 \cdot c \cdot (n/2)^2$$

 S_i, T_i 's

 P_i 's

 C_{ii} 's

- To compute AB = C we used:
 - 8 additions
 - 7 multiplications
 - 10 additions
- Recurrence:

$$MM(n) \leq 7 \cdot MM(n/2) + 18 \cdot c \cdot (n/2)^2$$

$$MM(2^k) \le 7 \cdot MM(2^{k-1}) + 18 \cdot c \cdot 2^{2k-2}$$

 S_i, T_i 's

 P_i 's

Cii's

- To compute AB = C we used:
 - 8 additions
 - 2 7 multiplications
 - 10 additions
- Recurrence:

$$MM(n) \leq 7 \cdot MM(n/2) + 18 \cdot c \cdot (n/2)^2$$

$$MM(2^k) \le 7 \cdot MM(2^{k-1}) + 18 \cdot c \cdot 2^{2k-2}$$

• Could also use Master theorem to get $MM(n) = O(n^{\log 7}) \approx O(n^{2.807})$

 S_i, T_i 's

 P_i 's C_{ii} 's

Matrix Multiplication Exponent

- We can define ω (or ω_{mult}) as the matrix multiplication exponent. An algebraic algorithm for matrix multiplication is an algorithm which only uses the algebraic operations $+,-,\times,\div$.
 - **1** If an algebraic algorithm for $n \times n$ matrix multiplication uses $O(n^{\alpha})$ operations, then $\omega \leq \alpha$.
 - ② For any $\varepsilon > 0$, there is an algebraic algorithm for $n \times n$ matrix multiplication which uses $O(n^{\omega+\varepsilon})$ algebraic operations

Matrix Multiplication Exponent

- We can define ω (or ω_{mult}) as the matrix multiplication exponent. An algebraic algorithm for matrix multiplication is an algorithm which only uses the algebraic operations $+, -, \times, \div$.
 - **1** If an algebraic algorithm for $n \times n$ matrix multiplication uses $O(n^{\alpha})$ operations, then $\omega \leq \alpha$.
 - ② For any $\varepsilon > 0$, there is an algebraic algorithm for $n \times n$ matrix multiplication which uses $O(n^{\omega+\varepsilon})$ algebraic operations
- As we will see today, ω is a fundamental constant in computer science!

Matrix Multiplication Exponent

- We can define ω (or ω_{mult}) as the matrix multiplication exponent. An algebraic algorithm for matrix multiplication is an algorithm which only uses the algebraic operations $+,-,\times,\div$.
 - **1** If an algebraic algorithm for $n \times n$ matrix multiplication uses $O(n^{\alpha})$ operations, then $\omega \leq \alpha$.
 - ② For any $\varepsilon > 0$, there is an algebraic algorithm for $n \times n$ matrix multiplication which uses $O(n^{\omega+\varepsilon})$ algebraic operations
- \bullet As we will see today, ω is a fundamental constant in computer science!
- Currently we know $2 \le \omega < 2.376$

Open Question

What is the right value of ω ?

Historical Remarks

• Strassen's work is not only important because it gives a faster matrix multiplication algorithm, but because it startled the community that the trivial cubic algorithm could be improved!

Historical Remarks

- Strassen's work is not only important because it gives a faster matrix multiplication algorithm, but because it startled the community that the trivial cubic algorithm could be improved!
- Motivated work on better algorithms for all other linear algebraic problems

Historical Remarks

- Strassen's work is not only important because it gives a faster matrix multiplication algorithm, but because it startled the community that the trivial cubic algorithm could be improved!
- Motivated work on better algorithms for all other linear algebraic problems
- introduced complexity of computation of *bilinear functions* and the study of complexity of tensor decompositions

- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Computing Partial Derivatives
- Conclusion

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{mult} := \omega$
- How fundamental is the exponent of matrix multiplication?

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{mult} := \omega$
- How fundamental is the exponent of matrix multiplication?
- We can similarly define ω_P for a problem P

 $\omega_{determinant}, \quad \omega_{inverse}, \quad \omega_{linear \ system}, \quad \omega_{characteristic \ polynomial}$

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{mult} := \omega$
- How fundamental is the exponent of matrix multiplication?
- We can similarly define ω_P for a problem P

```
\omega_{\textit{determinant}}, \quad \omega_{\textit{inverse}}, \quad \omega_{\textit{linear system}}, \quad \omega_{\textit{characteristic polynomial}}
```

As we will see today (and in homework):

$$\omega = \omega_{inverse} = \omega_{determinant}$$

- We just saw how to multiply matrices faster than the naive algorithm
- We also learned about $\omega_{mult} := \omega$
- How fundamental is the exponent of matrix multiplication?
- We can similarly define ω_P for a problem P

```
\omega_{determinant}, \quad \omega_{inverse}, \quad \omega_{linear \ system}, \quad \omega_{characteristic \ polynomial}
```

• As we will see today (and in homework):

$$\omega = \omega_{inverse} = \omega_{determinant}$$

• More generally, all of these ω_P 's are related to $\omega!$ Matrix multiplication exponent fundamental to linear algebra!

- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Computing Partial Derivatives
- Conclusion

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this? reductions!

If we can invert matrices quickly, then we can multiply two matrices quickly.

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this? reductions!
 If we can invert matrices quickly, then we can multiply two matrices

quickly.

- Suppose we had an algorithm for inverting matrices
- Consider

$$A = \begin{pmatrix} I & A & 0 \\ 0 & I & B \\ 0 & 0 & I \end{pmatrix}$$

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this? reductions!
 If we can invert matrices quickly, then we can multiply two matrices

quickly.

- Suppose we had an algorithm for inverting matrices
- Consider

$$A = \begin{pmatrix} I & A & 0 \\ 0 & I & B \\ 0 & 0 & I \end{pmatrix}$$

Then

$$A^{-1} = \begin{pmatrix} I & -A & AB \\ 0 & I & -B \\ 0 & 0 & I \end{pmatrix}$$

- Matrix inverse is at least as hard as matrix multiplication
- How to prove this? reductions!
 If we can invert matrices quickly, then we can multiply two matrices

quickly.

- Suppose we had an algorithm for inverting matrices
- Consider

$$A = \begin{pmatrix} I & A & 0 \\ 0 & I & B \\ 0 & 0 & I \end{pmatrix}$$

Then

$$A^{-1} = \begin{pmatrix} I & -A & AB \\ 0 & I & -B \\ 0 & 0 & I \end{pmatrix}$$

• So if we could invert in time T, then we can multiply two matrices in time O(T).

Matrix Multiplication vs Matrix Inversion

• Matrix multiplication is at least as hard as matrix inversion "If we can multiply two matrices fast, we can also invert them fast."

Matrix Multiplication vs Matrix Inversion

- Matrix multiplication is at least as hard as matrix inversion
 "If we can multiply two matrices fast, we can also invert them fast."
- Suppose we have an algorithm that performs matrix multiplication.
- Let $n = 2^k$, divide matrix M into blocks of size n/2

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Matrix Multiplication vs Matrix Inversion

- Matrix multiplication is at least as hard as matrix inversion
 "If we can multiply two matrices fast, we can also invert them fast."
- Suppose we have an algorithm that performs matrix multiplication.
- Let $n = 2^k$, divide matrix M into blocks of size n/2

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

Matrix Multiplication vs Matrix Inversion

- Matrix multiplication is at least as hard as matrix inversion
 "If we can multiply two matrices fast, we can also invert them fast."
- Suppose we have an algorithm that performs matrix multiplication.
- Let $n = 2^k$, divide matrix M into blocks of size n/2

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

Assuming A and $S := D - CA^{-1}B$ are invertible

• How do we compute this?

Schur Complement

Similar to how we would invert regular matrices! Just pay attention to non-commutativity.

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

- To invert *M*, we needed to:
 - Invert A

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

- To invert *M*, we needed to:
 - Invert A
 - Compute $S := D CA^{-1}B$

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

- To invert *M*, we needed to:
 - Invert A
 - Compute $S := D CA^{-1}B$
 - Invert S

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

- To invert *M*, we needed to:
 - Invert A
 - Compute $S := D CA^{-1}B$
 - Invert S
 - perform constant number of multiplications above

• The inverse of *M* in block form is given by:

$$M^{-1} = \begin{pmatrix} I & -A^{-1}BS^{-1} \\ 0 & S^{-1} \end{pmatrix} \cdot \begin{pmatrix} A^{-1} & 0 \\ -CA^{-1} & I \end{pmatrix}$$

- To invert *M*, we needed to:
 - Invert A
 - Compute $S := D CA^{-1}B$
 - Invert S
 - perform constant number of multiplications above
- Recurrence relation:

$$I(n) \leq 2 \cdot I(n/2) + C \cdot (n/2)^{\omega}$$

Solving Recurrence

• Recurrence relation:

$$I(n) \leq 2 \cdot I(n/2) + C \cdot (n/2)^{\omega}$$

ullet We know that $2 \leq \omega < 3$

 ω is a constant

Solving Recurrence

• Recurrence relation:

$$I(n) \leq 2 \cdot I(n/2) + C \cdot (n/2)^{\omega}$$

• We know that $2 \le \omega < 3$

 ω is a constant

Recurrence relation:

$$I(2^k) \le 2 \cdot I(2^{k-1}) + C \cdot 2^{\omega(k-1)}$$

Solving Recurrence

Recurrence relation:

$$I(n) \leq 2 \cdot I(n/2) + C \cdot (n/2)^{\omega}$$

• We know that $2 < \omega < 3$

 ω is a constant

Recurrence relation:

$$I(2^k) \le 2 \cdot I(2^{k-1}) + C \cdot 2^{\omega(k-1)}$$

Thus

$$I(n) = I(2^k) \le 2^k \cdot I(1) + C \cdot \sum_{j=0}^{k-1} 2^{\omega j}$$
$$\le C' \cdot \left(2^k + \frac{2^{\omega k} - 1}{2^{\omega} - 1}\right)$$
$$\le C'' \cdot 2^{\omega k} = C'' n^{\omega}$$

Determinant vs Matrix Multiplication

- ullet One can similarly prove that $\omega_{determinant} \leq \omega$
- This is your homework! :)

- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Computing Partial Derivatives
- Conclusion

• Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$\det(M) := \sum_{\sigma \in \mathcal{S}_n} (-1)^{\sigma} \cdot \prod_{i=1}^n M_{i\sigma(i)}$$

• Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$\det(M) := \sum_{\sigma \in \mathcal{S}_n} (-1)^{\sigma} \cdot \prod_{i=1}^n M_{i\sigma(i)}$$

• Given matrix $M \in \mathbb{F}^{n \times n}$, and $(i,j) \in [n]^2$, the (i,j)-minor of M, denoted $M^{(i,j)}$ is given by

Remove i^{th} row and j^{th} column of M

• Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$\det(M) := \sum_{\sigma \in S_n} (-1)^{\sigma} \cdot \prod_{i=1}^n M_{i\sigma(i)}$$

• Given matrix $M \in \mathbb{F}^{n \times n}$, and $(i,j) \in [n]^2$, the (i,j)-minor of M, denoted $M^{(i,j)}$ is given by

Remove i^{th} row and i^{th} column of M

 Determinant has a very special decomposition by minors: given any row i, we have

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} M_{i,j} \cdot \det(M^{(i,j)})$$

known as Laplace Expansion

• Given matrix $M \in \mathbb{F}^{n \times n}$, the determinant is

$$\det(M) := \sum_{\sigma \in \mathcal{S}_n} (-1)^{\sigma} \cdot \prod_{i=1}^n M_{i\sigma(i)}$$

• Given matrix $M \in \mathbb{F}^{n \times n}$, and $(i,j) \in [n]^2$, the (i,j)-minor of M, denoted $M^{(i,j)}$ is given by

Remove i^{th} row and j^{th} column of M

 Determinant has a very special decomposition by minors: given any row i, we have

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} M_{i,j} \cdot \det(M^{(i,j)})$$

known as Laplace Expansion

 Determinants of minors are very much related to derivatives of the determinant of M

$$\det(M^{(i,j)}) = (-1)^{i+j} \partial_{i,j} \det(M)$$

• The determinant is intrinsically related to the inverse of a matrix.

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the *adjugate matrix*

$$N_{i,j} = (-1)^{i+j} \det(M^{(j,i)})$$

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the *adjugate matrix*

$$N_{i,j} = (-1)^{i+j} \det(M^{(j,i)})$$

Note that

$$MN = \det(M) \cdot I$$

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the *adjugate matrix*

$$N_{i,j} = (-1)^{i+j} \det(M^{(j,i)})$$

Note that

$$MN = \det(M) \cdot I$$

 Entries of the adjugate (determinants of minors) are very much related to derivatives of the determinant of M

$$\det(M^{(i,j)}) = (-1)^{i+j} \partial_{i,j} \det(M)$$

- The determinant is intrinsically related to the inverse of a matrix.
- In particular, let $N \in \mathbb{F}^{n \times n}$ be the *adjugate matrix*

$$N_{i,j} = (-1)^{i+j} \det(M^{(j,i)})$$

Note that

$$MN = \det(M) \cdot I$$

 Entries of the adjugate (determinants of minors) are very much related to derivatives of the determinant of M

$$\det(M^{(i,j)}) = (-1)^{i+j} \partial_{i,j} \det(M)$$

- So, if we knew how to compute the determinant AND ALL its partial derivatives, we could:
 - Compute the adjugate
 - 2 Compute the inverse

Computing the Determinant

• Suppose we have an algorithm which computes the determinant in $O(n^{\alpha})$ operations

Computing the Determinant

- Suppose we have an algorithm which computes the determinant in $O(n^{\alpha})$ operations
- Can compute the determinant and all its partial derivatives in $O(n^{\alpha})$ operations!

Computing the Determinant

- Suppose we have an algorithm which computes the determinant in $O(n^{\alpha})$ operations
- Can compute the determinant and all its partial derivatives in $O(n^{\alpha})$ operations!
- Compute the inverse by simply dividing $\det(M^{(i,j)})/\det(M)$

- Matrix Multiplication
- The Exponent of Linear Algebra
- Matrix Inversion
- Determinant and Matrix Inverse
- Computing Partial Derivatives
- Conclusion

• Models the *amount of operations* needed to compute polynomial

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R
 - other gates labelled $+, \times, \div$
 - ÷ gate takes two inputs, which are labelled numerator/denominator

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R
 - other gates labelled $+, \times, \div$
 - ÷ gate takes two inputs, which are labelled numerator/denominator
 - gates compute polynomial (rational function) in natural way

- Models the amount of operations needed to compute polynomial
- Algebraic Circuit: directed acyclic graph Φ with
 - input gates labelled by variables x_1, \ldots, x_n or elements of R
 - other gates labelled $+, \times, \div$
 - ÷ gate takes two inputs, which are labelled numerator/denominator
 - gates compute polynomial (rational function) in natural way
- *circuit size:* number of edges in the circuit, denoted by $S(\Phi)$

Theorem

If $f(x_1,...,x_n)$ can be computed by an algebraic circuit of size $\leq L$ then there is an algebraic circuit of size $\leq 4L$ that computes ALL partial derivatives $\partial_1 f,...,\partial_n f$ simultaneously!

Theorem

If $f(x_1,...,x_n)$ can be computed by an algebraic circuit of size $\leq L$ then there is an algebraic circuit of size $\leq 4L$ that computes ALL partial derivatives $\partial_1 f,...,\partial_n f$ simultaneously!

- This is very remarkable, since partial derivatives ubiquitous in computational tasks!
 - gradient descent methods
 - Newton iteration

Theorem

If $f(x_1,...,x_n)$ can be computed by an algebraic circuit of size $\leq L$ then there is an algebraic circuit of size $\leq 4L$ that computes ALL partial derivatives $\partial_1 f,...,\partial_n f$ simultaneously!

- This is very remarkable, since partial derivatives ubiquitous in computational tasks!
 - gradient descent methods
 - 2 Newton iteration
- Algorithm we will see today discovered independently in Machine Learning - known as backpropagation

• We are going to use the chain rule:

$$\partial_i f(g_1, g_2, \dots, g_m) = \sum_{i=1}^m (\partial_i f)(g_1, g_2, \dots, g_m) \cdot \partial_i g_i$$

We are going to use the chain rule:

$$\partial_i f(g_1, g_2, \ldots, g_m) = \sum_{j=1}^m (\partial_j f)(g_1, g_2, \ldots, g_m) \cdot \partial_i g_j$$

 But wait, doesn't the chain rule makes us compute 2m partial derivatives?

We are going to use the chain rule:

$$\partial_i f(g_1, g_2, \ldots, g_m) = \sum_{j=1}^m (\partial_j f)(g_1, g_2, \ldots, g_m) \cdot \partial_i g_j$$

- But wait, doesn't the chain rule makes us compute 2m partial derivatives?
- Main intuitions:
 - if each function we have has *m being constant* (depend on *constant* # of variables), then chain rule is **cheap**!

We are going to use the chain rule:

$$\partial_i f(g_1, g_2, \ldots, g_m) = \sum_{j=1}^m (\partial_j f)(g_1, g_2, \ldots, g_m) \cdot \partial_i g_j$$

- But wait, doesn't the chain rule makes us compute 2m partial derivatives?
- Main intuitions:
 - if each function we have has m being constant (depend on constant # of variables), then chain rule is cheap!
 - many of the partial derivatives along the computation will either be zero or have already been computed!

We are going to use the chain rule:

$$\partial_i f(g_1, g_2, \ldots, g_m) = \sum_{j=1}^m (\partial_j f)(g_1, g_2, \ldots, g_m) \cdot \partial_i g_j$$

- But wait, doesn't the chain rule makes us compute 2m partial derivatives?
- Main intuitions:
 - if each function we have has *m being constant* (depend on *constant* # of variables), then chain rule is **cheap**!
 - 2 many of the partial derivatives along the computation will either be zero or have already been computed!
 - Have to compute partial derivatives "in reverse"

Conclusion

- Today we learned how fundamental matrix multiplication is in symbolic computation and linear algebra
- Used fast computation of partial derivatives to compute the inverse from the determinant