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Motivation - NP-hard problems

@ Many important optimization problems are NP-hard to solve.
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Motivation - NP-hard problems

Many important optimization problems are NP-hard to solve.
What do we do when we see one?

© Find approximate solutions in polynomial time!
@ Sometimes we even do that for problems in P (but we want much
much faster solutions)

Integer Linear Program (ILP):

minimize ¢’ x

subject to Ax < b
x e N

Advantage of ILPs: very expressive language to formulate
optimization problems (capture many combinatorial optimization
problems)

Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)

(]

But we know how to solve LPs. Can we get partial credit in life?
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Example

Maximum Independent Set:
G(V, E) graph.

Independent set S C V such that u,v € S = {u,v} € E.
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Example

Maximum Independent Set:
G(V, E) graph.
Independent set S C V such that u,v € S = {u,v} € E.

Integer Linear Program:

maximize E Xy

subject to x, +x, <1 for {u,v} € E
x, € {0,1} forv eV
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Relax... & Round!

In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:
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Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

@ Formulate combinatorial optimization problem as ILP

@ Derive LP from the ILP by removing the integral constraints

This is called an LP relaxation.
© We are still minimizing the same objective function, but over a
(potentially) larger set of solutions.
opt(LP) < opt(ILP)
@ Solve LP optimally using efficient algorithm.

@ If solution to LP has integral values, then it is a solution to ILP and we

are done
@ If solution has fractional values, then we have to devise rounding

procedure that transforms
fractional solutions — integral solutions

opt(LP) < rounded solution < c - opt(ILP)
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Not all LPs created equal
When solving LP

minimize ¢’ x
subjectto Ax=0b
x>0
it is important to understand geometry of feasible set & how nice the
corner points are, as they are the candidates to optimum solution.
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Not all LPs created equal
When solving LP

minimize ¢’ x

subjectto Ax=0b
x>0

it is important to understand geometry of feasible set & how nice the
corner points are, as they are the candidates to optimum solution.

Let P:= {x € R, | Ax = b}

Vertex Solutions: a solution x € P is a vertex solution if Ay #0
such that x+y € Pandx—y € P

Extreme Point Solutions: x € P is an extreme point solution if
Ju € R” such that x is the unique optimum solution to the LP with

constraint P and objective u” x.

Basic Solutions: let supp(x) := {i € [n] | x; > 0} be the set of
nonzero coordinates of x. Then x € P is a basic solution < the
columns of A indexed by supp(x) are linearly independent.
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Not all LPs created equal

o Let P:={xeRL, | Ax = b}
o Vertex Solutions: a solution x € P is a vertex solution if Ay # 0
such that x+y € Pandx—y € P

o Extreme Point Solutions: x € P is an extreme point solution if
Ju € R" such that x is the unique optimum solution to the LP with
constraint P and objective u’

e Basic Solutions: let supp(x) := {i € [n] | x; > 0} be the set of
nonzero coordinates of x. Then x € P is a basic solution < the
columns of A indexed by supp(x) are linearly independent.

Proposition
The three definitions above are equivalent!

See https://cs.uwaterloo.ca/~lapchi/cs466-2020/notes/L17.pdf for a proof.

X.
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Vertex Cover

Setup:
e Input: a graph G(V,E).
@ Output: Minimum number of vertices that "touches” all edges of
graph. That is, minimum set S such that for each edge {u,v} € E

we have
|ISN{u,v} > 1.
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e Input: a graph G(V,E).
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graph. That is, minimum set S such that for each edge {u,v} € E
we have

|ISN{u,v} > 1.
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Vertex Cover

Setup:

e Input: a graph G(V,E).

@ Output: Minimum number of vertices that "touches” all edges of
graph. That is, minimum set S such that for each edge {u,v} € E
we have

|ISN{u,v} > 1.
@ Weighted version: associate to each vertex v € V a cost ¢, € Rxq.

@ Setup ILP:
minimize Z Cu " Xy
ueV
subject to x, +x, > 1 for {u,v} € E
xy € {0,1} forue V
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Simple 2-approximation (unweighted)

@ List edges of E in any order. Set S =)
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Simple 2-approximation (unweighted)

@ List edges of E in any order. Set S = ()
@ For each {u,v} € E:
o IfSN{u,v}i =0 then S+ SU{u,v}

© return S
Proof of correctness:
@ By construction, S is a vertex cover.

o If added elements to S k times, then |S| = 2k and G has a matching
of size k, which means that optimum vertex cover is at least k.
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Simple 2-approximation (unweighted)

@ List edges of E in any order. Set S = ()
@ For each {u,v} € E:
® If SN{u,v} =0, then S+ SU{u,v}
© return S
Proof of correctness:
@ By construction, S is a vertex cover.

o If added elements to S k times, then |S| = 2k and G has a matching
of size k, which means that optimum vertex cover is at least k.

@ Thus, we get a 2-approximation.
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What can go wrong in the weighted case?

Original Algo Heuristic: pick lowest weight only
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Vertex Cover - LP relaxation
© Setup ILP:
minimize Z Cu " Xy
ueV

subject to x, +x, > 1 for {u,v} € E
x, € {0,1} forue V
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Vertex Cover - LP relaxation

© Setup ILP:

minimize Z Cu " Xy
ueVv
subject to x, +x, > 1 for {u,v} € E

x, € {0,1} forue V

@ Drop integrality constraints

minimize Z Cu* Xy
ueV
subject to x, +x, > 1 for {u,v} € E

0<x,<1 forueV
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Vertex Cover - LP relaxation

© Setup ILP:

minimize Z Cu " Xy
ueVv
subject to x, +x, > 1 for {u,v} € E

x, € {0,1} forue V
@ Drop integrality constraints
minimize Z Cu* Xy
ueV

subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

© Solve LP. Get optimal solution z for LP, where z = (z,),ecv .
@ Round LP as follows: round z, to nearest integer.
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Vertex Cover - Analysis
© Drop integrality constraints
minimize Z Cu* Xu
ueV
subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

@ Solve LP. Get optimal solution z for LP.
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Vertex Cover - Analysis

© Drop integrality constraints

minimize Z Cu " Xy
ueVv
subject to x, +x, > 1 for {u,v} € E
0<x,<1 forueV

@ Solve LP. Get optimal solution z for LP.

1, ifz, >1/2

© Round z, to nearest integer. That is y, =
v g v {o, if0<z <1/2

Note that y, < 2z,
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Vertex Cover - Analysis
© Drop integrality constraints
minimize Z Cu* Xu
ueV
subject to x, +x, > 1 for {u,v} € E
0<x, <1 forueV

@ Solve LP. Get optimal solution z for LP.
1, ifz,>1/2

© Round z, to nearest integer. Thatis y, = ¢ I zv =1
0,if0<z <1/2

@ vy is an integral cover by construction

© each edge is covered, since given {u, v} € E, at least one of z,, z, is
> 1/2 (by feasibility of LP)
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Vertex Cover - Analysis

@ Solve LP. Get optimal solution z for LP.
1, ifz,>1/2
© Round z, to nearest integer. Thatis y, = ¢ I zv =1/
0,if0<z <1/2
@ vy is an integral cover by construction

© each edge is covered, since given {u, v} € E, at least one of z,, z, is
> 1/2 (by feasibility of LP)
@ Cost of y is:

S <Y e (2-2,) <2- OPT(ILP)

ueV ueVv
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@ Set Cover
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Set Cover

Setup:
@ Input: a finite set U and a collection 51, 5,,...,S, of subsets of U.
@ Output: The fewest collection of sets / C [n] such that

Usi=v.

i€l
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Set Cover

Setup:
@ Input: a finite set U and a collection 51, 5,,...,S, of subsets of U.
@ Output: The fewest collection of sets / C [n] such that

U&:u

i€l

@ Weighted version: associate to each set S; a weight w; € R>o.
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Set Cover

Setup:
@ Input: a finite set U and a collection 51, 5,,...,S, of subsets of U.
@ Output: The fewest collection of sets / C [n] such that

Usi=v.
iel
@ Weighted version: associate to each set S; a weight w; € R>o.

@ Setup ILP:

subject to Z x;>1 forveU
i s.t. VE€S;

x; € {0,1} for i € [n]
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Set Cover - Relax...

@ Obtain LP relaxation:

subject to Z x;>1 forvelU
i s.t. véS§;

0<x <1 forieln
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subject to Z x;>1 forvelU
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@ Suppose we end up with fractional solution z € [0, 1]” when we solve
the LP above. Now need to come up with a rounding scheme.
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Set Cover - Relax...

@ Obtain LP relaxation:

subject to Z x;>1 forvelU
i s.t. véS§;

0<x <1 forieln

@ Suppose we end up with fractional solution z € [0, 1]” when we solve
the LP above. Now need to come up with a rounding scheme.

© Can we just round each coordinate z; to the nearest integer (like in
vertex cover)?

@ Not really. Say v € U is in 20 sets, and we got z; = 1/20 for each of
the sets v € S;. Then rounding procedure above would not select any
such set!

54 /102



Set Cover - Rounding

© Think of z as the “probability” that we would pick set S;.
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Algorithm (Random Pick)
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Set Cover - Rounding

© Think of z as the “probability” that we would pick set S;.

@ Solution z describes an “optimal probability distribution” over ways
to chose the sets S;.

© Okay, but how do we cover?

Algorithm (Random Pick)
@ Input: z=(z,...,2,) € [0,1]" such that z is OPT solution to our LP

@ Output: a set cover for U
0 Setl =1
Q fori=1,...n

e with probability z;, set | = I U {i}

return |

(]

© Expected cost of the sets is > ", w; - z;, which is the optimum for
the LP. But will this process cover U?

62/102



Analyzing Random Pick

Let's consider the Random Pick process from point of view of v € U.
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Let's consider the Random Pick process from point of view of v € U.
e veES,. .., S (for simplicity)
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o We select S; with probability z; such that

k
ZZ,’ >1
i=1

Because z is a solution to our LP
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Analyzing Random Pick

Let's consider the Random Pick process from point of view of v € U.
e veES. .., S (for simplicity)
@ As long as we select one of S;'s above we are good (w.r.t. v)

o We select S; with probability z; such that

k
IEEE
i=1
Because z is a solution to our LP

@ What is probability that v is covered in Random Pick?
@ Definitely not 1. Think about case k =2 and z; = zp = 1/2.
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Analyzing Random Pick

Let's consider the Random Pick process from point of view of v € U.
e veES. .., S (for simplicity)
@ As long as we select one of S;'s above we are good (w.r.t. v)

o We select S; with probability z; such that

k
ZZ,’ >1
i=1

Because z is a solution to our LP

What is probability that v is covered in Random Pick?
Definitely not 1. Think about case k =2 and z; = zp = 1/2.

(]

If had many elements like that, would expect many elements
uncovered. How to deal with this?
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Analyzing Random Pick

Let's consider the Random Pick process from point of view of v € U.
e veES. .., S (for simplicity)
@ As long as we select one of S;'s above we are good (w.r.t. v)

o We select S; with probability z; such that

k
ZZ,’ >1
i=1

Because z is a solution to our LP

What is probability that v is covered in Random Pick?
Definitely not 1. Think about case k =2 and z; = zp = 1/2.

@ If had many elements like that, would expect many elements
uncovered. How to deal with this?

@ By perseverance! :)
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Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith experiment
has success probability p;, and

K
Zpi >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.
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Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith experiment
has success probability p;, and

K
ZP/‘ >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.

@ Probability that no experiment is successful:

(1=p1)-(1—=p2)--- (1= px)
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Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith experiment
has success probability p;, and

K
ZP/‘ >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.

@ Probability that no experiment is successful:

(L=p1) - (L=p2)-- (1= px)
o 1—x<e*forxe|01]
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Probability that Element is Covered

Lemma (Probability of Covering an Element)

In a sequence of k independent experiments, in which the ith experiment
has success probability p;, and

K
ZP/‘ >1
i=1

then there is a probability > 1 — 1/e that at least one experiment is
successful.

@ Probability that no experiment is successful:

(L=p1) (L=p2)- (1= pi)
o 1—x<e*forxe|01]
@ Thus probability of failure is

k k
H(l _ Pi) < H e Pi = g P17 Pk < 1/e
i=1 i=1

74 /102



Randomized Rounding

Algorithm (Randomized Rounding)

@ Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP

@ Output: a set cover for U
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Randomized Rounding

Algorithm (Randomized Rounding)

@ Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP
@ Output: a set cover for U
Q Setl =1

© While there is element v € U uncovered:
Fori=1,...,n:
o with probability z;, set | = | U {i}

@ return |
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Randomized Rounding

Algorithm (Randomized Rounding)

@ Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP
@ Output: a set cover for U
Q Set/ =10
@ While there is element v € U uncovered:
Fori=1,...,n:
o with probability z;, set | = U {i}
Q return | )

To analyze this, need to show that we don't execute the for loop too many
times.
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Randomized Rounding

Algorithm (Randomized Rounding)

@ Input: values z = (z1,...,2,) € [0,1]" s.t. z is a solution to our LP
@ Output: a set cover for U
Q Set/ =10
@ While there is element v € U uncovered:
Fori=1,...,n:
o with probability z;, set | = U {i}
Q return | )

To analyze this, need to show that we don't execute the for loop too many
times.

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than
In(JU|) + t times is at most e~ *.
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Proof of Lemma

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than
In(JU|) + t times is at most e *.

@ Probability that for loop is executed more than In(|U]|) + t times is

the probability that there is an uncovered element after the
In(|U|) + t iteration.
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Proof of Lemma
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Proof of Lemma

Lemma (Probability Decay)

Let t € N. The probability that the for loop will be executed more than

In(JU|) + t times is at most e *.

@ Probability that for loop is executed more than In(|U]|) + t times is
the probability that there is an uncovered element after the
In(|U|) + t iteration.

@ Let v € U. For each iteration of the loop, there is a probability of 1/e
that v is not covered. (by our previous lemma)

@ Probability that v not covered after In(|U|) + t iterations is

<1>|n(U|)+t 1 L
— = —.¢
e U

@ Union bound.
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Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.
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Cost of Rounded Solution

Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.
@ At each implementation of for loop, our expected cover weight is

n
E w; - Z;
i=1

o After t iterations of for loop, expected weight is
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Cost of Rounded Solution
Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.

@ At each implementation of for loop, our expected cover weight is

n
E w; - Z;
i=1

o After t iterations of for loop, expected weight is

n

w::t‘Zsz,-

i=1
e By Markov:
Pr[X >2-E[X]] <1/2.
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Cost of Rounded Solution
Now that we know we will cover with high probability, we need to bound
the cost of the solution we came up with.

@ At each implementation of for loop, our expected cover weight is

n
Z w; - Z;
i=1
o After t iterations of for loop, expected weight is
n
w:=t- Z W; - Zj
i=1

e By Markov:
Pr[X >2-E[X]] <1/2.

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U]) +3) - OPT(ILP) sets
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@ Let t = In(JU|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.
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Given z optimal for the LP, our randomized rounding outputs, with
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Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
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@ Let t = In(JU|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.

@ After t steps, expected weight is
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© Markov = probability that our solution has weight > 2w is < 1/2

@ Union bound, with probability < 0.55 either run for more than ¢
times, or our solution has weight > 2w
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Cost of Rounding

Lemma (Cost of Rounding)

Given z optimal for the LP, our randomized rounding outputs, with
probability > 0.45 a feasible solution to set cover with
<2-(In(|U|) +3) - OPT(ILP) sets

@ Let t = In(JU|) + 3. There is a probability at most e~3 < 0.05 that
while loop runs for more than t steps.

@ After t steps, expected weight is
w:=t-Y w-z <t-OPT(ILP)

© Markov = probability that our solution has weight > 2w is < 1/2

@ Union bound, with probability < 0.55 either run for more than ¢
times, or our solution has weight > 2w

© Thus, with probability > 0.45 we stop at t iterations and construct
solution to set cover with cost < 2t - OPT(ILP)
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Putting Everything Together

@ Formulate set cover problem as ILP
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© We are still minimizing the same objective function (weight of cover),
but over a (potentially) larger (fractional) set of solutions.

OPT(LP) < OPT(ILP)
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Putting Everything Together

@ Formulate set cover problem as ILP
@ Derive LP from the ILP LP relaxation
© We are still minimizing the same objective function (weight of cover),
but over a (potentially) larger (fractional) set of solutions.
OPT(LP) < OPT(ILP)
@ Solve LP optimally using efficient algorithm.
@ |If solution to LP has integral values, then it is a solution to ILP and we

are done
@ If have fractional values, rounding procedure

Randomized Rounding algorithm, with probability > 0.45 we get

cost(rounded solution) < 2 (In(|U]) 4+ 3) - OPT(ILP)
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Conclusion

Integer Linear programming - very general, and pervasive in
(combinatorial) algorithmic life

ILP NP-hard

Rounding for the rescue!

Solve LP and round the solution

o Deterministic rounding when solutions are nice
e Randomized rounding when things a bit more complicated
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