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Overview

@ Main Tools
o Linear Algebra Background
o Perron-Frobenius

@ Main Applications
e Fundamental Theorem of Markov Chains
o Page Rank

@ Acknowledgements
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = \v.
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.
@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A
o Gelfand’s formula
p(A) = lim ||ATIF*

t—o0
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A

@ Gelfand’s formula y
) t
p(A) = lim HAtHF

t—o0

e Geometric multiplicity: an eigenvalue A\ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue A has
dimension k. That is, if dimension of null space of A — A/l is k.
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A

@ Gelfand’s formula y
) t
p(A) = lim HAtHF

t—o0

e Geometric multiplicity: an eigenvalue A\ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue A has
dimension k. That is, if dimension of null space of A — A/l is k.

o Algebraic multiplicity: an eigenvalue X of A has algebraic multiplicity
k if (t — A\)X is the highest power of t — X dividing det(t/ — A)
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Eigenvalues, Eigenvectors and Spectral Radius

@ Given a square matrix A € R™" we say that A\ € C is an eigenvalue
of A if there is a vector v € C" such that Av = A\v.

@ The spectral radius of a matrix A, denoted p(A), is the maximum
absolute value of the eigenvalues of A

@ Gelfand’s formula y
) t
p(A) = lim HAtHF

t—o0

e Geometric multiplicity: an eigenvalue A\ of A has geometric
multiplicity k if the space of eigenvectors of A with eigenvalue A has
dimension k. That is, if dimension of null space of A — A/l is k.

o Algebraic multiplicity: an eigenvalue X of A has algebraic multiplicity
k if (t — A\)X is the highest power of t — X dividing det(t/ — A)

o Example:

8/77



Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.
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Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.

o Note that

(Au—=v))i = Ay — mlnAU) Z

Jj
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Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.

o Note that
J

(A= v))i = 32 Al = ) = (min Ay) - 3 (u

@ Since uj > v;j for all j and u, v distinct implies that there is one index
k such that uy > vi, we have

Z(UJ >uk—vk>0
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Positivity Lemma

Lemma (Positivity Lemma)

If A€ R™" js a positive matrix and u,v € R" are distinct vectors such

that u > v, then Au > Av. Moreover, there exists ¢ > 0 such that
Au > (1+¢€)Av.

o Note that

(A= v))i = 32 Al = ) = (min Ay) - 3 (u

Jj

@ Since uj > v;j for all j and u, v distinct implies that there is one index
k such that uy > vi, we have

Z(UJ >uk—vk>0

@ the moreover part just follows from taking small enough ¢
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@ Main Tools

e Perron-Frobenius

@ Main Applications

@ Acknowledgements
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A € R™" be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circumference |A\| = p(A)
@ p(A) has geometric multiplicity 1

Q p(A) has algebraic multiplicity 1
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A € R™" be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circumference |A\| = p(A)
@ p(A) has geometric multiplicity 1
)

Q p(A) has algebraic multiplicity 1

@ By the definition of p(A), there is an eigenvalue A € C such that
|A| = p(A). Let v the a corresponding eigenvector.
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Perron’s Theorem

Theorem (Perron’s Theorem)

Let A € R™" be a positive matrix (i.e., all its entries are positive). Then,
the following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circumference |A\| = p(A)
@ p(A) has geometric multiplicity 1
)

Q p(A) has algebraic multiplicity 1

@ By the definition of p(A), there is an eigenvalue A € C such that
|A| = p(A). Let v the a corresponding eigenvector.

@ Let u be the vector defined by u; = |v;|. Then, we have
(Au)i =D Aju > | Y Ajvil = [\l = p(A) - uj
J J

so Au > p(A)u.
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Perron's Theorem - item 1

e We proved Au > p(A)u.
o If inequality strict, then we have

A%u > p(A) - Au
and there is some positive € > 0 such that

A%u > (14 ¢)p(A)Au
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Perron's Theorem - item 1

e We proved Au > p(A)u.
o If inequality strict, then we have

A%u > p(A) - Au
and there is some positive € > 0 such that
A%u > (14 ¢)p(A)Au
@ By induction, we would have

ALy > (14€)"- p(A)" - Au
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Perron’s Theorem - item 1
e We proved Au > p(A)u.

o If inequality strict, then we have
A%u > p(A) - Au
and there is some positive € > 0 such that
A%u > (14 ¢)p(A)Au
@ By induction, we would have
ALy > (14€)"- p(A)" - Au
@ By Gelfand's formula we would have
p(A) = lim A" > (1+2)(A)

which is a contradiction. So equality must hold.
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Perron's theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.
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Perron's theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.
e Note that u > 0 since p(A)u; = (Au); >0
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Perron’s theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.

e Note that u > 0 since p(A)u; = (Au); >0

@ Now we are ready for item 2: the only eigenvalue on the complex
circumference |u| = p(A) is p(A)
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Perron’s theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.

e Note that u > 0 since p(A)u; = (Au); >0

@ Now we are ready for item 2: the only eigenvalue on the complex
circumference |u| = p(A) is p(A)

o If we had another eigenvalue X # p(A) in the circumference
|| = p(A), where z is the eigenvector corresponding to A, by the
previous slide, we know that w defined as w; = |z| satisfies

Aw = p(Aw & 3 Ajw; = p(A) -zl = Pzl = |3 Agz
J J

forevery 1 <i<n
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Perron’s theorem - items 1 and 2

@ We just proved that p(A) is an eigenvalue, with eigenvector u > 0.

Note that u > 0 since p(A)u; = (Au); >0

Now we are ready for item 2: the only eigenvalue on the complex
circumference |u| = p(A) is p(A)

If we had another eigenvalue A # p(A) in the circumference
|| = p(A), where z is the eigenvector corresponding to A, by the
previous slide, we know that w defined as w; = |z| satisfies

Aw = p(Aw & D Ayw; = p(A) - |zi = Mz = | ) Ajz|
J J
forevery 1 <i<n

Lemma: if the conditions above hold, then there is & € C nonzero
such that az >0

Proof by squaring both sides and using complex conjugates.
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Perron's theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have

Maz) =a-(Az) = a(Az) = Alaz) > 0
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Perron's theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.
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Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).

27/77



Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).

@ Let 8 > 0 be such that u — v > 0 and at least one entry is zero.
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Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).

@ Let 8 > 0 be such that u — v > 0 and at least one entry is zero.

u — Bv # 0 since the vectors are linearly independent
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Perron’s theorem - items 2 and 3

@ But if @z > 0 and a nonzero vector, we have
Maz) =a-(Az) = a(Az) = Alaz) > 0

@ Thus we know that A is a non-negative number. However, p(A) is the
only non-negative number in the circle || = p(A). This concludes
item 2.

@ Now we are ready to prove item 3: the geometric multiplicity of p(A)
is 1.

@ Suppose not, and let u, v be two linearly independent eigenvectors for
p(A). We can assume that both u, v are real vectors (why?).

@ Let 8 > 0 be such that u — v > 0 and at least one entry is zero.

@ u — [v # 0 since the vectors are linearly independent

@ Butforeach1 </<n

p(A) - (u—pv)i = (A(u = Bv))i > 0

which contradicts our choice of 5. Thus, there cannot be two linearly
independent eigenvectors.
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A € R"*" s aperiodic and irreducible, then the
following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circle |A\| = p(A)
9 p(A) has geometric multiplicity 1
)

p(A

has algebraic multiplicity 1
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A € R"*" s aperiodic and irreducible, then the
following hold:

@ p(A) is an eigenvalue, and it has a positive eigenvector

@ p(A) is the only eigenvalue in the complex circle |A\| = p(A)

9 p(A) has geometric multiplicity 1
)

p(A

has algebraic multiplicity 1

@ By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that A™ has all positive entries.
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Perron-Frobenius

Theorem (Perron-Frobenius)

If a non-negative matrix A € R"*" s aperiodic and irreducible, then the
following hold:

p(A) is an eigenvalue, and it has a positive eigenvector
p(A) is the only eigenvalue in the complex circle |\| = p(A)
p(A) has geometric multiplicity 1
p(A) has algebraic multiplicity 1

0090

By previous lecture, we saw that A being aperiodic and irreducible
implies that there is m > 0 such that A™ has all positive entries.

Apply Perron’s theorem to A™ and note that the eigenvalues of A™
are A", where ); are the eigenvalues of A
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@ Main Tools

@ Main Applications

e Fundamental Theorem of Markov Chains

@ Acknowledgements
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Fundamental Theorem of Markov Chains

@ The return time from state / to itself is defined as

T,",' = min{t >1 | Xe=1i,X0= i}
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Fundamental Theorem of Markov Chains

@ The return time from state / to itself is defined as
T,",' = min{t >1 | Xe=1i,X0= i}

e Expected return time: defined as 7;; := E[T; ;].
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Fundamental Theorem of Markov Chains

@ The return time from state / to itself is defined as
T,",' = min{t >1 | Xe=1i,X0= i}
e Expected return time: defined as 7;; := E[T; ;].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

© There exists a unique stationary distribution 7, where w; > 0 for all
i € [n]

@ The sequence of distributions {p;}+>0 will converge to m, no matter
what the initial distribution is

o

mi= lim Pf. = —
n .

37/77



Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

@ There is unique stationary distribution m, where m; > 0 for all i € [n]

© for every distribution py € RZ,

lim Pt -pp=m
t—o00

i 1
7= lim Pf, = —
t—o0 ? 7‘,'7,'
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

@ There is unique stationary distribution m, where m; > 0 for all i € [n]

© for every distribution py € RZ,

lim Pt -pp=m
t—o00

i 1
7= lim Pf, = —
t—o0 ? 7‘,'7,'

@ The transition matrix P is non-negative, irreducible and aperiodic. So

we can apply Perron-Frobenius and prove items 1 and 2.
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]

© For every distribution pg € RZ,
o

lim Pt-pg=m
t—o0

: 1
7i= lim Pf, = —
t—o00 ? Tii

b

If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]
© For every distribution pg € RZ,

o

lim Pt-pg=m
t—o0

) 1
m; = lim P,-t,- = —
t—o00 ?

Tii

If our underlying graph is undirected:

e If A adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:

P=AsD™!
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]
© For every distribution pg € RZ,

o

lim Pt-pg=m
t—o0

) 1
m; = lim P,-t,- = —
t—o00 ?

Tii

If our underlying graph is undirected:

e If A adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:

P=AcD!
@ Note that in this case, easy to guess stationary distribution:
d.
TP = ﬁ, m = ‘E‘
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

i =—, m=|E|

2m
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

i =—, m=|E|

2m

e If Ag adjacency matrix of G(V/, E) and D = diag(di, d>, . ..

transition matrix:
P=AcD!

4577



Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

i =—, m=|E|

2m

e If Ag adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:
P=AcD!

e P not symmetric, but similar to a symmetric matrix:

D71/2PD1/2 — D71/2AGD71D1/2 — D71/2AGD71/2 —p
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

e If A adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:
P=AcD!

e P not symmetric, but similar to a symmetric matrix:
D71/2PD1/2 — D71/2AGD71D1/2 — D71/2AGD71/2 —p

e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

e If A adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:
P=AcD!

e P not symmetric, but similar to a symmetric matrix:
D71/2PD1/2 — D71/2AGD71D1/2 — D71/2AGD71/2 —p
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!

e Eigenvectors of P are Dl/zv,- where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
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Fundamental Theorem of Markov Chains

e Stationary distribution: 7; = ﬁ, m = |E]|
e Transition matrix: P = D1 Ag
o P similar to a symmetric matrix: P’ = D~'/2A;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
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Fundamental Theorem of Markov Chains

e Stationary distribution: 7; = ﬁ, m = |E]|
e Transition matrix: P = D1 Ag

o P similar to a symmetric matrix: P’ = D~'/2A;D~1/2
P and P’ has same eigenvalues! And P’ has only real eigenvalues!
Eigenvectors of P are D~1/2y; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.

Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices
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Fundamental Theorem of Markov Chains

e Stationary distribution: 7; = 2—', m = |E]|

e Transition matrix: P = D1 Ag

o P similar to a symmetric matrix: P’ = D~'/2A;D~1/2
P and P’ has same eigenvalues! And P’ has only real eigenvalues!
Eigenvectors of P are D~1/2y; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.

Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices

@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive
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Fundamental Theorem of Markov Chains

e Stationary distribution: 7; = ﬁ, m = |E]|
e Transition matrix: P = D1 Ag

o P similar to a symmetric matrix: P’ = D~'/2A;D~1/2
P and P’ has same eigenvalues! And P’ has only real eigenvalues!
Eigenvectors of P are D~1/2y; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.

Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices

@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive

This eigenvector is 7!
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Fundamental Theorem of Markov Chains

e Stationary distribution: 7; = ﬁ, m = |E]|
e Transition matrix: P = D1 Ag
o P similar to a symmetric matrix: P’ = D~'/2A;D~1/2
P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.

o Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices

@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive

e This eigenvector is 7!

o All random walks converge to 7, as we wanted to show.
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@ Main Tools

@ Main Applications

o Page Rank

@ Acknowledgements
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i, /) if there is a link from page i to page j.
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i, /) if there is a link from page i to page j.

@ Goal: want algorithm to “rank” how important a page is.
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i, /) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

oy . 1
Q Initially, each page has pagerank value -
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

oy . 1
Q Initially, each page has pagerank value -
@ In each step, each page:
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

oy . 1
Q Initially, each page has pagerank value -
@ In each step, each page:
@ divides its pagerank value equally to its outgoing link,
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

© Initially, each page has pagerank value %
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,
@ sends these equal shares to the pages it points to,
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

© Initially, each page has pagerank value %
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,
@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.
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Page Rank - Example

o>
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Page Rank
Algorithm (Page Rank Algorithm)

- 1
@ Initially, each page has pagerank value
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.
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Page Rank
Algorithm (Page Rank Algorithm)

- 1
@ Initially, each page has pagerank value
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.

e Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

PeR™", P .

U be())
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Page Rank
Algorithm (Page Rank Algorithm)

- 1
@ Initially, each page has pagerank value
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.

e Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

1
nxn _
PeR s Pixj_—(gout(j)
@ Pagerank values and transition probabilities satisfy same equations:
. pe(i
pe+1(j) = 5055(3) = pr+1=P-pt
ir(ij)EE
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Algorithm (Page Rank Algorithm)

5, o 1
@ Initially, each page has pagerank value
@ In each step, each page:
@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.

e Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

1
nxn _
PeR s Pixj_—(gout(j)
@ Pagerank values and transition probabilities satisfy same equations:
. pe(i
pe+1(j) = 5055(3) = pr+1=P-pt

ir(ij)EE
o If graph finite, irreducible and aperiodic, fundamental theorem

guarantees stationary distribnution.
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@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
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@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions

o Modify original graph as follows:
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@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
o Modify original graph as follows:

o Fix number 0 < s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly
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@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
o Modify original graph as follows:

o Fix number 0 < s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

@ Equivalent to the random walk:
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@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
o Modify original graph as follows:
o Fix number 0 < s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly
@ Equivalent to the random walk:

o With probability s go to one of its neighbors (uniformly at random),
o With probability 1 — s go to random page (uniformly at random)
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@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions

Modify original graph as follows:
o Fix number 0 < s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

Equivalent to the random walk:

o With probability s go to one of its neighbors (uniformly at random),
o With probability 1 — s go to random page (uniformly at random)

@ Now resulting graph is strongly connected and aperiodic = unique
stationary distribution
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@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
o Modify original graph as follows:

o Fix number 0 < s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

@ Equivalent to the random walk:

o With probability s go to one of its neighbors (uniformly at random),
o With probability 1 — s go to random page (uniformly at random)

@ Now resulting graph is strongly connected and aperiodic = unique
stationary distribution

@ This modification does not change “relative importance” of vertices
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@ Lecture based largely on:
e Hannah Cairns notes on Perron-Frobenius (see link in course webpage)

e Lap Chi's notes
o [Motwani & Raghavan 2007, Chapter 6]

@ See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf

@ Also see Lap Chi's notes
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a
proof of fundamental theorem of Markov chains for undirected graphs.
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