Lecture 16: Semidefinite Programming Relaxation and MAX-CUT

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

June 9, 2025

Overview

• Max-Cut SDP Relaxation & Rounding

Conclusion

Acknowledgements

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

Formulate optimization problem as QP

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP
- Oerive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$OPT(SDP) \geq OPT(QP)$$

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$OPT(SDP) \ge OPT(QP)$$

Solve SDP (approximately) optimally using efficient algorithm.

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$OPT(SDP) \ge OPT(QP)$$

- Solve SDP (approximately) optimally using efficient algorithm.
 - If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

- Formulate optimization problem as QP
- ② Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an *SDP relaxation*.

We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$OPT(SDP) \ge OPT(QP)$$

- Solve SDP (approximately) optimally using efficient algorithm.
 - If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done
 - If solution has higher dimension, then we have to devise rounding procedure that transforms

high dimensional solutions ightarrow integral & 1D solutions

rounded SDP solution value $\geq c \cdot OPT(QP)$

Max-Cut

Maximum Cut (Max-Cut):

$$G(V, E)$$
 graph.

Cut $S \subseteq V$ and size of cut is

$$|E(S,\overline{S})| = |\{(u,v) \in E \mid u \in S, v \notin S\}|.$$

Goal: find cut of maximum size.

Example - Weighted Variant

Maximum Cut (Max-Cut):

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

Cut $S \subseteq V$ and weight of cut is the sum of weights of edges crossing cut. Goal: find cut of maximum weight.

Max-Cut

$$G(V, E, w)$$
 weighted graph. $\sum_{e \in E} w_e = 1$

Quadratic Program:

maximize
$$\sum_{\{u,v\}\in E} rac{1}{2} \cdot w_{u,v} \cdot (1-x_ux_v)$$
 subject to $x_v^2=1$ for $v\in V$

SDP Relaxation [Delorme, Poljak 1993]

$$\mathit{G}(\mathit{V}, \mathit{E}, \mathit{w})$$
 weighted graph, $|\mathit{V}| = \mathit{n}$ and $\sum_{e \in \mathit{E}} \mathit{w}_e = 1$

Semidefinite Program:

maximize
$$\sum_{\{u,v\}\in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - y_u^T y_v\right)$$
 subject to $\|y_v\|_2^2 = 1$ for $v \in V$
$$y_v \in \mathbb{R}^d \text{ for } v \in V$$

SDP Relaxation [Delorme, Poljak 1993]

$$\mathit{G}(\mathit{V}, \mathit{E}, \mathit{w})$$
 weighted graph, $|\mathit{V}| = \mathit{n}$ and $\sum_{e \in \mathit{E}} \mathit{w}_e = 1$

Semidefinite Program:

maximize
$$\sum_{\{u,v\}\in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - y_u^T y_v\right)$$
 subject to $\|y_v\|_2^2 = 1$ for $v \in V$
$$y_v \in \mathbb{R}^d \text{ for } v \in V$$

Figure 10.1: Vectors $\vec{y_v}$ embedded onto a unit sphere in \mathbb{R}^d .

Figure 10.1: Vectors $\vec{y_v}$ embedded onto a unit sphere in \mathbb{R}^d .

• Let
$$\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$$

Figure 10.1: Vectors $\vec{y_v}$ embedded onto a unit sphere in \mathbb{R}^d .

- Let $\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$
- \bullet for any edge, want $\gamma_{\it uv}\approx -1$, as this maximizes our weight

Figure 10.1: Vectors $\vec{y_v}$ embedded onto a unit sphere in \mathbb{R}^d .

- Let $\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$
- ullet for any edge, want $\gamma_{uv} pprox -1$, as this maximizes our weight
- ullet Geometrically, want vertices from our max-cut S to be as far away from the complement \overline{S} as possible

Figure 10.1: Vectors \vec{y}_v embedded onto a unit sphere in \mathbb{R}^d .

- Let $\gamma_{u,v} = y_u^T y_v = \cos(y_u, y_v)$
- \bullet for any edge, want $\gamma_{\it uv}\approx -1$, as this maximizes our weight
- ullet Geometrically, want vertices from our max-cut S to be as far away from the complement \overline{S} as possible
- If all y_v 's are in a one-dimensional space, then we get original quadratic program

Let's consider $G = K_3$ with equal weights on edges.

• Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle

- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:

- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:
- $OPT_{SDP}(K_3) = 3/4$
- $OPT_{max-cut}(K_3) = 2/3$

- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:
- $OPT_{SDP}(K_3) = 3/4$
- $OPT_{max-cut}(K_3) = 2/3$
- So we get approximation 8/9 (better than the LP relaxation)

- Embed $y_1, y_2, y_3 \in \mathbb{R}^2$ 120 degrees apart in unit circle
- We get:
- $OPT_{SDP}(K_3) = 3/4$
- $OPT_{max-cut}(K_3) = 2/3$
- So we get approximation 8/9 (better than the LP relaxation)
- **Practice problem:** try this with C_5 .

1 Let $y_u \in \mathbb{R}^n$ be an optimal solution to our SDP

- **1** Let $y_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 4 How do we convert it into a cut?

- **1** Let $y_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 2 How do we convert it into a cut?
- Need to "pick sides"

- **1** Let $y_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 2 How do we convert it into a cut?
- Need to "pick sides"
- Goemans, Williamson 1994]: Choose a random hyperplane though origin!

- **1** Let $y_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 4 How do we convert it into a cut?
- Need to "pick sides"
- Goemans, Williamson 1994]: Choose a random hyperplane though origin!
- **5** Choose normal vector $g \in \mathbb{R}^n$ from a Gaussian distribution.
- **o** Set $x_u = sign(g^T y_u)$ as our solution

- **1** Let $y_u \in \mathbb{R}^n$ be an optimal solution to our SDP
- 2 How do we convert it into a cut?
- Need to "pick sides"
- Goemans, Williamson 1994]: Choose a random hyperplane though origin!
- **Output** Choose normal vector $g \in \mathbb{R}^n$ from a Gaussian distribution.
- **o** Set $x_u = sign(g^T y_u)$ as our solution

Figure 10.2: Vectors being separated by a hyperplane with normal \vec{g} .

Facts we need

• We can pick a random hyperplane through origin in polynomial time. sample vector $g=(g_1,\ldots,g_n)$ by drawing $g_i\in\mathcal{N}(0,1)$

Facts we need

- We can pick a random hyperplane through origin in polynomial time. sample vector $g=(g_1,\ldots,g_n)$ by drawing $g_i\in\mathcal{N}(0,1)$
- If g' is the projection of g onto a two dimensional plane, then $g'/\|g'\|_2$ is *uniformly distributed* over the unit circle in this plane.

Analysis of Rounding

• Probability that edge $\{u, v\}$ crosses the cut is same as probability that y_u, y_v fall in different sides of hyperplane

$$Pr[\{u, v\} \text{ crosses cut }] = Pr[g \text{ splits } y_u, y_v]$$

Analysis of Rounding

• Probability that edge $\{u, v\}$ crosses the cut is same as probability that y_u, y_v fall in different sides of hyperplane

$$Pr[\{u,v\} \text{ crosses cut }] = Pr[g \text{ splits } y_u,y_v]$$

• Looking at the problem in the plane:

Figure 10.3: The plane of two vectors being cut by the hyperplane

Analysis of Rounding

• Probability that edge $\{u, v\}$ crosses the cut is same as probability that y_u, y_v fall in different sides of hyperplane

$$\Pr[\{u,v\} \text{ crosses cut }] = \Pr[g \text{ splits } y_u,y_v]$$

• Looking at the problem in the plane:

Figure 10.3: The plane of two vectors being cut by the hyperplane

• Probability of splitting y_u, y_v :

$$\Pr[\{u, v\} \text{ crosses cut}] = \frac{\theta}{\pi} = \frac{\cos^{-1}(y_u^T y_v)}{\pi} = \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

• Expected value of cut:

$$\mathbb{E}[\mathsf{value} \; \mathsf{of} \; \mathsf{cut}] = \sum_{\{u,v\} \in E} w_{u,v} \cdot \frac{\mathsf{cos}^{-1}(\gamma_{uv})}{\pi}$$

Expected value of cut:

$$\mathbb{E}[\text{value of cut}] = \sum_{\{u,v\} \in E} w_{u,v} \cdot \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

Recall that

$$OPT_{SDP} = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - y_u^T y_v\right) = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot (1 - \gamma_{uv})$$

• Expected value of cut:

$$\mathbb{E}[\text{value of cut}] = \sum_{\{u,v\} \in E} w_{u,v} \cdot \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

Recall that

$$OPT_{SDP} = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - y_u^T y_v\right) = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - \gamma_{uv}\right)$$

• If we find α such that

$$\frac{\cos^{-1}(\gamma_{uv})}{\pi} \ge \frac{\alpha}{2}(1 - \gamma_{uv}), \text{ for all } \gamma_{uv} \in [-1, 1]$$

Then we have an α -approximation algorithm!

• Expected value of cut:

$$\mathbb{E}[\text{value of cut}] = \sum_{\{u,v\} \in E} w_{u,v} \cdot \frac{\cos^{-1}(\gamma_{uv})}{\pi}$$

Recall that

$$OPT_{SDP} = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - y_u^T y_v\right) = \sum_{\{u,v\} \in E} \frac{1}{2} \cdot w_{u,v} \cdot \left(1 - \gamma_{uv}\right)$$

• If we find α such that

$$\frac{\cos^{-1}(\gamma_{uv})}{\pi} \ge \frac{\alpha}{2}(1 - \gamma_{uv}), \text{ for all } \gamma_{uv} \in [-1, 1]$$

Then we have an α -approximation algorithm!

• For $x \in [-1, 1]$, we have

$$\frac{\cos^{-1}(x)}{\pi} \ge 0.878 \cdot \frac{1-x}{2}$$

proof by elementary calculus.

Conclusion of rounding algorithm

Formulate Max-Cut problem as Quadratic Programming

- Formulate Max-Cut problem as Quadratic Programming
- ② Derive SDP from the quadratic program

SDP relaxation

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program
 SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

- Formulate Max-Cut problem as Quadratic Programming
- ② Derive SDP from the quadratic program SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

Solve SDP optimally using efficient algorithm.

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program
 SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

- Solve SDP optimally using efficient algorithm.
 - If solution to SDP is integral and one dimensional, then it is a solution to Max-Cut and we are done

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program
 SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

- Solve SDP optimally using efficient algorithm.
 - If solution to SDP is integral and one dimensional, then it is a solution to Max-Cut and we are done
 - If have higher dimensional solutions, rounding procedure Random Hyperplane Cut algorithm, we get

 $\mathbb{E}[\mathsf{cost}(\mathsf{rounded\ solution})] \geq 0.878 \cdot \mathit{OPT}(\mathit{SDP}) \geq 0.878 \cdot \mathit{OPT}(\mathsf{Max-Cut})$

- Formulate Max-Cut problem as Quadratic Programming
- Oerive SDP from the quadratic program
 SDP relaxation
- We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$OPT(SDP) \ge OPT(Max-Cut)$$

- Solve SDP optimally using efficient algorithm.
 - If solution to SDP is integral and one dimensional, then it is a solution to Max-Cut and we are done
 - If have higher dimensional solutions, rounding procedure Random Hyperplane Cut algorithm, we get

 $\mathbb{E}[\mathsf{cost}(\mathsf{rounded\ solution})] \geq 0.878 \cdot \mathit{OPT}(\mathit{SDP}) \geq 0.878 \cdot \mathit{OPT}(\mathsf{Max-Cut})$

3 With constant probability, our solution will be $\geq 0.878OPT(Max-Cut)$

 SDPs are very powerful for solving (approximating) many hard problems

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

Other applications in robust statistics, via the SDP & Sum-of-Squares connection

https://arxiv.org/abs/1711.11581

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

 $\verb|https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf|$

Other applications in robust statistics, via the SDP & Sum-of-Squares connection

https://arxiv.org/abs/1711.11581

Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

- SDPs are very powerful for solving (approximating) many hard problems
- Recent and exciting work, driven by *Unique Games Conjecture* (UGC), shows that if UGC is true, then all these approximation algorithms are *tight*!

 $\verb|https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf|$

Other applications in robust statistics, via the SDP & Sum-of-Squares connection

https://arxiv.org/abs/1711.11581

Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!

Conclusion

- Mathematical programming very general, and pervasive in (combinatorial) algorithmic life
- Mathematical Programming hard in general
- Sometimes can get SDP rounding!
- Solve SDP and round the solution
 - Deterministic rounding when solutions are nice
 - Randomized rounding when things a bit more complicated

Acknowledgement

- Lecture based largely on:
 - Lecture 14 of Anupam Gupta and Ryan O'Donnell's Optimization class https://www.cs.cmu.edu/~anupamg/adv-approx/
 - Chapter 6 of book [Williamson, Shmoys 2010]
- See their notes at

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture14.pdf

References I

Delorme, Charles, and Svatopluk Poljak (1993)

Laplacian eigenvalues and the maximum cut problem.

Mathematical Programming 62.1-3 (1993): 557-574.

Goemans, Michel and Williamson, David 1994

0.879-approximation algorithms for Max Cut and Max 2SAT.

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing. 1994

Williamson, David and Shmoys, David 2010

Design of Approximation Algorithms

Cambridge University Press