Lecture 10: Fundamental Theorem of Markov Chains, Page Rank

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

May 26, 2025

Overview

- Main Tools
 - Linear Algebra Background
 - Perron-Frobenius
- Main Applications
 - Fundamental Theorem of Markov Chains
 - Page Rank
- Acknowledgements

• Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A if there is a vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A if there is a vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.
- The *spectral radius* of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A if there is a vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.
- The *spectral radius* of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$\rho(A) = \lim_{t \to \infty} \|A^t\|_F^{1/t}$$

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A if there is a vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.
- The *spectral radius* of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$\rho(A) = \lim_{t \to \infty} \|A^t\|_F^{1/t}$$

• Geometric multiplicity: an eigenvalue λ of A has geometric multiplicity k if the space of eigenvectors of A with eigenvalue λ has dimension k. That is, if dimension of null space of $A - \lambda I$ is k.

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A if there is a vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.
- The *spectral radius* of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$\rho(A) = \lim_{t \to \infty} \|A^t\|_F^{1/t}$$

- Geometric multiplicity: an eigenvalue λ of A has geometric multiplicity k if the space of eigenvectors of A with eigenvalue λ has dimension k. That is, if dimension of null space of $A \lambda I$ is k.
- Algebraic multiplicity: an eigenvalue λ of A has algebraic multiplicity k if $(t \lambda)^k$ is the highest power of $t \lambda$ dividing $\det(tI A)$

- Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an *eigenvalue* of A if there is a vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.
- The *spectral radius* of a matrix A, denoted $\rho(A)$, is the maximum absolute value of the eigenvalues of A
- Gelfand's formula

$$\rho(A) = \lim_{t \to \infty} \|A^t\|_F^{1/t}$$

- Geometric multiplicity: an eigenvalue λ of A has geometric multiplicity k if the space of eigenvectors of A with eigenvalue λ has dimension k. That is, if dimension of null space of $A \lambda I$ is k.
- Algebraic multiplicity: an eigenvalue λ of A has algebraic multiplicity k if $(t \lambda)^k$ is the highest power of $t \lambda$ dividing $\det(tI A)$
- Example:

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^n$ are distinct vectors such that $u \ge v$, then Au > Av. Moreover, there exists $\varepsilon > 0$ such that $Au > (1 + \varepsilon)Av$.

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^n$ are distinct vectors such that $u \ge v$, then Au > Av. Moreover, there exists $\varepsilon > 0$ such that $Au > (1+\varepsilon)Av$.

Note that

$$(A(u-v))_i = \sum_j A_{ij}(u_j-v_j) \geq (\min_{i,j} A_{ij}) \cdot \sum_j (u_j-v_j)$$

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^n$ are distinct vectors such that $u \ge v$, then Au > Av. Moreover, there exists $\varepsilon > 0$ such that $Au > (1 + \varepsilon)Av$.

Note that

$$(A(u-v))_i = \sum_j A_{ij}(u_j - v_j) \ge (\min_{i,j} A_{ij}) \cdot \sum_j (u_j - v_j)$$

• Since $u_j \ge v_j$ for all j and u, v distinct implies that there is one index k such that $u_k > v_k$, we have

$$\sum_{j}(u_{j}-v_{j})\geq u_{k}-v_{k}>0$$

Lemma (Positivity Lemma)

If $A \in \mathbb{R}^{n \times n}$ is a positive matrix and $u, v \in \mathbb{R}^n$ are distinct vectors such that $u \ge v$, then Au > Av. Moreover, there exists $\varepsilon > 0$ such that $Au > (1 + \varepsilon)Av$.

Note that

$$(A(u-v))_i = \sum_j A_{ij}(u_j - v_j) \ge (\min_{i,j} A_{ij}) \cdot \sum_j (u_j - v_j)$$

• Since $u_j \ge v_j$ for all j and u, v distinct implies that there is one index k such that $u_k > v_k$, we have

$$\sum_{j}(u_{j}-v_{j})\geq u_{k}-v_{k}>0$$

• the moreover part just follows from taking small enough ε .

- Main Tools
 - Linear Algebra Background
 - Perron-Frobenius

- Main Applications
 - Fundamental Theorem of Markov Chains
 - Page Rank

Acknowledgements

Perron's Theorem

Theorem (Perron's Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a positive matrix (i.e., all its entries are positive). Then, the following hold:

- **1** $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
- **2** $\rho(A)$ is the only eigenvalue in the complex circumference $|\lambda| = \rho(A)$
- **3** $\rho(A)$ has geometric multiplicity 1
- \bullet $\rho(A)$ has algebraic multiplicity 1

Perron's Theorem

Theorem (Perron's Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a positive matrix (i.e., all its entries are positive). Then, the following hold:

- **1** $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
- **2** $\rho(A)$ is the only eigenvalue in the complex circumference $|\lambda| = \rho(A)$
- **3** $\rho(A)$ has geometric multiplicity 1
- \bullet $\rho(A)$ has algebraic multiplicity 1
 - By the definition of $\rho(A)$, there is an eigenvalue $\lambda \in \mathbb{C}$ such that $|\lambda| = \rho(A)$. Let ν the a corresponding eigenvector.

Perron's Theorem

Theorem (Perron's Theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a positive matrix (i.e., all its entries are positive). Then, the following hold:

- **1** $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
- **2** $\rho(A)$ is the only eigenvalue in the complex circumference $|\lambda| = \rho(A)$
- **3** $\rho(A)$ has geometric multiplicity 1
- \bullet $\rho(A)$ has algebraic multiplicity 1
 - By the definition of $\rho(A)$, there is an eigenvalue $\lambda \in \mathbb{C}$ such that $|\lambda| = \rho(A)$. Let ν the a corresponding eigenvector.
 - Let u be the vector defined by $u_i = |v_i|$. Then, we have

$$(Au)_i = \sum_j A_{ij}u_j \ge |\sum_j A_{ij}v_j| = |\lambda v_i| = \rho(A) \cdot u_i$$

so $Au \geq \rho(A)u$.

Perron's Theorem - item 1

- We proved $Au \ge \rho(A)u$.
- If inequality strict, then we have

$$A^2u > \rho(A) \cdot Au$$

and there is some positive $\varepsilon > 0$ such that

$$A^2u \ge (1+\varepsilon)\rho(A)Au$$

Perron's Theorem - item 1

- We proved $Au \ge \rho(A)u$.
- If inequality strict, then we have

$$A^2u > \rho(A) \cdot Au$$

and there is some positive $\varepsilon > 0$ such that

$$A^2u \ge (1+\varepsilon)\rho(A)Au$$

By induction, we would have

$$A^{n+1}u \ge (1+\varepsilon)^n \cdot \rho(A)^n \cdot Au$$

Perron's Theorem - item 1

- We proved $Au \geq \rho(A)u$.
- If inequality strict, then we have

$$A^2 u > \rho(A) \cdot Au$$

and there is some positive $\varepsilon > 0$ such that

$$A^2u \geq (1+\varepsilon)\rho(A)Au$$

By induction, we would have

$$A^{n+1}u \geq (1+\varepsilon)^n \cdot \rho(A)^n \cdot Au$$

By Gelfand's formula we would have

$$\rho(A) = \lim_{n \to \infty} \|A^n\|_F^{1/n} \ge (1 + \varepsilon)\rho(A)$$

which is a contradiction. So equality must hold.

• We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \ge 0$.

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \geq 0$.
- Note that u > 0 since $\rho(A)u_i = (Au)_i > 0$

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \ge 0$.
- Note that u > 0 since $\rho(A)u_i = (Au)_i > 0$
- Now we are ready for item 2: the only eigenvalue on the complex circumference $|\mu| = \rho(A)$ is $\rho(A)$

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \ge 0$.
- Note that u > 0 since $\rho(A)u_i = (Au)_i > 0$
- Now we are ready for item 2: the only eigenvalue on the complex circumference $|\mu| = \rho(A)$ is $\rho(A)$
- If we had another eigenvalue $\lambda \neq \rho(A)$ in the circumference $|\mu| = \rho(A)$, where z is the eigenvector corresponding to λ , by the previous slide, we know that w defined as $w_i = |z_i|$ satisfies

$$Aw = \rho(A)w \Leftrightarrow \sum_{j} A_{ij}w_{j} = \rho(A) \cdot |z_{i}| = |\lambda z_{i}| = |\sum_{j} A_{ij}z_{j}|$$

for every $1 \le i \le n$

- We just proved that $\rho(A)$ is an eigenvalue, with eigenvector $u \ge 0$.
- Note that u > 0 since $\rho(A)u_i = (Au)_i > 0$
- Now we are ready for item 2: the only eigenvalue on the complex circumference $|\mu| = \rho(A)$ is $\rho(A)$
- If we had another eigenvalue $\lambda \neq \rho(A)$ in the circumference $|\mu| = \rho(A)$, where z is the eigenvector corresponding to λ , by the previous slide, we know that w defined as $w_i = |z_i|$ satisfies

$$Aw = \rho(A)w \Leftrightarrow \sum_{j} A_{ij}w_{j} = \rho(A) \cdot |z_{i}| = |\lambda z_{i}| = |\sum_{j} A_{ij}z_{j}|$$

for every $1 \le i \le n$

• Lemma: if the conditions above hold, then there is $\alpha \in \mathbb{C}$ nonzero such that $\alpha z \geq 0$

Proof by squaring both sides and using complex conjugates.

• But if $\alpha z \geq 0$ and a nonzero vector, we have

$$\lambda(\alpha z) = \alpha \cdot (\lambda z) = \alpha(Az) = A(\alpha z) \ge 0$$

• But if $\alpha z \geq 0$ and a nonzero vector, we have

$$\lambda(\alpha z) = \alpha \cdot (\lambda z) = \alpha(Az) = A(\alpha z) \ge 0$$

• Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu| = \rho(A)$. This concludes item 2.

• But if $\alpha z \geq 0$ and a nonzero vector, we have

$$\lambda(\alpha z) = \alpha \cdot (\lambda z) = \alpha(Az) = A(\alpha z) \ge 0$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu| = \rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1.
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).

• But if $\alpha z \geq 0$ and a nonzero vector, we have

$$\lambda(\alpha z) = \alpha \cdot (\lambda z) = \alpha(Az) = A(\alpha z) \ge 0$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu| = \rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1.
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).
- Let $\beta > 0$ be such that $u \beta v \ge 0$ and at least one entry is zero.

• But if $\alpha z > 0$ and a nonzero vector, we have

$$\lambda(\alpha z) = \alpha \cdot (\lambda z) = \alpha(Az) = A(\alpha z) \ge 0$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu| = \rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1.
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).
- Let $\beta > 0$ be such that $u \beta v \ge 0$ and at least one entry is zero.
- $u \beta v \neq 0$ since the vectors are linearly independent

• But if $\alpha z \geq 0$ and a nonzero vector, we have

$$\lambda(\alpha z) = \alpha \cdot (\lambda z) = \alpha(Az) = A(\alpha z) \ge 0$$

- Thus we know that λ is a non-negative number. However, $\rho(A)$ is the only non-negative number in the circle $|\mu| = \rho(A)$. This concludes item 2.
- Now we are ready to prove item 3: the geometric multiplicity of $\rho(A)$ is 1.
- Suppose not, and let u, v be two linearly independent eigenvectors for $\rho(A)$. We can assume that both u, v are real vectors (why?).
- Let $\beta > 0$ be such that $u \beta v \ge 0$ and at least one entry is zero.
- $u \beta v \neq 0$ since the vectors are linearly independent
- But for each $1 \le i \le n$

$$\rho(A) \cdot (u - \beta v)_i = (A(u - \beta v))_i > 0$$

which contradicts our choice of β . Thus, there cannot be two linearly independent eigenvectors.

Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix $A \in \mathbb{R}^{n \times n}$ is aperiodic and irreducible, then the following hold:

- **1** $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
- **2** $\rho(A)$ is the only eigenvalue in the complex circle $|\lambda| = \rho(A)$
- \bullet $\rho(A)$ has algebraic multiplicity 1

Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix $A \in \mathbb{R}^{n \times n}$ is aperiodic and irreducible, then the following hold:

- **1** $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
- **2** $\rho(A)$ is the only eigenvalue in the complex circle $|\lambda| = \rho(A)$
- \bullet $\rho(A)$ has algebraic multiplicity 1
 - By previous lecture, we saw that A being aperiodic and irreducible implies that there is m > 0 such that A^m has all positive entries.

Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix $A \in \mathbb{R}^{n \times n}$ is aperiodic and irreducible, then the following hold:

- **1** $\rho(A)$ is an eigenvalue, and it has a positive eigenvector
- **2** $\rho(A)$ is the only eigenvalue in the complex circle $|\lambda| = \rho(A)$
- \bullet $\rho(A)$ has algebraic multiplicity 1
 - By previous lecture, we saw that A being aperiodic and irreducible implies that there is m > 0 such that A^m has all positive entries.
 - Apply Perron's theorem to A^m and note that the eigenvalues of A^m are λ_i^m , where λ_i are the eigenvalues of A

- Main Tools
 - Linear Algebra Background
 - Perron-Frobenius

- Main Applications
 - Fundamental Theorem of Markov Chains
 - Page Rank

Acknowledgements

Fundamental Theorem of Markov Chains

• The *return time* from state *i* to itself is defined as

$$T_{i,i} := \min\{t \ge 1 \mid X_t = i, X_0 = i\}$$

Fundamental Theorem of Markov Chains

• The *return time* from state *i* to itself is defined as

$$T_{i,i} := \min\{t \ge 1 \mid X_t = i, X_0 = i\}$$

• Expected return time: defined as $\tau_{i,i} := \mathbb{E}[T_{i,i}]$.

• The *return time* from state *i* to itself is defined as

$$T_{i,i} := \min\{t \ge 1 \mid X_t = i, X_0 = i\}$$

• Expected return time: defined as $\tau_{i,i} := \mathbb{E}[T_{i,i}]$.

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:

- **1** There exists a unique stationary distribution π , where $\pi_i > 0$ for all $i \in [n]$
- **2** The sequence of distributions $\{p_t\}_{t\geq 0}$ will converge to π , no matter what the initial distribution is
- 3

$$\pi_i = \lim_{t \to \infty} P_{i,i}^t = \frac{1}{\tau_{i,i}}$$

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:

- **1** There is unique stationary distribution π , where $\pi_i > 0$ for all $i \in [n]$
- ② For every distribution $p_0 \in \mathbb{R}^n_{\geq 0}$,

$$\lim_{t\to\infty}P^t\cdot p_0=\pi$$

3

$$\pi_i = \lim_{t \to \infty} P_{i,i}^t = \frac{1}{\tau_{i,i}}$$

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:

- **1** There is unique stationary distribution π , where $\pi_i > 0$ for all $i \in [n]$
- ② For every distribution $p_0 \in \mathbb{R}^n_{\geq 0}$,

$$\lim_{t\to\infty}P^t\cdot p_0=\pi$$

3

$$\pi_i = \lim_{t \to \infty} P_{i,i}^t = \frac{1}{\tau_{i,i}}$$

• The transition matrix *P* is non-negative, irreducible and aperiodic. So we can apply Perron-Frobenius and prove items 1 and 2.

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:

- **1** There is unique stationary distribution π , where $\pi_i > 0$ for all $i \in [n]$
- **2** For every distribution $p_0 \in \mathbb{R}^n_{\geq 0}$, $\lim_{t \to \infty} P^t \cdot p_0 = \pi$
- 3

$$\pi_i = \lim_{t \to \infty} P_{i,i}^t = \frac{1}{\tau_{i,i}}$$

If our underlying graph is undirected:

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:

- **1** There is unique stationary distribution π , where $\pi_i > 0$ for all $i \in [n]$
- **2** For every distribution $p_0 \in \mathbb{R}^n_{\geq 0}$, $\lim_{t \to \infty} P^t \cdot p_0 = \pi$
- 3

$$\pi_i = \lim_{t \to \infty} P_{i,i}^t = \frac{1}{\tau_{i,i}}$$

If our underlying graph is undirected:

• If A_G adjacency matrix of G(V, E) and $D = diag(d_1, d_2, \dots, d_n)$, transition matrix:

$$P = A_G D^{-1}$$

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:

- **1** There is unique stationary distribution π , where $\pi_i > 0$ for all $i \in [n]$
- **2** For every distribution $p_0 \in \mathbb{R}^n_{\geq 0}$, $\lim_{t \to \infty} P^t \cdot p_0 = \pi$
- (3)

$$\pi_i = \lim_{t \to \infty} P_{i,i}^t = \frac{1}{\tau_{i,i}}$$

If our underlying graph is undirected:

• If A_G adjacency matrix of G(V, E) and $D = diag(d_1, d_2, \dots, d_n)$, transition matrix:

$$P = A_C D^{-1}$$

• Note that in this case, easy to guess stationary distribution:

$$\pi_i = \frac{d_i}{2m}, \quad m = |E|$$

If our underlying graph is undirected:

If our underlying graph is undirected:

• In this case, easy to guess stationary distribution:

$$\pi_i = \frac{d_i}{2m}, \quad m = |E|$$

If our underlying graph is undirected:

• In this case, easy to guess stationary distribution:

$$\pi_i = \frac{d_i}{2m}, \quad m = |E|$$

• If A_G adjacency matrix of G(V, E) and $D = diag(d_1, d_2, \dots, d_n)$, transition matrix:

$$P = A_G D^{-1}$$

If our underlying graph is undirected:

• In this case, easy to guess stationary distribution:

$$\pi_i = \frac{d_i}{2m}, \quad m = |E|$$

• If A_G adjacency matrix of G(V, E) and $D = diag(d_1, d_2, \dots, d_n)$, transition matrix:

$$P = A_G D^{-1}$$

• *P* not symmetric, but *similar* to a symmetric matrix:

$$D^{-1/2}PD^{1/2} = D^{-1/2}A_GD^{-1}D^{1/2} = D^{-1/2}A_GD^{-1/2} = P'$$

If our underlying graph is undirected:

• If A_G adjacency matrix of G(V, E) and $D = diag(d_1, d_2, \dots, d_n)$, transition matrix:

$$P = A_G D^{-1}$$

• P not symmetric, but *similar* to a symmetric matrix:

$$D^{-1/2}PD^{1/2} = D^{-1/2}A_GD^{-1}D^{1/2} = D^{-1/2}A_GD^{-1/2} = P'$$

• P and P' has same eigenvalues! And P' has only real eigenvalues!

If our underlying graph is undirected:

• If A_G adjacency matrix of G(V, E) and $D = diag(d_1, d_2, \dots, d_n)$, transition matrix:

$$P = A_G D^{-1}$$

• *P* not symmetric, but *similar* to a symmetric matrix:

$$D^{-1/2}PD^{1/2} = D^{-1/2}A_GD^{-1}D^{1/2} = D^{-1/2}A_GD^{-1/2} = P'$$

- P and P' has same eigenvalues! And P' has only real eigenvalues!
- Eigenvectors of P are $D^{1/2}v_i$ where v_i are eigenvectors of P'. And v_i can be taken to form *orthonormal basis*.

- Stationary distribution: $\pi_i = \frac{d_i}{2m}, \quad m = |E|$
- Transition matrix: $P = D^{-1} \cdot A_G$
 - P similar to a symmetric matrix: $P' = D^{-1/2}A_GD^{-1/2}$
 - ullet P and P' has same eigenvalues! And P' has only real eigenvalues!
 - Eigenvectors of P are $D^{-1/2}v_i$ where v_i are eigenvectors of P'. And v_i can be taken to form *orthonormal basis*.

- Stationary distribution: $\pi_i = \frac{d_i}{2m}$, m = |E|
- Transition matrix: $P = D^{-1} \cdot A_G$
 - P similar to a symmetric matrix: $P' = D^{-1/2}A_GD^{-1/2}$
 - ullet P and P' has same eigenvalues! And P' has only real eigenvalues!
 - Eigenvectors of P are $D^{-1/2}v_i$ where v_i are eigenvectors of P'. And v_i can be taken to form *orthonormal basis*.
 - Graph strongly connected ⇒ Perron-Frobenius for irreducible non-negative matrices

- Stationary distribution: $\pi_i = \frac{d_i}{2m}$, m = |E|
- Transition matrix: $P = D^{-1} \cdot A_G$
 - P similar to a symmetric matrix: $P' = D^{-1/2}A_GD^{-1/2}$
 - P and P' has same eigenvalues! And P' has only real eigenvalues!
 - Eigenvectors of P are $D^{-1/2}v_i$ where v_i are eigenvectors of P'. And v_i can be taken to form *orthonormal basis*.
 - Graph strongly connected ⇒ Perron-Frobenius for irreducible non-negative matrices
 - unique eigenvector whose eigenvalue has max absolute value
 - eigenvector has all positive coordinates
 - eigenvalue is positive

- Stationary distribution: $\pi_i = \frac{d_i}{2m}$, m = |E|
- Transition matrix: $P = D^{-1} \cdot A_G$
 - P similar to a symmetric matrix: $P' = D^{-1/2}A_GD^{-1/2}$
 - ullet P and P' has same eigenvalues! And P' has only real eigenvalues!
 - Eigenvectors of P are $D^{-1/2}v_i$ where v_i are eigenvectors of P'. And v_i can be taken to form *orthonormal basis*.
 - Graph strongly connected ⇒ Perron-Frobenius for irreducible non-negative matrices
 - unique eigenvector whose eigenvalue has max absolute value
 - eigenvector has all positive coordinates
 - eigenvalue is positive
 - This eigenvector is π !

- Stationary distribution: $\pi_i = \frac{d_i}{2m}$, m = |E|
- Transition matrix: $P = D^{-1} \cdot A_G$
 - P similar to a symmetric matrix: $P' = D^{-1/2}A_GD^{-1/2}$
 - P and P' has same eigenvalues! And P' has only real eigenvalues!
 - Eigenvectors of P are $D^{-1/2}v_i$ where v_i are eigenvectors of P'. And v_i can be taken to form *orthonormal basis*.
 - Graph strongly connected ⇒ Perron-Frobenius for irreducible non-negative matrices
 - unique eigenvector whose eigenvalue has max absolute value
 - eigenvector has all positive coordinates
 - eigenvalue is positive
 - This eigenvector is π !
 - All random walks converge to π , as we wanted to show.

- Main Tools
 - Linear Algebra Background
 - Perron-Frobenius

- Main Applications
 - Fundamental Theorem of Markov Chains
 - Page Rank

Acknowledgements

• **Setting:** we have a directed graph describing relationships between set of webpages.

• **Setting:** we have a directed graph describing relationships between set of webpages.

There is a directed edge (i,j) if there is a link from page i to page j.

• **Setting:** we have a directed graph describing relationships between set of webpages.

There is a directed edge (i,j) if there is a link from page i to page j.

• Goal: want algorithm to "rank" how important a page is.

• **Setting:** we have a directed graph describing relationships between set of webpages.

There is a directed edge (i,j) if there is a link from page i to page j.

- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

• **Setting:** we have a directed graph describing relationships between set of webpages.

There is a directed edge (i,j) if there is a link from page i to page j.

- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value $\frac{1}{n}$

• **Setting:** we have a directed graph describing relationships between set of webpages.

There is a directed edge (i,j) if there is a link from page i to page j.

- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

- **1** Initially, each page has pagerank value $\frac{1}{n}$
- 2 In each step, each page:

- Setting: we have a directed graph describing relationships between set of webpages.
 - There is a directed edge (i,j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

- **1** Initially, each page has pagerank value $\frac{1}{n}$
- 2 In each step, each page:
 - divides its pagerank value equally to its outgoing link,

- **Setting:** we have a directed graph describing relationships between set of webpages.
 - There is a directed edge (i,j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

- **1** Initially, each page has pagerank value $\frac{1}{n}$
- 2 In each step, each page:
 - divides its pagerank value equally to its outgoing link,
 - sends these equal shares to the pages it points to,

- **Setting:** we have a directed graph describing relationships between set of webpages.
 - There is a directed edge (i,j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

- **1** Initially, each page has pagerank value $\frac{1}{n}$
- 2 In each step, each page:
 - 1 divides its pagerank value equally to its outgoing link,
 - sends these equal shares to the pages it points to,
 - updates its new pagerank value to be the sum of shares it receives.

Page Rank - Example

- **1** Initially, each page has pagerank value $\frac{1}{n}$
- 2 In each step, each page:
 - divides its pagerank value equally to its outgoing link,
 - sends these equal shares to the pages it points to,
 - updates its new pagerank value to be the sum of shares it receives.

- 1 Initially, each page has pagerank value $\frac{1}{n}$
- ② In each step, each page:
 - divides its pagerank value equally to its outgoing link,
 - sends these equal shares to the pages it points to,
 - updates its new pagerank value to be the sum of shares it receives.
 - Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$P \in \mathbb{R}^{n \times n}, \ P_{i,j} = \frac{1}{\delta^{out}(j)}$$

Algorithm (Page Rank Algorithm)

- **1** Initially, each page has pagerank value $\frac{1}{n}$
- ② In each step, each page:
 - divides its pagerank value equally to its outgoing link,
 - sends these equal shares to the pages it points to,
 - updates its new pagerank value to be the sum of shares it receives.
 - Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$P \in \mathbb{R}^{n \times n}, \ P_{i,j} = \frac{1}{\delta^{out}(j)}$$

Pagerank values and transition probabilities satisfy same equations:

$$p_{t+1}(j) = \sum_{i:(i,j)\in E} \frac{p_t(i)}{\delta^{out}(i)} \Rightarrow p_{t+1} = P \cdot p_t$$

Algorithm (Page Rank Algorithm)

- **1** Initially, each page has pagerank value $\frac{1}{n}$
- 2 In each step, each page:
 - 1 divides its pagerank value equally to its outgoing link,
 - sends these equal shares to the pages it points to,
 - updates its new pagerank value to be the sum of shares it receives.
 - Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$P \in \mathbb{R}^{n \times n}, \ P_{i,j} = \frac{1}{\delta^{out}(j)}$$

Pagerank values and transition probabilities satisfy same equations:

$$p_{t+1}(j) = \sum_{i:(i,j)\in E} \frac{p_t(i)}{\delta^{out}(i)} \Rightarrow p_{t+1} = P \cdot p_t$$

• If graph finite, irreducible and aperiodic, fundamental theorem guarantees stationary distribution.

 In practice, directed graph may not satisfy fundamental theorem's conditions

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
 - Fix number 0 < s < 1
 - Divide s fraction of its pagerank value to its neighbors,
 - ullet 1-s fraction of its pagerank value to all nodes evenly

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
 - Fix number 0 < s < 1
 - Divide s fraction of its pagerank value to its neighbors,
 - ullet 1-s fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
 - Fix number 0 < s < 1
 - Divide s fraction of its pagerank value to its neighbors,
 - ullet 1-s fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
 - With probability s go to one of its neighbors (uniformly at random),
 - With probability 1-s go to random page (uniformly at random)

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
 - Fix number 0 < s < 1
 - Divide s fraction of its pagerank value to its neighbors,
 - ullet 1-s fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
 - With probability s go to one of its neighbors (uniformly at random),
 - With probability 1-s go to random page (uniformly at random)
- Now resulting graph is strongly connected and aperiodic ⇒ unique stationary distribution

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
 - Fix number 0 < s < 1
 - Divide s fraction of its pagerank value to its neighbors,
 - ullet 1-s fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
 - With probability s go to one of its neighbors (uniformly at random),
 - With probability 1-s go to random page (uniformly at random)
- Now resulting graph is strongly connected and aperiodic ⇒ unique stationary distribution
- This modification does not change "relative importance" of vertices

Acknowledgement

- Lecture based largely on:
 - Hannah Cairns notes on Perron-Frobenius (see link in course webpage)
 - Lap Chi's notes
 - [Motwani & Raghavan 2007, Chapter 6]
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf
- Also see Lap Chi's notes
 https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a proof of fundamental theorem of Markov chains for undirected graphs.

References I

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

Karp, R.M. and Luby, M. and Madras, N. (1989)

Monte-Carlo approximation algorithms for enumeration problems.

Journal of algorithms, 10(3), pp.429-448.

Jerrum, M. and Sinclair, A. and Vigoda, E. (2004)

A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries.

Journal of the ACM (JACM), 51(4), pp.671-697.