
Lecture 2: Amortized Analysis & Splay Trees

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

May 7, 2025

1 / 59



Overview

Introduction
Splay Trees

Implementing Splay-Trees
Setup
Rotations & Splay Operation
Analysis

Conclusion & Open Problems

Acknowledgements

2 / 59



Why Splay Trees?

Binary search trees:

extremely useful data structures (pervasive in computer
science/industry)

worst-case running time per operation Θ(height)

Need technique to balance height.

Different implementations: red-black trees [CLRS 2009, Chapter 13],
AVL trees [CLRS 2009, Exercise 13-3] and many others (see
[CLRS 2009, Chapter notes of ch. 13].

All these implementations are quite involved, require extra
information per node (i.e. more memory) and difficult to analyze.

Splay trees are:

Easier to implement

don’t keep any balance info!

3 / 59



Why Splay Trees?

Binary search trees:

extremely useful data structures (pervasive in computer
science/industry)

worst-case running time per operation Θ(height)

Need technique to balance height.

Different implementations: red-black trees [CLRS 2009, Chapter 13],
AVL trees [CLRS 2009, Exercise 13-3] and many others (see
[CLRS 2009, Chapter notes of ch. 13].

All these implementations are quite involved, require extra
information per node (i.e. more memory) and difficult to analyze.

Splay trees are:

Easier to implement

don’t keep any balance info!

4 / 59



Splay Trees (self-adjusting binary trees)

Theorem ([Sleator & Tarjan 1985])

Splay trees have Θ(log n) amortized cost per op., Θ(n) worst-case time.

We will not keep any balancing info
Main idea: adjust the tree whenever a node is accessed (giving rise to
name “self-adjusting trees”)

5 / 59



Splay Trees (self-adjusting binary trees)

Theorem ([Sleator & Tarjan 1985])

Splay trees have Θ(log n) amortized cost per op., Θ(n) worst-case time.

We will not keep any balancing info

Main idea: adjust the tree whenever a node is accessed (giving rise to
name “self-adjusting trees”)

6 / 59



Splay Trees (self-adjusting binary trees)

Theorem ([Sleator & Tarjan 1985])

Splay trees have Θ(log n) amortized cost per op., Θ(n) worst-case time.

We will not keep any balancing info
Main idea: adjust the tree whenever a node is accessed (giving rise to
name “self-adjusting trees”)

7 / 59



Splay Trees (self-adjusting binary trees)

Theorem ([Sleator & Tarjan 1985])

Splay trees have Θ(log n) amortized cost per op., Θ(n) worst-case time.

We will not keep any balancing info
Main idea: adjust the tree whenever a node is accessed (giving rise to
name “self-adjusting trees”)

8 / 59



Introduction
Splay Trees

Implementing Splay-Trees
Setup
Rotations & Splay Operation
Analysis

Conclusion & Open Problems

Acknowledgements

9 / 59



Naive approach

How to adjust tree to get good amortized bounds?

Idea (Splaying): every time we search some node, imagine this will be a
“popular node” and move it up to the root. Moving a node to the root is
called splaying the node.

Naive Idea: perform [single] rotations to move the searched node to the
root.

This is not good. In practice problems you will show that this gives
amortized search cost of Ω(n).

How do we fix this? By adding different kinds of rotations!

10 / 59



Naive approach

How to adjust tree to get good amortized bounds?

Idea (Splaying): every time we search some node, imagine this will be a
“popular node” and move it up to the root. Moving a node to the root is
called splaying the node.

Naive Idea: perform [single] rotations to move the searched node to the
root.

This is not good. In practice problems you will show that this gives
amortized search cost of Ω(n).

How do we fix this? By adding different kinds of rotations!

11 / 59



Naive approach

How to adjust tree to get good amortized bounds?

Idea (Splaying): every time we search some node, imagine this will be a
“popular node” and move it up to the root. Moving a node to the root is
called splaying the node.

Naive Idea: perform [single] rotations to move the searched node to the
root.

This is not good. In practice problems you will show that this gives
amortized search cost of Ω(n).

How do we fix this? By adding different kinds of rotations!

12 / 59



Naive approach

How to adjust tree to get good amortized bounds?

Idea (Splaying): every time we search some node, imagine this will be a
“popular node” and move it up to the root. Moving a node to the root is
called splaying the node.

Naive Idea: perform [single] rotations to move the searched node to the
root.

This is not good. In practice problems you will show that this gives
amortized search cost of Ω(n).

How do we fix this? By adding different kinds of rotations!

13 / 59



Naive approach

How to adjust tree to get good amortized bounds?

Idea (Splaying): every time we search some node, imagine this will be a
“popular node” and move it up to the root. Moving a node to the root is
called splaying the node.

Naive Idea: perform [single] rotations to move the searched node to the
root.

This is not good. In practice problems you will show that this gives
amortized search cost of Ω(n).

How do we fix this? By adding different kinds of rotations!

14 / 59



Basic Rotations

Rotation type 1: zig-zag rotations

15 / 59



Basic Rotations (continued)

Rotation type 2: zig-zig rotations

16 / 59



Basic Rotations (continued)

Rotation type 3: normal rotations (zigs)

17 / 59



Splay Operation

Definition (SPLAY operation)

SPLAY (k)

Input: element k

Output: “rebalancing of the binary search tree”

Repeat until k is the root of the tree:

If node of k in tree satisfies the zig-zag condition, perform zig-zag
rotation.

zig-zag condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as right-child (left child)

If node of k in tree satisfies the zig-zig condition, perform zig-zig
rotation.

zig-zig condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as left-child (right child)

If node of k in tree is a child of the root, perform normal rotation (zig).

18 / 59



Splay Operation

Definition (SPLAY operation)

SPLAY (k)

Input: element k

Output: “rebalancing of the binary search tree”

Repeat until k is the root of the tree:

If node of k in tree satisfies the zig-zag condition, perform zig-zag
rotation.

zig-zag condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as right-child (left child)

If node of k in tree satisfies the zig-zig condition, perform zig-zig
rotation.

zig-zig condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as left-child (right child)

If node of k in tree is a child of the root, perform normal rotation (zig).

19 / 59



Splay Operation

Definition (SPLAY operation)

SPLAY (k)

Input: element k

Output: “rebalancing of the binary search tree”

Repeat until k is the root of the tree:
If node of k in tree satisfies the zig-zag condition, perform zig-zag
rotation.

zig-zag condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as right-child (left child)

If node of k in tree satisfies the zig-zig condition, perform zig-zig
rotation.

zig-zig condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as left-child (right child)

If node of k in tree is a child of the root, perform normal rotation (zig).

20 / 59



Splay Operation

Definition (SPLAY operation)

SPLAY (k)

Input: element k

Output: “rebalancing of the binary search tree”

Repeat until k is the root of the tree:
If node of k in tree satisfies the zig-zag condition, perform zig-zag
rotation.

zig-zag condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as right-child (left child)

If node of k in tree satisfies the zig-zig condition, perform zig-zig
rotation.

zig-zig condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as left-child (right child)

If node of k in tree is a child of the root, perform normal rotation (zig).

21 / 59



Splay Operation

Definition (SPLAY operation)

SPLAY (k)

Input: element k

Output: “rebalancing of the binary search tree”

Repeat until k is the root of the tree:
If node of k in tree satisfies the zig-zag condition, perform zig-zag
rotation.

zig-zag condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as right-child (left child)

If node of k in tree satisfies the zig-zig condition, perform zig-zig
rotation.

zig-zig condition: parent(k) has k as left-child (right child) and
parent(parent(k)) has parent(k) as left-child (right child)

If node of k in tree is a child of the root, perform normal rotation (zig).

22 / 59



Example

23 / 59



Example (continued)

24 / 59



Setup

Notation:

n← number of elements (we denote the elements by 1, 2, . . . , n)

m← number of operations. That is

m = (# searches) + (# insertions) + (# deletions)

SEARCH(k)← find whether element k is in tree

INSERT (k)← insert element k in our tree

DELETE (k)← delete element k from our tree

25 / 59



Setup

Notation:

n← number of elements (we denote the elements by 1, 2, . . . , n)

m← number of operations. That is

m = (# searches) + (# insertions) + (# deletions)

SEARCH(k)← find whether element k is in tree

INSERT (k)← insert element k in our tree

DELETE (k)← delete element k from our tree

26 / 59



Splay Tree Algorithm

Input: set of elements {1, 2, . . . , n}

Output: at each step, a binary-search tree data structure and the answer
to the query being asked.

1 SEARCH(k)→ after searching for k, if k in the tree, do SPLAY (k).
If k not in tree, do SPLAY (k ′) where k ′ is the last node seen in the
traversal

2 INSERT (k)→ standard insert operation, then do SPLAY (k)

3 DELETE (k)→ standard delete operation, then SPLAY (parent(k))

delete first “moves k to the bottom of tree” (by finding successor)
then delete k as in the cases where k has at most one child
then we splay the parent of k (after we place k at the bottom)
see [CLRS 2009, Chapter 12] for a recap (and correct implementation)

27 / 59



Figure: Is that it?

28 / 59



Analysis - Potential Method
We will use for the analysis the potential method.

In the potential method, we assign a potential function Φ which maps
each data structure D to a real number Φ(D), which is potential
associated with data structure D.

The charge γi of the i th operation with respect to the potential function Φ
is:

γi := ci +Φ(Di )− Φ(Di−1)

The amortized cost of all operations is

m∑
i=1

γi =
m∑
i=1

ci +Φ(Di )− Φ(Di−1)

= Φ(Dm)− Φ(D0) +
m∑
i=1

ci

So long as Φ(Dm) ≥ Φ(D0) then amortized charge is an upper bound on
amortized cost.

29 / 59



Analysis - Potential Method
We will use for the analysis the potential method.

In the potential method, we assign a potential function Φ which maps
each data structure D to a real number Φ(D), which is potential
associated with data structure D.

The charge γi of the i th operation with respect to the potential function Φ
is:

γi := ci +Φ(Di )− Φ(Di−1)

The amortized cost of all operations is

m∑
i=1

γi =
m∑
i=1

ci +Φ(Di )− Φ(Di−1)

= Φ(Dm)− Φ(D0) +
m∑
i=1

ci

So long as Φ(Dm) ≥ Φ(D0) then amortized charge is an upper bound on
amortized cost.

30 / 59



Analysis - Potential Method
We will use for the analysis the potential method.

In the potential method, we assign a potential function Φ which maps
each data structure D to a real number Φ(D), which is potential
associated with data structure D.

The charge γi of the i th operation with respect to the potential function Φ
is:

γi := ci +Φ(Di )− Φ(Di−1)

The amortized cost of all operations is

m∑
i=1

γi =
m∑
i=1

ci +Φ(Di )− Φ(Di−1)

= Φ(Dm)− Φ(D0) +
m∑
i=1

ci

So long as Φ(Dm) ≥ Φ(D0) then amortized charge is an upper bound on
amortized cost.

31 / 59



Analysis - Potential Method
We will use for the analysis the potential method.

In the potential method, we assign a potential function Φ which maps
each data structure D to a real number Φ(D), which is potential
associated with data structure D.

The charge γi of the i th operation with respect to the potential function Φ
is:

γi := ci +Φ(Di )− Φ(Di−1)

The amortized cost of all operations is

m∑
i=1

γi =
m∑
i=1

ci +Φ(Di )− Φ(Di−1)

= Φ(Dm)− Φ(D0) +
m∑
i=1

ci

So long as Φ(Dm) ≥ Φ(D0) then amortized charge is an upper bound on
amortized cost.

32 / 59



Analysis - Potential Method
We will use for the analysis the potential method.

In the potential method, we assign a potential function Φ which maps
each data structure D to a real number Φ(D), which is potential
associated with data structure D.

The charge γi of the i th operation with respect to the potential function Φ
is:

γi := ci +Φ(Di )− Φ(Di−1)

The amortized cost of all operations is

m∑
i=1

γi =
m∑
i=1

ci +Φ(Di )− Φ(Di−1)

= Φ(Dm)− Φ(D0) +
m∑
i=1

ci

So long as Φ(Dm) ≥ Φ(D0) then amortized charge is an upper bound on
amortized cost.

33 / 59



Potential Function

Definition (Potential Function)

δ(k) := number of descendants of k (including k)

rank(k) := log(δ(k))

Φ(T ) =
∑
k∈T

rank(k)

Examples (max potential):

34 / 59



Potential Function

Definition (Potential Function)

δ(k) := number of descendants of k (including k)

rank(k) := log(δ(k))

Φ(T ) =
∑
k∈T

rank(k)

Examples (max potential):

35 / 59



Potential Function

Definition (Potential Function)

δ(k) := number of descendants of k (including k)

rank(k) := log(δ(k))

Φ(T ) =
∑
k∈T

rank(k)

Examples (max potential):

36 / 59



Potential Function

Definition (Potential Function)

δ(k) := number of descendants of k (including k)

rank(k) := log(δ(k))

Φ(T ) =
∑
k∈T

rank(k)

Examples (max potential):

37 / 59



Example - min potential

38 / 59



Analysis - Splay operation
Let rank(k) be the current rank of k and rank′(k) be the new rank of k
after we perform a rotation on k.

Lemma (Amortized cost from SPLAY Subroutines)

The charge γ of an operation (zig, zig-zig, zig-zag) is bounded by:

γ ≤

{
3 · (rank′(k)− rank(k)) for zig-zig, zig-zag

3 · (rank′(k)− rank(k)) + 1 for zig

Lemma (Total Amortized Cost of SPLAY (k))

Let T be our current tree, with root t and k be a node in this tree. The
charge of SPLAY (k) is

≤ 3 · (rank(t)− rank(k)) + 1 ≤ 3 · rank(t) + 1 = O(log n)

39 / 59



Analysis - Splay operation
Let rank(k) be the current rank of k and rank′(k) be the new rank of k
after we perform a rotation on k.

Lemma (Amortized cost from SPLAY Subroutines)

The charge γ of an operation (zig, zig-zig, zig-zag) is bounded by:

γ ≤

{
3 · (rank′(k)− rank(k)) for zig-zig, zig-zag

3 · (rank′(k)− rank(k)) + 1 for zig

Lemma (Total Amortized Cost of SPLAY (k))

Let T be our current tree, with root t and k be a node in this tree. The
charge of SPLAY (k) is

≤ 3 · (rank(t)− rank(k)) + 1 ≤ 3 · rank(t) + 1 = O(log n)

40 / 59



Analysis - Splay operation
Let rank(k) be the current rank of k and rank′(k) be the new rank of k
after we perform a rotation on k.

Lemma (Amortized cost from SPLAY Subroutines)

The charge γ of an operation (zig, zig-zig, zig-zag) is bounded by:

γ ≤

{
3 · (rank′(k)− rank(k)) for zig-zig, zig-zag

3 · (rank′(k)− rank(k)) + 1 for zig

Lemma (Total Amortized Cost of SPLAY (k))

Let T be our current tree, with root t and k be a node in this tree. The
charge of SPLAY (k) is

≤ 3 · (rank(t)− rank(k)) + 1 ≤ 3 · rank(t) + 1 = O(log n)

41 / 59



Proof of First Lemma (charge to zig)

42 / 59



Proof of First Lemma (charge to zig-zig)

43 / 59



Proof of First Lemma (charge to zig-zig)

44 / 59



Proof of Second Lemma (total charge of SPLAY (k))

45 / 59



Analysis - Amortized cost

1 For each operation (INSERT, SEARCH, DELETE) we have:1

(charge per operation) = (charge of SPLAY)

+ (potential change not from SPLAY)

2 (charge of SPLAY) = O(log n) (by second lemma)

3 charge of SPLAY already includes the cost of the operation
4 Tracking potential change outside splay:

1 SEARCH → only splay changes the potential
2 DELETE → removing a node decreases potential
3 INSERT → adding new element k increases ranks of all ancestors of k

post insertion (might be O(n) of them)

1Charge of SPLAY already has the cost of traversing the tree and the cost of
performing SPLAY and the change in potential coming from the SPLAY operation
accounted for.

46 / 59



Analysis - Amortized cost

1 For each operation (INSERT, SEARCH, DELETE) we have:1

(charge per operation) = (charge of SPLAY)

+ (potential change not from SPLAY)

2 (charge of SPLAY) = O(log n) (by second lemma)

3 charge of SPLAY already includes the cost of the operation

4 Tracking potential change outside splay:

1 SEARCH → only splay changes the potential
2 DELETE → removing a node decreases potential
3 INSERT → adding new element k increases ranks of all ancestors of k

post insertion (might be O(n) of them)

1Charge of SPLAY already has the cost of traversing the tree and the cost of
performing SPLAY and the change in potential coming from the SPLAY operation
accounted for.

47 / 59



Analysis - Amortized cost

1 For each operation (INSERT, SEARCH, DELETE) we have:1

(charge per operation) = (charge of SPLAY)

+ (potential change not from SPLAY)

2 (charge of SPLAY) = O(log n) (by second lemma)

3 charge of SPLAY already includes the cost of the operation
4 Tracking potential change outside splay:

1 SEARCH → only splay changes the potential
2 DELETE → removing a node decreases potential
3 INSERT → adding new element k increases ranks of all ancestors of k

post insertion (might be O(n) of them)

1Charge of SPLAY already has the cost of traversing the tree and the cost of
performing SPLAY and the change in potential coming from the SPLAY operation
accounted for.

48 / 59



Analysis - Amortized cost

1 For each operation (INSERT, SEARCH, DELETE) we have:1

(charge per operation) = (charge of SPLAY)

+ (potential change not from SPLAY)

2 (charge of SPLAY) = O(log n) (by second lemma)

3 charge of SPLAY already includes the cost of the operation
4 Tracking potential change outside splay:

1 SEARCH → only splay changes the potential

2 DELETE → removing a node decreases potential
3 INSERT → adding new element k increases ranks of all ancestors of k

post insertion (might be O(n) of them)

1Charge of SPLAY already has the cost of traversing the tree and the cost of
performing SPLAY and the change in potential coming from the SPLAY operation
accounted for.

49 / 59



Analysis - Amortized cost

1 For each operation (INSERT, SEARCH, DELETE) we have:1

(charge per operation) = (charge of SPLAY)

+ (potential change not from SPLAY)

2 (charge of SPLAY) = O(log n) (by second lemma)

3 charge of SPLAY already includes the cost of the operation
4 Tracking potential change outside splay:

1 SEARCH → only splay changes the potential
2 DELETE → removing a node decreases potential

3 INSERT → adding new element k increases ranks of all ancestors of k
post insertion (might be O(n) of them)

1Charge of SPLAY already has the cost of traversing the tree and the cost of
performing SPLAY and the change in potential coming from the SPLAY operation
accounted for.

50 / 59



Analysis - Amortized cost

1 For each operation (INSERT, SEARCH, DELETE) we have:1

(charge per operation) = (charge of SPLAY)

+ (potential change not from SPLAY)

2 (charge of SPLAY) = O(log n) (by second lemma)

3 charge of SPLAY already includes the cost of the operation
4 Tracking potential change outside splay:

1 SEARCH → only splay changes the potential
2 DELETE → removing a node decreases potential
3 INSERT → adding new element k increases ranks of all ancestors of k

post insertion (might be O(n) of them)

1Charge of SPLAY already has the cost of traversing the tree and the cost of
performing SPLAY and the change in potential coming from the SPLAY operation
accounted for.

51 / 59



Handling INSERT potential

Let us check the potential change after an insert:

52 / 59



Final Analysis

53 / 59



Introduction
Splay Trees

Implementing Splay-Trees
Setup
Rotations & Splay Operation
Analysis

Conclusion & Open Problems

Acknowledgements

54 / 59



After Learning Splay Trees

Figure: You to whoever taught you red-black trees

55 / 59



Conclusion

Splay trees gives us a fairly simple algorithm to balance a tree

Great amortized cost!

O(log n) per operation

Analysis is very clever (yet principled!)

Remember: this only works in the amortized setting (may be very bad
for client-server model for instance)

56 / 59



Dynamic Optimality Conjecture

Open Question ([Sleator & Tarjan 1985])

Splay Trees are optimal (within a constant) in a very strong sense:

Given a sequence of items to search for a1, . . . , am, let OPT be the
minimum cost of doing these searches + any rotations you like on the
binary search tree.
You can charge 1 for following tree pointer (parent → child or child →
parent), charge 1 per rotation.

Conjecture: Cost of splay tree is O(OPT).

Note that for OPT, you get to look at the sequence of searches first and
plan ahead. (we will cover this in more detail in the online algorithms part
of the course)
Also, OPT can adjust the tree so it’s even better than the static optimal
binary search trees you may have seen in CS 341.

57 / 59



Acknowledgement

Lecture based largely on Anna Lubiw’s notes. See her notes at

https://cs.uwaterloo.ca/~r5olivei/courses/2025-spring-cs466/

lectures-info/anna-lubiw-splay-trees.pdf

Picutre of self-adjusting tree taken from Robert Tarjan’s website

58 / 59

https://cs.uwaterloo.ca/~r5olivei/courses/2025-spring-cs466/lectures-info/anna-lubiw-splay-trees.pdf
https://cs.uwaterloo.ca/~r5olivei/courses/2025-spring-cs466/lectures-info/anna-lubiw-splay-trees.pdf


References I

Sleator, Daniel and Tarjan, Robert (1985)

Self-adjusting binary search trees.

J. Assoc. Comput. Mach. 32(3), 652 – 686

Cormen, Thomas and Leiserson, Charles and Rivest, Ronald and Stein, Clifford.
(2009)

Introduction to Algorithms, third edition.

MIT Press

59 / 59


	Introduction
	Splay Trees

	Implementing Splay-Trees
	Setup
	Rotations & Splay Operation
	Analysis

	Conclusion & Open Problems
	Acknowledgements

