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Lecture 4: Structural Properties of Algebraic Circuits
Instructor: Rafael Oliveira Scribe: Andrew Luo

Remark These notes have not been subjected to the scrutiny of a journal publication, and it may contain
errors. If you find one, please contact the instructor.

1 Introduction

Our goal in this lecture is to establish a couple important structural results pertaining to the study of
algebraic complexity. The first is the notion of homogenization - the idea that we can extract all monomials
of a particular degree of any polynomial. Using this machinery, we will derive a method for efficient division
elimination, which allows us to rewrite any circuit to compute the same polynomial without using ÷. Finally,
we introduce the notion of a Universal Circuit, analogous to the Universal Turing Machine for the algebraic
case.

2 Homogenization

We call a polynomial f(x1, ..., xn) ∈ F[x1, ..., xn] homogeneous if all monomials in f have the same degree.
An example is f(x1, x2) = x2

1 + x1x2, which is homogeneous of degree 2.

We can write any polynomial as a sum of its homogeneous components by grouping monomials of the same
degree; given f(x) of degree d, we write f(x) =

∑d
k=0 Hk[f ] where Hk[f ] is the k-dimensional homogeneous

component of f . We may refer to homogeneous polynomials as forms. For example, f(x) = x2
1x2 + x3

3 is a
degree 3 form.

The first important result is that we can compute the homogeneous components of f without a large increase
in the size of our circuit. More formally,

Theorem 1. If f(x) ∈ F[x1, ..., xn] of degree d can be computed by a circuit of size s using ×, +, and −,
then ∀r ≤ d, there exists a homogeneous circuit Φ of size O(r2s) that computes H0[f ], ..., Hr[f ].

Proof. The proof is by explicitly constructing the new circuit Φ that computes the homogeneous compo-
nents of f . We will start by modifying each layer of the circuit, inductively starting from the bottom, in
such a way that each gate computes a homogeneous polynomial of degree at most d. Note that the bottom
layer of our circuit consists just of x1, ..., xn and elements of F. Hence, the first layer is already homogeneous.

Now, suppose we have an addition or subtraction gate w = u + v as illustrated below, where we assume,
via the induction hypothesis, that u = u0 + u1 + ... + ud and v = v0 + v1 + ... + vd where ui = Hi[u] and
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vi = Hi[v] for i = 0, 1, ..., d were previously computed homogeneous components of u and v from a previous
layer.

Then the homogeneous components of w are wr = ur + vr, wr−1 = ur−1 + vr−1, ..., w0 = u0 + v0.

Instead, suppose we wished to compute w = u× v. Note that given polynomials ui and vj of degrees i and
j, the degree of ui × vj is i+ j. Hence, we can compute wr =

∑r
i=0 uivr−i for any r ≤ d.

Altogether, we need r+1 new gates for each gate in the original circuit to store w0, ..., wr. For multiplication,
we also need up to 3(r + 1)2 new gates to store intermediate calculations. Hence, our final circuit has size
O(r2s).

3 Division Elimination

Another major result and our first non-trivial usage of homogenization comes from division elimination,
which is the process of re-writing an equivalent circuit that uses no ÷ gate.

Theorem 2. If f(x) ∈ F [x1, ..., xn] is a polynomial of degree d that can be computed by a circuit Ψ of size
s using ×, ÷, +, and −, then there exists a circuit Φ of size poly(s, d) using ×, +, and − that computes f .

Proof. Each gate of our circuit computes a rational function; therefore, we can easily modify our circuit to
compute the numerator and denominator of the value at each gate separately.

Suppose w = u+ v, where the rational function computed at w, u, and v are aw

bw
, au

bu
, and av

bv
, respectively.

Then aw = aubv + avbu and bw = bubv. Hence, computing aw and bw requires an additional 4 gates, as
illustrated below. Note that subtraction is similar.
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Next, suppose w = u×v. Then aw = aubu and bw = avbv. Similarly, if w = u÷w, aw = aubv and bw = buav.

Hence, we assume our circuit can be broken into Ψ1÷Ψ2 where Ψ1 and Ψ2 are circuits of size at most 5s that
use no division gates. Say Ψ1 and Ψ2 compute as and bs, respectively, so that f = as

bs
and bs is not identically

0. We may also assume that bs(0) = 1; if bs(0) ̸= 0, then we may construct
(
Ψ1 × bs(0)

−1
)
÷
(
Ψ2 × bs(0)

−1
)

to achieve the same result. If bs(0) = 0, we may find x̄ such that bs(x̄) ̸= 0. Via variable substitution, we can
construct the circuit for f(x1−x̄1, ..., xn−x̄n) and shift the variables at the beginning to compute f(x1, ..., xn).

Write bs = 1− b̃ where b̃ has min degree ≥ 1 and max degree d = deg bs. Then, f = as

bs
= as

1−b̃
=⇒ f(x) =

as(1 + b̃+ ...+ b̃d) +H(x) where H(x) has min degree ≥ d+ 1. By Theorem 1, we can compute the degree
≤ d components of as(1 + b̃+ ...+ b̃d) with a circuit of size O(d2(5s+ d)), which is exactly f(x).

Remark This formulation only works with circuits, not formulas, since it is crucial in the proof that
we are reusing gates when performing addition. It is currently an open problem whether or not division
elimination can be done efficiently for formulas in general.

4 Universal Circuits

We end off this lecture by introducing the notion of a Universal Circuit, analogous to the universal Turing
Machine for the algebraic case.

Definition 3 (Universal Circuits). A circuit Φ is said to be (n, s, d)-universal for circuits of input size n,
output size n, and size s if for any n forms f1(x1, ..., xn), ..., fn(x1, ..., xn) of degree at most d that can be
simultaneously computed by a circuit of size s, then there is a circuit Ψ computing f1, ..., fn such that the
computation graph of Ψ is exactly that of Φ.

In other words, we say Ψ is a projection of Φ.

In the next lecture, we will show that such a circuit exists, and is not too large.

CS 860 Algebraic Complexity Theory − 3



References

CS 860 Algebraic Complexity Theory − 4


