Lecture 16: Semidefinite Programming Relaxation and
MAX-CUT

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

June 9, 2025

1/56

Overview

@ Max-Cut SDP Relaxation & Rounding

@ Conclusion

@ Acknowledgements

2/56

Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

3/56

Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
@ Formulate optimization problem as QP

4/56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
@ Formulate optimization problem as QP
@ Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint
This is called an SDP relaxation.

5/56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
@ Formulate optimization problem as QP
@ Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint
This is called an SDP relaxation.
© We are still maximizing the same objective function, but over a
(potentially) larger set of solutions.

OPT(SDP) > OPT(QP)

6/56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
@ Formulate optimization problem as QP
@ Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint
This is called an SDP relaxation.
© We are still maximizing the same objective function, but over a
(potentially) larger set of solutions.
OPT(SDP) > OPT(QP)
© Solve SDP (approximately) optimally using efficient algorithm.

7/56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
@ Formulate optimization problem as QP
@ Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint
This is called an SDP relaxation.
© We are still maximizing the same objective function, but over a
(potentially) larger set of solutions.
OPT(SDP) > OPT(QP)

© Solve SDP (approximately) optimally using efficient algorithm.
@ If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

8/56

Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
@ Formulate optimization problem as QP
@ Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint
This is called an SDP relaxation.
© We are still maximizing the same objective function, but over a
(potentially) larger set of solutions.
OPT(SDP) > OPT(QP)

© Solve SDP (approximately) optimally using efficient algorithm.
@ If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done
@ If solution has higher dimension, then we have to devise rounding
procedure that transforms
high dimensional solutions — integral & 1D solutions

rounded SDP solution value > ¢ - OPT(QP)

9/56

Max-Cut

Maximum Cut (Max-Cut):
G(V,E) graph.

Cut S C V and size of cut is

|E(S,S)| = {(u,v)€E | ueS,vgS}|.

Goal: find cut of maximum size.

10/56

Example - Weighted Variant

Maximum Cut (Max-Cut):
G(V, E,w) weighted graph. > gwe =1

Cut S C V and weight of cut is the sum of weights of edges crossing cut.
Goal: find cut of maximum weight.

11/56

Max-Cut
G(V, E,w) weighted graph. > o we =1

Quadratic Program:

1
maximize Z —wyy - (1 —xuxy)

{u,v}eE
subject to x2 =1 forv e V

12/56

SDP Relaxation [Delorme, Poljak 1993]
G(V, E,w) weighted graph, |V|=nand } " pwe=1
Semidefinite Program:
- 1 T
maximize Z 5 Wy - (1 — Y yv>
{u,v}€E

subject to ||y, |3 =1 forve V
Yv € RY forv eV

13/56

SDP Relaxation [Delorme, Poljak 1993]
G(V, E,w) weighted graph, |V|=nand } " pwe=1
Semidefinite Program:
- 1 T
maximize Z 5 Wy - (1 — Y yv>
{u,v}€E

subject to ||y, |3 =1 forve V
Yv € RY forv eV

14 /56

What is this SDP doing?

o

3
Figure 10.1: Vectors 4, embedded onto a unit sphere in R

15 /56

What is this SDP doing?

o

—

Y2
U3

Figure 10.1: Vectors 4, embedded onto a unit sphere in R

o Let vy =y yv = cos(yu, 1)

16 /56

What is this SDP doing?

o

—

Y2
3
Figure 10.1: Vectors 4, embedded onto a unit sphere in R

o Let vuy =y yv = cos(yu, yv)
o for any edge, want ,, =~ —1, as this maximizes our weight

17/56

What is this SDP doing?

—

Y2
U3

Figure 10.1: Vectors 4, embedded onto a unit sphere in R

o Let vuy =y yv = cos(yu, yv)
o for any edge, want ,, =~ —1, as this maximizes our weight

@ Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible

18/56

What is this SDP doing?

—

Y2
Y3

Figure 10.1: Vectors 4, embedded onto a unit sphere in R

Let yuv = yL;r}/v = cos(yu, yv)

for any edge, want ,, &= —1, as this maximizes our weight
Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible

o If all y,'s are in a one-dimensional space, then we get original
quadratic program

OPT(SDP) > Weight of MaximumCut

19/56

Example

Let's consider G = K3 with equal weights on edges.

20/56

Example

Let's consider G = K3 with equal weights on edges.

e Embed y1, yo, y3 € R? 120 degrees apart in unit circle

21/56

Example

Let's consider G = K3 with equal weights on edges.
e Embed y1, yo, y3 € R? 120 degrees apart in unit circle
o We get:

22/56

Example

Let's consider G = K3 with equal weights on edges.
e Embed y1, yo, y3 € R? 120 degrees apart in unit circle
o We get:
e OPTspp(K3) =3/4
® OPTmax-cut(K3) =2/3

23/56

Example

Let's consider G = K3 with equal weights on edges.
e Embed y1, yo, y3 € R? 120 degrees apart in unit circle
o We get:
e OPTspp(K3) =3/4
® OPTmax-cut(K3) =2/3
@ So we get approximation 8/9 (better than the LP relaxation)

24 /56

Example

Let's consider G = K3 with equal weights on edges.
e Embed y1, yo, y3 € R? 120 degrees apart in unit circle
o We get:
OPTspp(K3) = 3/4
® OPTmax-cut(K3) =2/3
@ So we get approximation 8/9 (better than the LP relaxation)
°

Practice problem: try this with Gs.

25 /56

Max-Cut - Rounding

@ Let y, € R" be an optimal solution to our SDP

26/56

Max-Cut - Rounding

@ Let y, € R" be an optimal solution to our SDP
@ How do we convert it into a cut?

27 /56

Max-Cut - Rounding

@ Let y, € R" be an optimal solution to our SDP
@ How do we convert it into a cut?
© Need to “pick sides”

28/56

Max-Cut - Rounding

@ Let y, € R" be an optimal solution to our SDP
@ How do we convert it into a cut?
© Need to “pick sides”

© [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

29/56

Max-Cut - Rounding

@ Let y, € R" be an optimal solution to our SDP

@ How do we convert it into a cut?

© Need to “pick sides”

© [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

© Choose normal vector g € R” from a Gaussian distribution.

@ Set x, = sign(g " y,) as our solution

30/56

Max-Cut - Rounding

@ Let y, € R" be an optimal solution to our SDP

@ How do we convert it into a cut?

© Need to “pick sides”

© [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

© Choose normal vector g € R” from a Gaussian distribution.

@ Set x, = sign(g " y,) as our solution

Figure 10.2: Vectors being separated by a hyperplane with normal g.

31/56

Facts we need

@ We can pick a random hyperplane through origin in polynomial time.

sample vector g = (g1, - .., &n) by drawing g; € N/(0,1)

32/56

Facts we need

@ We can pick a random hyperplane through origin in polynomial time.
sample vector g = (g1, - .., &n) by drawing g; € N/(0,1)

o If g’ is the projection of g onto a two dimensional plane, then
g'/llg’ |2 is uniformly distributed over the unit circle in this plane.

33/56

Analysis of Rounding

@ Probability that edge {u, v} crosses the cut is same as probability
that y,, y, fall in different sides of hyperplane

Pr[{u, v} crosses cut | = Pr[g splits y,, yy]

34/56

Analysis of Rounding

@ Probability that edge {u, v} crosses the cut is same as probability

that y,, y, fall in different sides of hyperplane
Pr[{u, v} crosses cut | = Pr[g splits y,, yy]

@ Looking at the problem in the plane:

K,/ i

Figure 10.3: The plane of two vectors being cut by the hyperplane

35/56

Analysis of Rounding

@ Probability that edge {u, v} crosses the cut is same as probability
that y,, y, fall in different sides of hyperplane

Pr[{u, v} crosses cut | = Pr[g splits y,, yy]

@ Looking at the problem in the plane:

K»/ i

Figure 10.3: The plane of two vectors being cut by the hyperplane

@ Probability of splitting y,, yv:

0
Pr[{u, v} crosses cut] = — = _
s

36/56

Analysis of Rounding
@ Expected value of cut:

cos™ ! (uv)
s

E[value of cut] = Z Wy,y -
{u,v}eE

37/56

Analysis of Rounding

@ Expected value of cut:

-1
E[value of cut] = Z Wy cos " (Yuv)
{uv}€E Q
@ Recall that
1 1
PTor= 3 L (1-0n) = ¥ om0
{u,v}cE {(uv)€E

38/56

Analysis of Rounding

@ Expected value of cut:

-1
E[value of cut] = Z Wy - cos™* (uv)

T
{u,v}eE
@ Recall that
1 T 1
OPTSDP: Z §'Wu,v'<1_YuYV): E‘Wu,v'(l_'Yuv)
{u,v}cE {u,v}€E
o If we find « such that
cos™ ! (yuv)

«
- > 5(1 — Yuv), forall v, €[-1,1]

Then we have an a-approximation algorithm!

39/56

Analysis of Rounding

@ Expected value of cut:

—1
cos " (Yuv)
E — L2 Vwv)
[value of cut] E Wy,v -
{u,v}€E
@ Recall that

1
O'DTSDP = Z 5 Wyt (1 — y,;ryv) =
{u,v}cE {u,v}€E

=

2 Way - (1 = Yuv)

o If we find « such that

-1
08 D) 5 41 u), forall e € 11
T
Then we have an a-approximation algorithm!
e For x € [-1,1], we have

—1 1_
o5 (x) - gg7g. L=X

proof by elementary calculus.

40/56

Conclusion of rounding algorithm

Da
41/56

Putting Everything Together

@ Formulate Max-Cut problem as Quadratic Programming

42/56

Putting Everything Together

@ Formulate Max-Cut problem as Quadratic Programming

@ Derive SDP from the quadratic program SDP relaxation

43 /56

Putting Everything Together

@ Formulate Max-Cut problem as Quadratic Programming
@ Derive SDP from the quadratic program SDP relaxation

© We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT(SDP) > OPT(Max-Cut)

44 /56

Putting Everything Together

@ Formulate Max-Cut problem as Quadratic Programming
@ Derive SDP from the quadratic program SDP relaxation

© We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT(SDP) > OPT (Max-Cut)
@ Solve SDP optimally using efficient algorithm.

45 /56

Putting Everything Together

@ Formulate Max-Cut problem as Quadratic Programming
@ Derive SDP from the quadratic program SDP relaxation

© We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT(SDP) > OPT(Max-Cut)

@ Solve SDP optimally using efficient algorithm.
@ |If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done

46 /56

Putting Everything Together

@ Formulate Max-Cut problem as Quadratic Programming
@ Derive SDP from the quadratic program SDP relaxation

© We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT(SDP) > OPT (Max-Cut)
@ Solve SDP optimally using efficient algorithm.
@ |If solution to SDP is integral and one dimensional, then it is a solution

to Max-Cut and we are done
@ If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] > 0.878-OPT(SDP) > 0.878-OPT (Max-Cut)

47/56

Putting Everything Together

@ Formulate Max-Cut problem as Quadratic Programming
@ Derive SDP from the quadratic program SDP relaxation

© We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT(SDP) > OPT(Max-Cut)

@ Solve SDP optimally using efficient algorithm.
@ |If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done
@ If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] > 0.878-OPT(SDP) > 0.878-OPT (Max-Cut)

@ With constant probability, our solution will be > 0.878 OPT (Max-Cut)

48 /56

Remarks

© SDPs are very powerful for solving (approximating) many hard
problems

49 /56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

© SDPs are very powerful for solving (approximating) many hard
problems

@ Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

50/56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

© SDPs are very powerful for solving (approximating) many hard
problems

@ Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

© Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

51 /56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

© SDPs are very powerful for solving (approximating) many hard
problems

@ Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

© Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581
@ Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

52/56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

© SDPs are very powerful for solving (approximating) many hard
problems

@ Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

© Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581
@ Connections to automated theorem proving
https://eccc.weizmann.ac.il/report/2019/106/
All of these are amazing final project topics!

53/56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Conclusion

o Mathematical programming - very general, and pervasive in
(combinatorial) algorithmic life

Mathematical Programming hard in general

Sometimes can get SDP rounding!
Solve SDP and round the solution

o Deterministic rounding when solutions are nice
e Randomized rounding when things a bit more complicated

54 /56

Acknowledgement

@ Lecture based largely on:
o Lecture 14 of Anupam Gupta and Ryan O’'Donnell's Optimization class
https://www.cs.cmu.edu/~anupamg/adv-approx/
o Chapter 6 of book [Williamson, Shmoys 2010]
@ See their notes at
https://www.cs.cmu.edu/~anupamg/adv-approx/lecturel4.pdf

55 / 56

https://www.cs.cmu.edu/~anupamg/adv-approx/
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture14.pdf

References |

ﬁ Delorme, Charles, and Svatopluk Poljak (1993)
Laplacian eigenvalues and the maximum cut problem.
Mathematical Programming 62.1-3 (1993): 557-574.

ﬁ Goemans, Michel and Williamson, David 1994
0.879-approximation algorithms for Max Cut and Max 2SAT.
Proceedings of the twenty-sixth annual ACM symposium on Theory of computing.
1994
ﬁ Williamson, David and Shmoys, David 2010
Design of Approximation Algorithms
Cambridge University Press

56 /56

	Max-Cut SDP Relaxation & Rounding
	Conclusion
	Acknowledgements

