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Working with Symmetric Matrices

Definition (Frobenius Inner Product)

A,B ∈ Sm, define the Frobenius inner product as

⟨A,B⟩ := tr[AB] =
∑
i ,j

AijBij

This is the “usual inner product” if you think of the matrices as
vectors

Thus, have the norm

∥A∥F =
√

⟨A,A⟩ =
√∑

i ,j

A2
ij

Also, if A ⪰ 0,B ⪰ 0, we have

⟨A,B⟩ ≥ 0
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Thus, have the norm
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With this norm, can talk about the polar dual to a given
spectrahedron S ⊆ Sm:

S◦ = {Y ∈ Sm | ⟨Y ,X ⟩ ≤ 1, ∀X ∈ S}
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

Where now:

the variables are encoded in a positive semidefinite matrix X ,

each constraint is given by an inner product ⟨Ai ,X ⟩ = bi

Note the similarity with LP standard primal. Can obtain LP standard
form by making X and Ai ’s to be diagonal

How is that an LMI though?
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Standard Primal Form as LMI

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0
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Example

minimize 2x11 + 2x12

subject to x11 + x22 = 1(
x11 x12
x12 x22

)
⪰ 0
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Semidefinite Programming Duality
Consider our SDP:

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

If we look at what happens when we multiply i th equality by a
variable yi :

t∑
i=1

yi · ⟨Ai ,X ⟩ =
t∑

i=1

yi · bi ⇒

〈
t∑

i=1

yiAi , X

〉
= yTb

Thus, if
t∑

i=1

yiAi ⪯ C , then we have:

yTb =

〈
t∑

i=1

yiAi , X

〉
≤ ⟨C ,X ⟩

yTb is a lower bound on the solution to our SDP!

15 / 64



Semidefinite Programming Duality
Consider our SDP:

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

If we look at what happens when we multiply i th equality by a
variable yi :

t∑
i=1

yi · ⟨Ai ,X ⟩ =
t∑

i=1

yi · bi ⇒

〈
t∑

i=1

yiAi , X

〉
= yTb

Thus, if
t∑

i=1

yiAi ⪯ C , then we have:

yTb =

〈
t∑

i=1

yiAi , X

〉
≤ ⟨C ,X ⟩

yTb is a lower bound on the solution to our SDP!

16 / 64



Semidefinite Programming Duality
Consider our SDP:

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

If we look at what happens when we multiply i th equality by a
variable yi :

t∑
i=1

yi · ⟨Ai ,X ⟩ =
t∑

i=1

yi · bi ⇒

〈
t∑

i=1

yiAi , X

〉
= yTb

Thus, if
t∑

i=1

yiAi ⪯ C , then we have:

yTb =

〈
t∑

i=1

yiAi , X

〉
≤ ⟨C ,X ⟩

yTb is a lower bound on the solution to our SDP!

17 / 64



Semidefinite Programming Duality
Consider our SDP:

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

If we look at what happens when we multiply i th equality by a
variable yi :

t∑
i=1

yi · ⟨Ai ,X ⟩ =
t∑

i=1

yi · bi ⇒

〈
t∑

i=1

yiAi , X

〉
= yTb

Thus, if
t∑

i=1

yiAi ⪯ C , then we have:

yTb =

〈
t∑

i=1

yiAi , X

〉
≤ ⟨C ,X ⟩

yTb is a lower bound on the solution to our SDP!
18 / 64



Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

Dual SDP

maximize yTb

subject to
t∑

i=1

yiAi ⪯ C

From previous slide
t∑

i=1

yiAi ⪯ C ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. Then

yTb ≤ ⟨C ,X ⟩.
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Complementary Slackness

Primal SDP

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

Dual SDP

maximize yTb

subject to
t∑

i=1

yiAi ⪯ C

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. If (X , y) satisfy the complementary slackness condition(

C −
t∑

i=1

yiAi

)
X = 0

Then (X , y) are primal and dual optimum solutions of the SDP problem.

Complementary slackness gives us sufficient conditions to check optimality
of our solutions.
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Strong Duality

Primal SDP

minimize ⟨C ,X ⟩
subject to ⟨Ai ,X ⟩ = bi

X ⪰ 0

Dual SDP

maximize yTb

subject to
t∑

i=1

yiAi ⪯ C

Strong duality in SDPs is a bit more complex than in LPs.
Both primal and dual may be feasible, and yet strong duality may not
hold!
But under mild conditions, strong duality holds!
Primal SDP is strictly feasible if there is feasible solution X ≻ 0.
Dual SDP is strictly feasible if there is feasible

∑t
i=1 yiAi ≺ C .

Theorem (Strong Duality under Slater Conditions)

If primal SDP and dual SDP are both strictly feasible, then

max dual = min of primal.
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Motivation - NP-hard problems
Quadratic Program (QP):

minimize g(x)

subject to qi (x) ≥ 0

where each qi (x) and g(x) are quadratic functions on x .

Advantage of QPs: very expressive language to formulate
optimization problems

Disadvantage of QPs: capture even NP-hard problems (ILPs for
instance)

Can relax quadratic programs with SDPs

Can we get better approximations using SDPs instead of ILPs?

Yes. Today and next lecture we will see Max-Cut (more generally
constraint satisfaction relaxations)

Very impressive recent theoretical developments! Unique Games
Conjecture, Sum-of-Squares, and more!
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Example
Maximum Cut (Max-Cut):

G (V ,E ) graph.

Cut S ⊆ V and size of cut is

|E (S ,S)| = |{(u, v) ∈ E | u ∈ S , v ̸∈ S}|.

Goal: find cut of maximum size.

Integer Linear Program:

maximize
∑
e∈E

ze

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

xv ∈ {0, 1} for v ∈ V
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Example - Weighted Variant

Maximum Cut (Max-Cut):

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Cut S ⊆ V and weight of cut is the sum of weights of edges crossing cut.
Goal: find cut of maximum weight.

Integer Linear Program:

maximize
∑
e∈E

ze · we

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

xv ∈ {0, 1} for v ∈ V
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Analyzing ILP for Max-Cut

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Integer Linear Program:

maximize
∑
e∈E

ze · we

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

xv ∈ {0, 1} for v ∈ V

OPT (ILP) = 1 ⇔ G is bipartite

OPT (ILP) ≥ 1/2

G complete graph ⇒ OPT = 1
2 + 1

2(n−1)

Max-Cut NP-hard
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2− xu − xv ≥ ze for e = {u, v} ∈ E

xv ∈ {0, 1} for v ∈ V

OPT (ILP) = 1 ⇔ G is bipartite

OPT (ILP) ≥ 1/2

G complete graph ⇒ OPT = 1
2 + 1

2(n−1)

Max-Cut NP-hard
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Proof that OPT (ILP) ≥ 1/2
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Rounding Max-Cut ILP

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Linear Program Relaxation:

maximize
∑
e∈E

ze · we

subject to xu + xv ≥ ze for e = {u, v} ∈ E

2− xu − xv ≥ ze for e = {u, v} ∈ E

0 ≤ xv ≤ 1 for v ∈ V

0 ≤ ze ≤ 1 for e ∈ E

Setting xv = 1/2, ze = 1 we get OPT (LP) always = 1

This relaxation is not helpful! :(
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Relax, get high (SDP)... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP1

2 Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

1Even more general mathematical program, so long as derive SDP from it.
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Max-Cut

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Quadratic Program:

maximize
∑

{u,v}∈E

1

2
· wu,v · (1− xuxv )

subject to x2v = 1 for v ∈ V

59 / 64



SDP Relaxation [Delorme, Poljak 1993]

G (V ,E ,w) weighted graph, |V | = n and
∑

e∈E we = 1

Semidefinite Program:

maximize
∑

{u,v}∈E

1

2
· wu,v ·

(
1− yTu yv

)
subject to ∥yv∥22 = 1 for v ∈ V

yv ∈ Rd for v ∈ V

How is that an SDP?
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Conclusion

Mathematical programming - very general, and pervasive in
(combinatorial) algorithmic life

Mathematical Programming hard in general

Sometimes can get SDP rounding!

Next lecture Max-Cut SDP rounding.

Solve SDP and round the solution

Deterministic rounding when solutions are nice
Randomized rounding when things a bit more complicated
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