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Why Amortized Analysis?

In your first data structures course, you learned how to devise data
structures that had good worst-case or average-case behaviour per query .

Worst or average-case complexity of data structures

Data Structure search insertion deletion

Doubly-Linked List O(n) O(1) O(n)
Ordered Array O(log n) O(n) O(n)
Hash Tablesa O(1) O(1) O(1)
Balanced Binary Search Treesb O(log n) O(log n) O(log n)

aAverage-case, although worst-case search time is Θ(n)
bAlso average-case. Worst-case complexity is O(height) of the tree, which can be

Θ(n).
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Why Amortized Analysis?

In amortized analysis, one averages the total time required to perform a
sequence of data-structure operations over all operations performed.

Upshot of amortized analysis: worst-case cost per query may be high for
one particular query, so long as overall average cost per query is small in
the end!

Remark

Amortized analysis is a worst-case analysis. That is, it measures the
average performance of each operation in the worst case.
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Types of amortized analyses

Three common types of amortized analyses:

1 Aggregate Analysis: determine upper bound T (n) on total cost of
sequence of n operations. So amortized complexity is T (n)/n.

2 Accounting Method: assign certain charge to each operation
(independent of the actual cost of the operation). If operation is
cheaper than the charge, then build up credit to use later.

3 Potential Method: one comes up with potential energy of a data
structure, which maps each state of entire data-structure to a real
number (its “potential”). Differs from accounting method because we
assign credit to the data structure as a whole, instead of assigning
credit to each operation.
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One simple problem - several analyses

Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)
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One simple problem - Aggregate Analysis

Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Question: how many bit operations will it take to increment C from 0
to n?

Notice that the worst-case time per operation is log(n). So an upper
bound is O(n log n).

But overall, we see that the most significant bits get updated very
infrequently.

Is the above analysis tight?

How many times will we “flip” the kth bit?

Putting it all together, we get:

⌈log n⌉∑
k=0

⌊n/2k⌋ <
∑
k≥0

n/2k = 2n
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Accounting method

suppose that the actual cost of each operation of an algorithm is ci

(which may be hard to track)

In the accounting method, at each step of the algorithm, we assign
charges γi to each operation such that

ℓ∑
i=1

γi ≥
ℓ∑

i=1

ci

for any ℓ ≥ 1

That is, the total charged up to step ℓ is greater than or equal to the
actual cost of all operations up to that point

In other words, we charge certain operations before they happen

If we manage to do the above, then

Total cost ≤ Total charged
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One simple problem - accounting method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to charge earlier operations for the cost of subsequent
operations?

Suppose we charge the cost of “clearing a bit” (changing the bit from
1 to 0) to the operation that sets the bit to 1 in the first place.

If we flip k bits during an increment, we have already charged k − 1
of those bit flips to earlier bit flips.

Why?

Note that if we flip k bits, we must set k − 1 of these bits to 0 (so
that it carries over)

So, instead of paying for k bit flips in this increment, we charge at
most 2:

one for setting a bit to 1, actual cost
and the other is the charge to “clear this bit” clearing charge

Total cost ≤ Total Charged = 2× n
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Example of the accounting method
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Formal Analysis of the accounting method
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Potential Method

suppose that the actual cost of each operation of an algorithm is ci

(which may be hard to track)

potential method: assign potential Φi to data structure at time i .
Amortized cost of i th operation is

γi = ci +Φi − Φi−1

That is, total amortized cost is the actual cost of the operation plus
the change in potential

We have:

n∑
i=1

γi =
n∑

i=1

(ci +Φi − Φi−1) = Φn − Φ0 +
n∑

i=1

ci

So if Φk − Φ0 ≥ 0 for all k ≥ 0 (valid potential function) the total
amortized cost is an upper bound on total cost.
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One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:

ci = (# bits 0 → 1) + (# bits 1 → 0) cost
Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

34 / 44



One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:

ci = (# bits 0 → 1) + (# bits 1 → 0) cost
Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

35 / 44



One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:

ci = (# bits 0 → 1) + (# bits 1 → 0) cost
Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

36 / 44



One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:

ci = (# bits 0 → 1) + (# bits 1 → 0) cost
Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

37 / 44



One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:
ci = (# bits 0 → 1) + (# bits 1 → 0) cost

Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

38 / 44



One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:
ci = (# bits 0 → 1) + (# bits 1 → 0) cost
Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

39 / 44



One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:
ci = (# bits 0 → 1) + (# bits 1 → 0) cost
Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

40 / 44



One simple problem - potential method
Input: A binary counter C initially set to zero

Output: increment this counter up to n (a given integer)

Is there a way to assign potential function to the entire data structure
(i.e. the bits that we are incrementing)?

Potential:

Φi = number of bits with value 1 at step i

Φ0 = 0 and Φi = # of 1 bits of i ≥ 0 (valid potential function)

What is the amortized cost of the i th operation:
ci = (# bits 0 → 1) + (# bits 1 → 0) cost
Φi − Φi−1 = (# bits 0 → 1) − (# bits 1 → 0) potential

Amortized cost:

γi = ci +Φi − Φi−1 = 2× (# bits 0 → 1)

Since each increment only changes 1 bit from 0 to 1 each amortized
cost is 2.

41 / 44



Example of the potential method
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Discussion of the potential method
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Acknowledgements

Lecture largely based on Jeff Erickson’s notes (with exercises!)

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/

09-amortize.pdf

More exercises and another example using all methods can also be
found at the [CLRS] book, chapter 17. (see useful resources page)
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