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Eigenvalues, Eigenvectors and Spectral Radius

Given a square matrix A ∈ Rn×n, we say that λ ∈ C is an eigenvalue
of A if there is a vector v ∈ Cn such that Av = λv .

The spectral radius of a matrix A, denoted ρ(A), is the maximum
absolute value of the eigenvalues of A

Gelfand’s formula
ρ(A) = lim

t→∞
∥At∥1/tF

Geometric multiplicity: an eigenvalue λ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue λ has
dimension k . That is, if dimension of null space of A− λI is k .

Algebraic multiplicity: an eigenvalue λ of A has algebraic multiplicity
k if (t − λ)k is the highest power of t − λ dividing det(tI − A)

Example:
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Positivity Lemma

Lemma (Positivity Lemma)

If A ∈ Rn×n is a positive matrix and u, v ∈ Rn are distinct vectors such
that u ≥ v, then Au > Av. Moreover, there exists ε > 0 such that
Au > (1 + ε)Av.

Note that

(A(u − v))i =
∑
j

Aij(uj − vj) ≥ (min
i ,j

Aij) ·
∑
j

(uj − vj)

Since uj ≥ vj for all j and u, v distinct implies that there is one index
k such that uk > vk , we have∑

j

(uj − vj) ≥ uk − vk > 0

the moreover part just follows from taking small enough ε.
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A ∈ Rn×n be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

1 ρ(A) is an eigenvalue, and it has a positive eigenvector

2 ρ(A) is the only eigenvalue in the complex circumference |λ| = ρ(A)

3 ρ(A) has geometric multiplicity 1

4 ρ(A) has algebraic multiplicity 1

By the definition of ρ(A), there is an eigenvalue λ ∈ C such that
|λ| = ρ(A). Let v the a corresponding eigenvector.

Let u be the vector defined by ui = |vi |. Then, we have

(Au)i =
∑
j

Aijuj ≥ |
∑
j

Aijvj | = |λvi | = ρ(A) · ui

so Au ≥ ρ(A)u.
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Perron’s Theorem - item 1

We proved Au ≥ ρ(A)u.

If inequality strict, then we have

A2u > ρ(A) · Au

and there is some positive ε > 0 such that

A2u ≥ (1 + ε)ρ(A)Au

By induction, we would have

An+1u ≥ (1 + ε)n · ρ(A)n · Au

By Gelfand’s formula we would have

ρ(A) = lim
n→∞

∥An∥1/nF ≥ (1 + ε)ρ(A)

which is a contradiction. So equality must hold.
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Perron’s theorem - items 1 and 2

We just proved that ρ(A) is an eigenvalue, with eigenvector u ≥ 0.

Note that u > 0 since ρ(A)ui = (Au)i > 0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |µ| = ρ(A) is ρ(A)

If we had another eigenvalue λ ̸= ρ(A) in the circumference
|µ| = ρ(A), where z is the eigenvector corresponding to λ, by the
previous slide, we know that w defined as wi = |zi | satisfies

Aw = ρ(A)w ⇔
∑
j

Aijwj = ρ(A) · |zi | = |λzi | = |
∑
j

Aijzj |

for every 1 ≤ i ≤ n

Lemma: if the conditions above hold, then there is α ∈ C nonzero
such that αz ≥ 0

Proof by squaring both sides and using complex conjugates.
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Perron’s theorem - items 2 and 3
But if αz ≥ 0 and a nonzero vector, we have

λ(αz) = α · (λz) = α(Az) = A(αz) ≥ 0

Thus we know that λ is a non-negative number. However, ρ(A) is the
only non-negative number in the circle |µ| = ρ(A). This concludes
item 2.

Now we are ready to prove item 3: the geometric multiplicity of ρ(A)
is 1.

Suppose not, and let u, v be two linearly independent eigenvectors for
ρ(A). We can assume that both u, v are real vectors (why?).

Let β > 0 be such that u − βv ≥ 0 and at least one entry is zero.

u − βv ̸= 0 since the vectors are linearly independent

But for each 1 ≤ i ≤ n

ρ(A) · (u − βv)i = (A(u − βv))i > 0

which contradicts our choice of β. Thus, there cannot be two linearly
independent eigenvectors.
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A ∈ Rn×n is aperiodic and irreducible, then the
following hold:

1 ρ(A) is an eigenvalue, and it has a positive eigenvector

2 ρ(A) is the only eigenvalue in the complex circle |λ| = ρ(A)

3 ρ(A) has geometric multiplicity 1

4 ρ(A) has algebraic multiplicity 1

By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that Am has all positive entries.

Apply Perron’s theorem to Am and note that the eigenvalues of Am

are λm
i , where λi are the eigenvalues of A

31 / 77



Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A ∈ Rn×n is aperiodic and irreducible, then the
following hold:

1 ρ(A) is an eigenvalue, and it has a positive eigenvector

2 ρ(A) is the only eigenvalue in the complex circle |λ| = ρ(A)

3 ρ(A) has geometric multiplicity 1

4 ρ(A) has algebraic multiplicity 1

By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that Am has all positive entries.

Apply Perron’s theorem to Am and note that the eigenvalues of Am

are λm
i , where λi are the eigenvalues of A

32 / 77



Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A ∈ Rn×n is aperiodic and irreducible, then the
following hold:

1 ρ(A) is an eigenvalue, and it has a positive eigenvector

2 ρ(A) is the only eigenvalue in the complex circle |λ| = ρ(A)

3 ρ(A) has geometric multiplicity 1

4 ρ(A) has algebraic multiplicity 1

By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that Am has all positive entries.

Apply Perron’s theorem to Am and note that the eigenvalues of Am

are λm
i , where λi are the eigenvalues of A

33 / 77



Main Tools
Linear Algebra Background
Perron-Frobenius

Main Applications
Fundamental Theorem of Markov Chains
Page Rank

Acknowledgements

34 / 77



Fundamental Theorem of Markov Chains

The return time from state i to itself is defined as

Ti ,i := min{t ≥ 1 | Xt = i ,X0 = i}

Expected return time: defined as τi ,i := E[Ti ,i ].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There exists a unique stationary distribution π, where πi > 0 for all
i ∈ [n]

2 The sequence of distributions {pt}t≥0 will converge to π, no matter
what the initial distribution is

3

πi = lim
t→∞

Pt
i ,i =

1

τi ,i
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0,

lim
t→∞

Pt · p0 = π

3

πi = lim
t→∞

Pt
i ,i =

1

τi ,i

The transition matrix P is non-negative, irreducible and aperiodic. So
we can apply Perron-Frobenius and prove items 1 and 2.
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Theorem (Fundamental Theorem of Markov Chains)
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2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
Pt · p0 = π

3

πi = lim
t→∞

Pt
i ,i =

1

τi ,i

If our underlying graph is undirected:

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AGD
−1

Note that in this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |
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If our underlying graph is undirected:

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AGD
−1

Note that in this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |
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In this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AGD
−1

P not symmetric, but similar to a symmetric matrix:

D−1/2PD1/2 = D−1/2AGD
−1D1/2 = D−1/2AGD

−1/2 = P ′

P and P ′ has same eigenvalues! And P ′ has only real eigenvalues!
Eigenvectors of P are D1/2vi where vi are eigenvectors of P ′. And vi
can be taken to form orthonormal basis.
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Fundamental Theorem of Markov Chains

Stationary distribution: πi =
di
2m

, m = |E |

Transition matrix: P = D−1 · AG

P similar to a symmetric matrix: P ′ = D−1/2AGD
−1/2

P and P ′ has same eigenvalues! And P ′ has only real eigenvalues!
Eigenvectors of P are D−1/2vi where vi are eigenvectors of P ′. And vi
can be taken to form orthonormal basis.

Graph strongly connected ⇒ Perron-Frobenius for irreducible
non-negative matrices

unique eigenvector whose eigenvalue has max absolute value
eigenvector has all positive coordinates
eigenvalue is positive

This eigenvector is π!
All random walks converge to π, as we wanted to show.
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Page Rank

Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i , j) if there is a link from page i to page j .

Goal: want algorithm to “rank” how important a page is.

Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:

1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.
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Page Rank

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.

Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

P ∈ Rn×n, Pi ,j =
1

δout(j)

Pagerank values and transition probabilities satisfy same equations:

pt+1(j) =
∑

i :(i ,j)∈E

pt(i)

δout(i)
⇒ pt+1 = P · pt

If graph finite, irreducible and aperiodic, fundamental theorem
guarantees stationary distribnution.

65 / 77



Page Rank

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.

Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

P ∈ Rn×n, Pi ,j =
1

δout(j)

Pagerank values and transition probabilities satisfy same equations:

pt+1(j) =
∑

i :(i ,j)∈E

pt(i)

δout(i)
⇒ pt+1 = P · pt

If graph finite, irreducible and aperiodic, fundamental theorem
guarantees stationary distribnution.

66 / 77



Page Rank

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.

Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

P ∈ Rn×n, Pi ,j =
1

δout(j)

Pagerank values and transition probabilities satisfy same equations:

pt+1(j) =
∑

i :(i ,j)∈E

pt(i)

δout(i)
⇒ pt+1 = P · pt

If graph finite, irreducible and aperiodic, fundamental theorem
guarantees stationary distribnution.

67 / 77



Page Rank

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.

Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

P ∈ Rn×n, Pi ,j =
1

δout(j)

Pagerank values and transition probabilities satisfy same equations:

pt+1(j) =
∑

i :(i ,j)∈E

pt(i)

δout(i)
⇒ pt+1 = P · pt

If graph finite, irreducible and aperiodic, fundamental theorem
guarantees stationary distribnution.

68 / 77



Page Rank

In practice, directed graph may not satisfy fundamental theorem’s
conditions

Modify original graph as follows:

Fix number 0 < s < 1
Divide s fraction of its pagerank value to its neighbors,
1− s fraction of its pagerank value to all nodes evenly

Equivalent to the random walk:

With probability s go to one of its neighbors (uniformly at random),
With probability 1− s go to random page (uniformly at random)

Now resulting graph is strongly connected and aperiodic ⇒ unique
stationary distribution

This modification does not change “relative importance” of vertices
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Lecture based largely on:

Hannah Cairns notes on Perron-Frobenius (see link in course webpage)
Lap Chi’s notes
[Motwani & Raghavan 2007, Chapter 6]

See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf

Also see Lap Chi’s notes
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a
proof of fundamental theorem of Markov chains for undirected graphs.
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