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Mathematical Programming
Mathematical Programming deals with problems of the form

minimize f (x)

subject to g1(x) ≤ 0

...

gm(x) ≤ 0

x ∈ Rn

Very general family of problems.

Special case is when all functions f , g1, . . . , gm are linear functions
(called Linear Programming - LP for short)

Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]

Formally studied & importance of LP recognized in 1940’s by
Dantzig, Kantorovich, Koopmans and von Neumann.
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What is a Linear Program?

A linear function f : Rn → R is given by

f (x) = c1 · x1 + . . .+ cn · xn + b = cT x + b

Linear Programming deals with problems of the form

minimize cT x

subject to AT
1 x ≤ b1
...

AT
mx ≤ bm

x ∈ Rn
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

Stock portfolio optimization:

n companies, stock of company i costs ci ∈ R
company i has expected profit pi ∈ R
our budget is B ∈ R

maximize p1 · x1 + · · ·+ pn · xn
subject to c1 · x1 + · · ·+ cn · xn ≤ B

x ≥ 0

Other problems, such as data fitting, linear classification can be
modelled as linear programs.
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Important Questions

minimize cT x

subject to Ax = b

x ≥ 0

1 When is a Linear Program feasible?

Is there a solution to the constraints at all?

2 When is a Linear Program bounded?

Is there a minimum? Or is the minimum −∞?

3 Can we characterize optimality?

How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Linear Programs?
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Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1, . . . , am, b ∈ Rn, and t := rank{a1, . . . , am, b}. Then either

1 b is a non-negative linear combination of linearly independent vectors
from a1, . . . , am, or

2 there exists a hyperplane H := {x | cT x = 0} s.t.

cTb < 0
cTai ≥ 0
H contains t − 1 linearly independent vectors from a1, . . . , am

Remark

Any hyperplane H with the above property is known as a separating
hyperplane.
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Farkas’ Lemma

Lemma (Farkas Lemma)

Let A ∈ Rm×n and b ∈ Rm. The following are equivalent:

1 There exists x ∈ Rn such that x ≥ 0 and Ax = b

2 yTb ≥ 0 for each y ∈ Rm such that yTA ≥ 0

Equivalent formulation

Lemma (Farkas Lemma - variant 1)

Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following statements
hold:

1 There exists x ∈ Rn such that x ≥ 0 and Ax = b

2 There exists y ∈ Rm such that yTb > 0 and yTA ≤ 0
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Farkas’ Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let A ∈ Rm×n and b ∈ Rm. The following are equivalent:

1 There exists x ∈ Rn such that Ax ≤ b

2 yTb ≥ 0 for each y ≥ 0 such that yTA = 0

Let M = [I A − A]. Then Ax ≤ b has a solution iff Mz = b has a
non-negative solution z ≥ 0

Now apply the original version of the lemma
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Linear Programming Duality

Consider our linear program:

minimize cT x

subject to Ax = b

x ≥ 0

From Farkas’ lemma, we saw that Ax = b and x ≥ 0 has a solution iff
yTb ≥ 0 for each y ∈ Rm such that yTA ≥ 0.

If we look at what happens when we multiply yTA, note the following:

yTA ≤ cT ⇒ yTAx ≤ cT x

⇒ yTb ≤ cT x

Thus, if yTA ≤ cT , then we have that yTb is a lower bound on the
solution to our linear program!
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Linear Programming Duality
Consider the following linear programs:

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

From previous slide

yTA ≤ cT ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP and y be a feasible solution
of the dual LP. Then

yTb ≤ cT x .
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Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!

If α∗, β∗ ∈ R are the optimal values for primal and dual, respectively.

We showed that when both primal and dual are feasible, we have

max dual = β∗ ≤ α∗ = min of primal

if primal unbounded (α∗ = −∞) then dual infeasible (β∗ = −∞)
if dual unbounded (β∗ = ∞) then primal infeasible (α∗ = ∞)

Practice problem: show that dual of the dual LP is the primal LP!

When is the above inequality tight?
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Strong Duality

Primal LP
minimize cT x

subject to Ax = b

x ≥ 0

Dual LP
maximize yTb

subject to yTA ≤ cT

let α∗, β∗ ∈ R be optimal values for primal and dual, respectively.

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

max dual = β∗ = α∗ = min of primal.
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP and dual LP are feasible, then

max dual = β∗ = α∗ = min of primal.

1 Since we have proved weak duality, suffices to show that the following
LP has a solution:

maximize 0

subject to yTA ≤ cT

cT x − yTb ≤ 0

Ax = b

x ≥ 0

2 Apply variant 2 of Farkas’ lemma on the system above.
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Proof of Strong Duality
1 LP from previous page encoded by:

B

(
x
y

)
=


A 0
−A 0
cT −bT

0 AT

−I 0


(
x
y

)
≤


b
−b
0
c
0



2 Variant 2 of Farkas’ lemma gives that the system has solution iff for
each z = (uT vT λ wT eT ) ≥ 0 such that zB = 0 then we have
uTb − vTb + wT c ≥ 0

3 If λ > 0, then λcT ≥ (vT − uT )A ⇒ λcTw ≥ (vT − uT )Aw and so

λ(uT − vT )b + λwT c ≥ λ(uT − vT )b − (uT − vT )Aw

4 If λ = 0, let x , y be feasible solutions (which we assumed to exist).
Then x ≥ 0,Ax = b and yTA ≤ cT . Thus

cTw ≥ yTAw = 0 ≥ (vT − uT )Ax = (vT − uT )b
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2 Variant 2 of Farkas’ lemma gives that the system has solution iff for

each z = (uT vT λ wT eT ) ≥ 0 such that zB = 0 then we have
uTb − vTb + wT c ≥ 0

3 If λ > 0, then λcT ≥ (vT − uT )A ⇒ λcTw ≥ (vT − uT )Aw and so

λ(uT − vT )b + λwT c ≥ λ(uT − vT )b − (uT − vT )Aw

4 If λ = 0, let x , y be feasible solutions (which we assumed to exist).
Then x ≥ 0,Ax = b and yTA ≤ cT . Thus
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Affine form of Farkas’ Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas’ Lemma)

Let the system
Ax ≤ b

have at least one solution, and suppose that inequality

cT x ≤ δ

holds whenever x satisfies Ax ≤ b. Then, for some δ′ ≤ δ the linear
inequality

cT x ≤ δ′

is a non-negative linear combination of the inequalities of Ax ≤ b.

Practice problem: use LP duality and Farkas’ lemma to prove this
lemma!
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Complementary Slackness

If the optima in both primal and dual is finite, and x , y are feasible
solutions, the following are equivalent:

1 x , y are optimal solutions to the primal and dual
2 cT x = yTb
3 if xi > 0 then the corresponding inequality yTAi ≤ ci is an equality:

that is, we must have yTAi = ci .

1 and 2 are equivalent due to strong duality

2 and 3 are equivalent as we can write

cT x − yTb = cT x − yTAx = (cT − yTA)x =
n∑

i=1

(ci − yTAi )xi
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Conclusion

Mathematical programming - very general, and pervasive in
Algorithmic life

General mathematical programming very hard (how hard do you think
it is?)

Special cases have very striking applications!

Today: Linear Programming

Linear Programming and Duality - fundamental concepts, lots of
applications!

Applications in Combinatorial Optimization (a lot of it happened here
at UW!)
Applications in Game Theory (minimax theorem)
Applications in Learning Theory (boosting)
many more
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1, . . . , am, b ∈ Rn, and t := rank{a1, . . . , am, b}. Then either

1 b is a non-negative linear combination of linearly independent vectors
from a1, . . . , am, or

2 there exists a hyperplane H := {x | cT x = 0} s.t.

cTb < 0
cTai ≥ 0
H contains t − 1 linearly independent vectors from a1, . . . , am

We can assume that a1, . . . , am span Rn, otherwise work on the
spanning subspace after appropriate linear transformation

Since 1 and 2 mutually exclusive, choose linearly independent
L0 := {ai1 , . . . , ain}
We will perform an iterative procedure:
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with L0:

1 Write b = λi1ai1 + . . .+ λinain . If λi ≥ 0 we are done

2 If not, let h be smallest index from i1, . . . , in such that λh < 0. Let
H0 = {x ∈ Rn | cT0 x = 0} be the hyperplane spanned by L0 \ {ah}.
Normalize it so that cT0 ah = 1.

3 If cT0 ai ≥ 0 for all i ∈ [m] we are done (case 2)
4 Otherwise, choose smallest s ∈ [m] such that cT0 as < 0, and let

L1 = L ∪ {as} \ {ah}. Go back to step 1.

To conclude the proof, need to show that this procedure always
terminates. If process doesn’t terminate, there are two times r < t
such that Lr = Lt

Let ℓ be the highest index for which aℓ has been removed from Lk for
some r ≤ k < t.

Lr = Lt ⇒ aℓ has also been added from some Lk ′ for some
r ≤ k ′ < t.
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Proof of Fundamental Theorem of Linear Inequalities

Say ar was removed at iteration k and added back at iteration k ′ so
r ≤ k < k ′ < t

Let c be the vector defining the hyperplane at the k ′ iteration (when
we added ar back to the set), and let Lk = {ai1 , . . . , ain}
Now, above implies the following contradiction:

0 > cTb = cT (λi1ai1 + · · ·+ λinain) = λi1c
Tai1 + · · ·λinc

Tain ≥ 0

First inequality comes because at each iteration we choose c such
that cTb < 0

Second inequality holds term by term:
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