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Mathematical Programming

Mathematical Programming deals with problems of the form

minimize  f(x)

subject to  gi(x) <0

gm(X) <0

x eR"
@ Very general family of problems.
@ Special case is when all functions 7, gy, ..., gm are linear functions

(called Linear Programming - LP for short)
@ Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]

@ Formally studied & importance of LP recognized in 1940's by
Dantzig, Kantorovich, Koopmans and von Neumann.
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What is a Linear Program?

A linear function f : R" — R is given by

f(x)zcl-x1+...+cn~x,,+b:ch+b
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What is a Linear Program?

A linear function f : R" — R is given by
f(x):c1-x1+...+c,,-x,,+b:ch+b
Linear Programming deals with problems of the form

minimize ¢’ x

subject to AlTx < b

Alx < b,
x € R"
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What is a Linear Program?
A linear function f : R” — R is given by

f(x):cl-x1+...+cn-x,,+b:ch+b
Linear Programming deals with problems of the form

minimize ¢’ x
subject to Ax < b
x eR"
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What is a Linear Program?

A linear function f : R” — R is given by
f(x):c1~x1+...+cn~x,,+b:ch+b
Linear Programming deals with problems of the form
minimize ¢’ x

subject to Ax < b
x e R"
We can always represent LPs in standard form:
minimize ¢’ x
subjectto Ax=0b
x>0
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Stock portfolio optimization:

e n companies, stock of company / costs ¢; € R
e company i has expected profit p; € R
e our budgetis Be R

maximize  p1- Xy + -+ pp - Xn
subjectto ¢ -x1+ -+ ch-xp < B
x>0
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Stock portfolio optimization:

e n companies, stock of company i costs ¢; € R
e company i has expected profit p; € R
e our budgetis Be R

maximize  p1- Xy + -+ pp - Xn
subjectto ¢ -x1+ -+ ch-xp < B
x>0

@ Other problems, such as data fitting, linear classification can be
modelled as linear programs.
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Important Questions

minimize c¢'x

subjectto Ax=0b
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o Is there a solution to the constraints at all?
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Important Questions

minimize ¢’ x

subjectto Ax=0b
x>0

© When is a Linear Program feasible?
o Is there a solution to the constraints at all?
@ When is a Linear Program bounded?

o Is there a minimum? Or is the minimum —oo?
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Important Questions

minimize ¢’ x

subjectto Ax=0b
x>0

© When is a Linear Program feasible?
e Is there a solution to the constraints at all?
@ When is a Linear Program bounded?
o Is there a minimum? Or is the minimum —o0?
© Can we characterize optimality?
e How can we know that we found a minimum solution?

@ Do these solutions have nice description?
e Do the solutions have small bit complexity?
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Important Questions

minimize ¢’ x

subjectto Ax=0b
x>0

© When is a Linear Program feasible?
e Is there a solution to the constraints at all?
@ When is a Linear Program bounded?
o Is there a minimum? Or is the minimum —o0?
© Can we characterize optimality?
e How can we know that we found a minimum solution?
@ Do these solutions have nice description?
e Do the solutions have small bit complexity?
@ How do we design efficient algorithms that find optimal solutions to
Linear Programs?
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Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{a1,...,am, b}. Then either

© b is a non-negative linear combination of linearly independent vectors

from ay,...,am, or
Q there exists a hyperplane H :== {x | ¢"x = 0} s.t.
e c'b<0
ecla; >0
e H contains t — 1 linearly independent vectors from ay, ..., am
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Fundamental Theorem of Linear Inequalities
Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1,...,am,b € R", and t :=rank{a1,...,am, b}. Then either
© b is a non-negative linear combination of linearly independent vectors
from ay,...,am, or
Q there exists a hyperplane H :== {x | ¢"x = 0} s.t.
e c'h<0
e cla;>0
e H contains t — 1 linearly independent vectors from ay, ..., am

\

Any hyperplane H with the above property is known as a separating
hyperplane.

v
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Farkas' Lemma

Lemma (Farkas Lemma)

Let A€ R™*" and b € R™. The following are equivalent:
© There exists x € R" such that x > 0 and Ax = b
@ y'b>0 foreachy € R™ such that yT A >0

26/81



Farkas' Lemma

Lemma (Farkas Lemma)

Let A€ R™*" and b € R™. The following are equivalent:
© There exists x € R" such that x > 0 and Ax = b
@ y'b>0 foreachy € R™ such that yT A >0

Equivalent formulation

Lemma (Farkas Lemma - variant 1)

Let A€ R™*™ and b € R™. Then exactly one of the following statements
hold:

@ There exists x € R" such that x > 0 and Ax = b
@ There exists y € R™ such that y'b>0and y"A<0
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Farkas' Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let A€ R™*" and b € R™. The following are equivalent:
@ There exists x € R" such that Ax < b
@ y'b>0 foreach y > 0 such that yTA=0

28/81



Farkas' Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let A€ R™*" and b € R™. The following are equivalent:
© There exists x € R" such that Ax < b
@ y'b>0 foreach y > 0 such that yTA=0

o Let M=[I A — A]. Then Ax < b has a solution iff Mz = b has a
non-negative solution z > 0
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Farkas' Lemma

Equivalent formulation

Lemma (Farkas Lemma - variant 2)

Let A€ R™*" and b € R™. The following are equivalent:
@ There exists x € R" such that Ax < b
@ y'b>0 foreach y > 0 such that yTA=0

o Let M=[I A — A]. Then Ax < b has a solution iff Mz = b has a
non-negative solution z > 0

@ Now apply the original version of the lemma
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Linear Programming Duality

Consider our linear program:

minimize c¢'x

subject to Ax =
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Linear Programming Duality

Consider our linear program:

minimize ¢’ x
subjectto Ax=0b
x>0

@ From Farkas' lemma, we saw that Ax = b and x > 0 has a solution iff
yTh >0 for each y € R™ such that y7A > 0.
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Linear Programming Duality
Consider our linear program:
minimize ¢’ x
subjectto Ax=0b
x>0

@ From Farkas' lemma, we saw that Ax = b and x > 0 has a solution iff
yTh >0 for each y € R™ such that y7A > 0.

o If we look at what happens when we multiply y " A, note the following:

yTA<cT = yTAx<cTx

= yTb < cx
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Linear Programming Duality
Consider our linear program:
minimize ¢’ x
subjectto Ax=0b
x>0

@ From Farkas' lemma, we saw that Ax = b and x > 0 has a solution iff
yTh >0 for each y € R™ such that y7A > 0.

o If we look at what happens when we multiply y " A, note the following:

yTA<cT = yTAx<cTx
= yTb < cx
@ Thus, ifyTA < ¢T, then we have that yTb is a lower bound on the

solution to our linear program!
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Linear Programming Duality
Consider the following linear programs:

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subject to yTA <c’
x>0
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Linear Programming Duality
Consider the following linear programs:

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subject to yTA <c’
x>0

@ From previous slide
yTA<c" = yThis a lower bound on value of Primal

@ Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!
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Linear Programming Duality
Consider the following linear programs:

Primal LP Dual LP
minimize ¢’ x maximize yTb
subjectto Ax=b subject to yTA < c’
x>0

@ From previous slide
yTA<c" = yThis a lower bound on value of Primal

@ Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP and y be a feasible solution

of the dual LP. Then
yTb < cx.




Remarks on Duality

Primal LP

minimize ¢’ x
subjectto Ax=b
x>0

Dual LP
maximize y'b
subject to yTA <c’
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=0b subjectto  yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
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Remarks on Duality
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minimize ¢’ x maximize y'b
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e Optimal (maximum) value of dual LP lower bounds the optimal
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o If a*, 5" € R are the optimal values for primal and dual, respectively.
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=0b subjectto  yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 5" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal

o if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=0b subjectto  yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 5" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal

o if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=0b subjectto  yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 5" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal

o if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
o if dual unbounded (3* = o0) then primal infeasible (a* = o)

o Practice problem: show that dual of the dual LP is the primal LP!
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Remarks on Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=0b subjectto  yTA<c'
x>0

e Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
o If a*, 5" € R are the optimal values for primal and dual, respectively.
o We showed that when both primal and dual are feasible, we have

max dual = 8* < a* = min of primal
o if primal unbounded (a* = —o0) then dual infeasible (8* = —o0)
o if dual unbounded (3* = o0) then primal infeasible (a* = o)
o Practice problem: show that dual of the dual LP is the primal LP!
@ When is the above inequality tight?
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Strong Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=b subjectto  yTA<c'
x>0

o let a*, 8* € R be optimal values for primal and dual, respectively.
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Strong Duality

Primal LP Dual LP
minimize ¢’ x maximize y'b
subjectto Ax=b subjectto  yTA<c'
x>0

o let a*, 8* € R be optimal values for primal and dual, respectively.

Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

max dual = 8* = o = min of primal.
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Proof of Strong Duality

Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

max dual = 8* = o = min of primal.
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Proof of Strong Duality

Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

max dual = 8* = o = min of primal.

@ Since we have proved weak duality, suffices to show that the following
LP has a solution:

maximize 0

subjectto  yTA<cT
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Proof of Strong Duality

Theorem (Strong Duality)
If primal LP and dual LP are feasible, then

max dual = 8* = o = min of primal.

@ Since we have proved weak duality, suffices to show that the following
LP has a solution:

maximize 0

subjectto  yTA<cT
c"x—yTh<0
Ax=0b
x>0

@ Apply variant 2 of Farkas' lemma on the system above.
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Proof of Strong Duality
© LP from previous page encoded by:

A 0 b

-A 0
)[4 ¥0)-
y 0 AT y

—1 0
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Proof of Strong Duality
© LP from previous page encoded by:

A 0 b

-A 0 —b

o0)- |7 ¥]6)-|
y 0 AT y c
—1 0 0

@ Variant 2 of Farkas' lemma gives that the system has solution iff for
each z=(u" v X w' e') >0 such that zB = 0 then we have
uTb—vib+wTc>0
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Proof of Strong Duality
© LP from previous page encoded by:

A 0 b

-A 0 —b

o0)- |7 ¥]6)-|
y 0 AT y c
—1 0 0

@ Variant 2 of Farkas' lemma gives that the system has solution iff for
each z=(u" v X w' e') >0 such that zB = 0 then we have
uTb—vib+wTc>0

© IfA>0,then A\c” > (v —u")A= Ac"w > (vT — uT)Aw and so

MuT =vDb+awTe>ANu" —vHb— (v —vTAw
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Proof of Strong Duality
© LP from previous page encoded by:

A 0 b
-A 0 —b

o0)- |7 ¥]6)-|
y 0 AT y c
—1 0 0

@ Variant 2 of Farkas' lemma gives that the system has solution iff for

each z=(u" v X w' e') >0 such that zB = 0 then we have
uTb—vib+wTc>0
© IfA>0,then A\c” > (v —u")A= Ac"w > (vT — uT)Aw and so

MuT =vh)b+dwTe> Ao —v)b—(u" —vT)Aw

Q If A =0, let x, y be feasible solutions (which we assumed to exist).
Then x > 0,Ax =band yTA< c’. Thus

cTw>yTAw =0> (vl —u")Ax= (v —u")b
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Affine form of Farkas' Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)
Let the system

Ax < b
have at least one solution, and suppose that inequality
cTx <4

holds whenever x satisfies Ax < b. Then, for some &' < & the linear
inequality

cTx<¢

is a non-negative linear combination of the inequalities of Ax < b.
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Affine form of Farkas’ Lemma
A consequence of LP duality is the following lemma:

Lemma (Affine Farkas' Lemma)

Let the system
Ax < b

have at least one solution, and suppose that inequality
cTx <4

holds whenever x satisfies Ax < b. Then, for some &' < & the linear
inequality
cTx<¢

is a non-negative linear combination of the inequalities of Ax < b.

Practice problem: use LP duality and Farkas' lemma to prove this
lemmal
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Complementary Slackness

@ If the optima in both primal and dual is finite, and x, y are feasible
solutions, the following are equivalent:

@ x,y are optimal solutions to the primal and dual
Q@ c'x=y"b

© if x; > 0 then the corresponding inequality yTA,- < ¢ is an equality:
that is, we must have y T A; = ¢;.
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Complementary Slackness

@ If the optima in both primal and dual is finite, and x, y are feasible
solutions, the following are equivalent:

@ x,y are optimal solutions to the primal and dual
Q@ c'x=y"b

© if x; > 0 then the corresponding inequality yTA,- < ¢ is an equality:
that is, we must have y T A; = ¢;.

@ 1 and 2 are equivalent due to strong duality
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Complementary Slackness

@ If the optima in both primal and dual is finite, and x, y are feasible
solutions, the following are equivalent:

@ x,y are optimal solutions to the primal and dual
Q@ c'x=y"b

© if x; > 0 then the corresponding inequality yTA,- < ¢ is an equality:
that is, we must have y T A; = ¢;.

@ 1 and 2 are equivalent due to strong duality

@ 2 and 3 are equivalent as we can write
n
c"x—yTb=c"x—yTAx=(cT —yTA)x = Z(c,- —yTA)X;
i=1
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life
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@ General mathematical programming very hard (how hard do you think
it is?)
@ Special cases have very striking applications!
Today: Linear Programming

@ Linear Programming and Duality - fundamental concepts, lots of
applications!
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life

@ General mathematical programming very hard (how hard do you think
it is?)
@ Special cases have very striking applications!
Today: Linear Programming
@ Linear Programming and Duality - fundamental concepts, lots of
applications!
o Applications in Combinatorial Optimization (a lot of it happened here
at UW!)
e Applications in Game Theory (minimax theorem)

o Applications in Learning Theory (boosting)
e many more
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{ai,...,am, b}. Then either

© b is a non-negative linear combination of linearly independent vectors

from a1, ..., am, or
Q there exists a hyperplane H := {x | c"x = 0} s.t.
e c’h<0
e clai>0
e H contains t — 1 linearly independent vectors from ay, ..., an
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1,...,am,b € R", and t :=rank{ai,...,am, b}. Then either
© b is a non-negative linear combination of linearly independent vectors
from a1, ...,am, or

Q there exists a hyperplane H := {x | c"x = 0} s.t.
e c’h<0
e clai>0
e H contains t — 1 linearly independent vectors from ay, ..., an

@ We can assume that ai,...,an span R", otherwise work on the

spanning subspace after appropriate linear transformation
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{ai,...,am, b}. Then either

© b is a non-negative linear combination of linearly independent vectors

from a1, ..., am, or
Q there exists a hyperplane H := {x | c"x = 0} s.t.
o c’h <0
o claj>0
e H contains t — 1 linearly independent vectors from ay, ..., an
@ We can assume that ai,...,an span R", otherwise work on the

spanning subspace after appropriate linear transformation

@ Since 1 and 2 mutually exclusive, choose linearly independent
Lo :={ajy,...,a;,}
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Proof of Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))
Let a1,...,am,b € R", and t :=rank{ai,...,am, b}. Then either

© b is a non-negative linear combination of linearly independent vectors

from a1, ..., am, or
Q there exists a hyperplane H := {x | c"x = 0} s.t.
o c’h <0
o claj>0
e H contains t — 1 linearly independent vectors from ay, ..., an
@ We can assume that ai,...,an span R", otherwise work on the

spanning subspace after appropriate linear transformation

@ Since 1 and 2 mutually exclusive, choose linearly independent
Lo :={ajy,...,a;,}
@ We will perform an iterative procedure:
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lg:
Q@ Write b= \;a; + ...+ \j,a;,- If \; > 0 we are done
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:

Q@ Write b= \;a; + ...+ \j,a;,- If \; > 0 we are done

@ If not, let h be smallest index from iy, ..., i, such that A\, < 0. Let

Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.

Normalize it so that coTah =1.
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:

Q@ Write b= \;a; + ...+ \j,a;,- If \; > 0 we are done

@ If not, let h be smallest index from iy, ..., i, such that A\, < 0. Let

Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.

Normalize it so that coTah =1.

O If ¢J a; > 0 for all i € [m] we are done (case 2)
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:

Q@ Write b= \;a; + ...+ \j,a;,- If \; > 0 we are done

@ If not, let h be smallest index from iy, ..., i, such that A\, < 0. Let

Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.

Normalize it so that coTah =1.

O If ¢J a; > 0 for all i € [m] we are done (case 2)
@ Otherwise, choose smallest s € [m] such that ¢ as < 0, and let
L1 =LU{as}\ {an}. Go back to step 1.
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:
Q@ Write b= \;a; + ...+ \j,a;,- If \; > 0 we are done
@ If not, let h be smallest index from iy, ..., i, such that A\, < 0. Let
Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.
Normalize it so that coTah =1.
O If ¢J a; > 0 for all i € [m] we are done (case 2)
@ Otherwise, choose smallest s € [m] such that ¢ as < 0, and let
L1 =LU{as}\ {an}. Go back to step 1.

@ To conclude the proof, need to show that this procedure always
terminates. If process doesn't terminate, there are two times r < t
such that £, = L;

@ Let ¢ be the highest index for which a; has been removed from L for
some r < k < t.
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Proof of Fundamental Theorem of Linear Inequalities
Iterative procedure, starting with Lo:
Q@ Write b= \;a; + ...+ \j,a;,- If \; > 0 we are done
@ If not, let h be smallest index from iy, ..., i, such that A\, < 0. Let
Ho = {x € R" | ¢/ x = 0} be the hyperplane spanned by Lo\ {as}.
Normalize it so that coTah =1.
O If ¢J a; > 0 for all i € [m] we are done (case 2)
@ Otherwise, choose smallest s € [m] such that ¢ as < 0, and let
L1 =LU{as}\ {an}. Go back to step 1.

@ To conclude the proof, need to show that this procedure always
terminates. If process doesn't terminate, there are two times r < t
such that £, = L;

@ Let ¢ be the highest index for which a; has been removed from L for
some r < k < t.

o L, =L+ = ay has also been added from some L, for some
r<k' <t.

77/81



Proof of Fundamental Theorem of Linear Inequalities

@ Say a, was removed at iteration k and added back at iteration k’ so
r<k<k <t

@ Let c be the vector defining the hyperplane at the k’ iteration (when
we added a, back to the set), and let £, = {a;,...,a;,}

@ Now, above implies the following contradiction:

0>c'b= CT()\;la,-1 + - 4 Aja,) = )\;lcTa,1 “Aj,C a,n >0
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o First inequality comes because at each iteration we choose ¢ such
that c'h< 0
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Proof of Fundamental Theorem of Linear Inequalities
@ Say a, was removed at iteration k and added back at iteration k’ so
r<k<k <t

@ Let c be the vector defining the hyperplane at the k’ iteration (when
we added a, back to the set), and let £, = {a;,...,a;,}

@ Now, above implies the following contradiction:
0>c'b= CT()\;la,-1 + - 4 Aja,) = )\;lcTa,1 “Aj,C a,n >0

o First inequality comes because at each iteration we choose ¢ such
that c'h< 0
@ Second inequality holds term by term:
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