
CS 860 Algebraic Complexity Theory May 13, 2024

Lecture 3: VNP-completeness of {Pern}n∈N
Instructor: Rafael Oliveira Scribe: Avantika Agarwal

Remark These notes have not been subjected to the scrutiny of a journal publication, and it may contain
errors. If you find one, please contact the instructor.

1 Introduction

In this lecture, we will prove that {Pern}n∈N is VNP-complete. In order to do so, we will show that
{Pern}n∈N ∈ VNP and every polynomial in VNP can be written as the projection of the permanent of
some polynomial sized matrix. Before we do that, we state two facts (without proof) which will be used
later in the lecture.

Proposition 1 (Homework 1). Any algebraic formula Ψ of size s can be computed by an algebraic branching
program Φ of size O(s).

Theorem 2 ([Val80]). VNP = VNPe

We start by showing that {Pern}n∈N ∈ VNP.

Lemma 3. {Pern}n∈N ∈ VNP

Let us begin with an example which illustrates what we will try to do in the proof. Suppose we want to
compute the permanent of a 2x2 matrix X. If we index the columns using variables y1 and y2, then each term
in the resulting permanent polynomial will have a factor of y1y2 in it (because every term in the permanent
polynomial will have exactly one variable in it from each column).

XY =

[
x11 x12

x21 x22

]
·
[
y1 0
0 y2

]
=

[
x11y1 x12y2
x21y1 x22y2

]
Per(XY) = x11y1x22y2 + x21y1x12y2 = (x11x22 + x21x12)y1y2

Now if we define g(X, y1, y2) = (x11y1 + x12y2)(x21y1 + x22y2) = y21x11x21 + y22x12x22 + y1y2Per(X), and we
can use this to find Per(X) as follows:

g(X, 1, 0) = x11x21

g(X, 0, 1) = x12x22

g(X, 1, 1) = x11x21 + x12x22 + Per(X)

Per(X) = g(X, 1, 1)− g(X, 0, 1)− g(X, 1, 0)

Let us now generalize this discussion to an arbitrary n× n matrix X.

Proof. This proof shows the more general statement that if a polynomial p appears as a coefficient in a
bigger polynomial g that is easy to compute, then the said polynomial p is in VNP. We start by defining
this bigger polynomial g when p is the Pern polynomial.

gn(X, y1, . . . , yn) =

n∏
i=1

(

n∑
j=1

xijyj)

= y1y2 . . . ynPern(X) +
∑
e∈Nn

∥e∥1=n

he(X)

n∏
i=1

yeii

CS 860 Algebraic Complexity Theory − 1

where he(X) is some polynomial in X, dependent on the vector e. Note now that since we only want to
set values yi ∈ {0, 1}, we can replace y2i by yi everywhere, and the evaluation of the polynomial will be the
same. So for now we will work with the multilinear polynomial g̃n defined below:

g̃n(X, b1, . . . , bn) = b1b2 . . . bnPern(X) +
∑
S⊂[n]

hS(X)bS

where bi ∈ {0, 1}, bS =
∏

i∈S bi and hS(X) is the sum of he(X) for all exponent vectors e such that the
corresponding monomial of y in gn was replaced by bS in g̃n. Now we want to compute the coefficient of
b1b2 . . . bn in g̃n. If we set some value of b ∈ {0, 1}n and look at the set T ⊆ [n] corresponding to the
indicator vector b, then all terms in g̃n except subsets of T will evaluate to 0. So using the principle of
inclusion-exclusion

Per(X) =
∑
S⊆[n]

(−1)n−|S|g̃n(X, 1S)

=
∑
S⊆[n]

g̃n(X, 1S)
∏
j /∈S

(bj − 1)

=
∑
S⊆[n]

g̃n(X, 1S)

n∏
j=1

(2bj − 1)

Now we can replace the polynomial g̃n above with our original polynomial gn, to get the polynomial ĝn ∈ VP.

ĝn(X, y1, y2, . . . , yn) = (

n∏
i=1

(2yi − 1)) · (
n∏

i=1

(

n∑
i=1

xijyj))

Clearly, ĝn ∈ VP. From the discussion previously, it now follows that

Pern(X) =
∑

b∈{0,1}n

ĝn(X, b)

Therefore, Pern ∈ VNP.

We now show that {Pern}n∈N is complete for VNPe, and then from Theorem 2 we can conclude that {Pern}n∈N
is complete for VNP.

Note: For the rest of this document, we follow the given convention for any algebraic branching program
diagrams:

1. Arrows or nodes in black represent the original ABP computing a given polynomial.

2. Edges in any ABP without any label have weight 1.

3. Arrows or nodes in blue represent modifications to the ABP in order to get a permanent polynomial.

4. Labels in green are vertex labels to be used in the proof for notational convenience.

Lemma 4. {Pern}n∈N is complete for VNPe.

Proof. We show that any polynomial {fn}n ∈ VNPe is a projection of the permanent of a polynomial-sized
matrix. Since {fn}n ∈ VNPe, there exists {gn}n ∈ VPe such that fn(x1, . . . , xn) =

∑
b∈{0,1}r(n) gn(x, b) and

gn is computable by a polynomial-sized formula Ψn. Using Proposition 1, let Φn be the ABP of size s(n)
computing gn, where s(n) is a polynomial in n. Then we will construct a matrix Y of size O(s(n))×O(s(n))
such that Per(Y) =

∑
b∈{0,1}r(n) gn(x, b) = fn. The proof is illustrated through two examples. Consider

the polynomial g = x1y + x2
2. Then g(x, 0) + g(x, 1) = x1 + 2x2

2. Let us look at the ABP computing g,

CS 860 Algebraic Complexity Theory − 2

Figure 1: Permanent polynomial for g

Figure 2: Permanent polynomial for g(x, 0) + g(x, 1)

augmented to get the corresponding permanent, in Figure 1. In order to compute g(x, 0) + g(x, 1), we want
that cycles containing the y edge have weight 1, while cycles not containing the y edge have weight 2. It is
easy to modify the ABP in Figure 1 to achieve that, as shown in Figure 2. However, this technique does not
work more generally, when the variable y appears more than once in the ABP.
Let us see an example of a polynomial where the above fix will not work. Let g = x1y

3 + x2
2y

2 + x3
3y + x4

4.
Then g(x, 0) + g(x, 1) = x1 + x2

2 + x3
3 + 2x4

4. Once again we look at the ABP computing h, augmented to
get the corresponding permanent.

Figure 3: Permanent polynomial for g

If suppose now each y edge in Figure 3 is replaced by a modification similar to Figure 2. Then the s− t path
containing only the x4 edges gets weight 8 (a factor of 2 for each y edge not included in the path). The s− t
path containing the x3 edges followed by the (w, z) edge gets weight 4. The s − t path containing the x2

edges followed by (v, w), (w, z) edges gets weight 2 and the s − t path containing all y edges gets weight 1.
Thus such a modification computes the polynomial x1 + 2x2

2 + 4x3
3 + 8x4

4, which is not what we wanted to
compute. This happens because there are different weights associated to paths containing different number

CS 860 Algebraic Complexity Theory − 3

Figure 4: Glue gadget

Figure 5: Rosette gadget

of y edges. We instead want the following two properties from a suitable modification of Figure 3:

1. Let Ey be the set of y edges in Φn (ABP computing g). For any non-empty subset S ⊆ Ey, there is
exactly one cycle cover containing S (thus giving weight 1 to terms in g containing Ey).

2. There are exactly two cycle covers that do not include any edge in Ey, for each such s− t path which
does not include any edge in Ey (thus giving weight 2 to terms in g without a y factor).

This is achieved using two gadgets: Rosette gadget and glue gadget. The Rosette gadget has one edge for
each y-edge in the ABP, along with some additional edges and nodes, and it satisfies the two properties
mentioned above. The glue gadget acts to glue the y-edges in the ABP to the corresponding edges in the
Rosette gadget, thus ensuring that the above two properties are satisfied for the augmented ABP. So if g
contains variables y1, . . . , yk (that we sum over), in addition to the x variables, then in the augmented ABP,
there will be one Rosette gadget for each yi-variable, and there will be one glue gadget for each each yi-edge.
Below we show the glue gadget in Figure 4 and the Rosette gadget for 3 y-edges in Figure 5.
Note here that the Rosette gadget has been simplified to not show the nodes p2, p3 included in the glue
gadget. We will first prove that the glue gadget ensures that only cycle covers which pick both the edges
(u, v) and (u′, v′) (or neither of them) make a non-zero contribution to the permanent polynomial.

CS 860 Algebraic Complexity Theory − 4

• Case 1: Pick both (u, v) and (u′, v′)
Then the cycle covers will look something like . . . (. . . , u, p1, v, . . .)(. . . u

′, p2, p3, v
′, . . .) . . ., which has

weight 1.

• Case 2: Pick neither (u, v) nor (u′, v′)
Then the nodes p1, p2, p3 will be in a cycle by themselves and the cycle covers will look something like
. . . (u)(v)(u′)(v′)(cycle of p1, p2, p3) The total contribution for all cycles of p1, p2, p3 is given by the
permanent of the corresponding adjacency matrix:

A =

−1/2 1 1
1/2 −1 1
−1/2 1 1

Per(A) = 1

Since the weights of all self-edges are 1, the total contribution of this case is also 1.

• Case 3: Pick (u, v) but not (u′, v′)
Then the nodes p2, p3 will be in a cycle by themselves (otherwise we will have to pick u′ → p2 → p3 →
v′). The cycle covers will look something like . . . (u′)(v′)(. . . , u, p1, v, . . .)(cycle of p2, p3) But the
cycles formed by p2 and p3 are (p2)(p3) (which has weight -1) and (p2, p3) (which has weight 1). Hence
the total contribution of such cycle covers is 0.

• Case 4: Pick (u′, v′) but not (u, v)
Then the cycle covers will look something like . . . (. . . , u′, p2, p1, p3, v

′, . . .) . . . (which has weight 1/2)
or . . . (. . . , u′, p2, p3, v

′, . . .)(p1) . . . (which has weight -1/2). Hence the total contribution of such cycle
covers is 0.

From the above analysis we can conclude that the glue gadget ensures that for any y-edge (u, v) in the ABP,
either both (u, v) and (u′, v′) are included in the relevant cycle covers of the augmented ABP, or neither is
included. This edge (u′, v′) is also part of the Rosette gadget in Figure 5. So we will now prove that the
Rosette gadget satisfies the two properties we need. We only argue the case for 3 edges here, but this proof
can be generalized for a Rosette gadget containing an arbitrary number of y-edges.

• Case 1: None of the y-edges are included
Then we want from property 2, that the Rosette gadget has exactly two cycle covers, each of weight 1.
These two cycle covers are (u′, puv, v

′, pvw, w
′, pwu) and (u′)(puv)(v

′)(pvw)(w
′)(pwu). Any other cycle

cover will need to include at least one of the edges from (u′, v′), (v′, w′), (w′, u′), which is not allowed.
Hence the gadget satisfies Property 2.

• Case 2: Only one of the y-edges is included
We assume without loss of generality that the included edge is (u′v′). Then the only cycle cover possible
is (u′, v′, pvw, w

′, pwu)(puv), which has weight 1.

• Case 3: Only two of the y-edges are included
We assume without loss of generality that the included edges are (u′, v′) and (v′, w′). Then the only
cycle cover possible is (u′, v′, w′, pwu)(puv)(pvw), which has weight 1.

• Case 4: All three y-edges are included
Then the only cycle cover possible is (u′, v′, w′)(puv)(pvw)(pwu), which has weight 1.

Hence the Rosette gadget for 3 edges satisfies the properties we want. For the general construction of the
Rosette gadget, the cycle covers are constructed similarly: for each edge (u′, v′) that is included, the node
puv will be in a cycle of its own, and all the other nodes are included in the cycle containing the included
edges (u′, v′).

CS 860 Algebraic Complexity Theory − 5

We can now finish the proof by showing that the augmented ABP (which has the Rosette gadget and
one glue gadget for each y-edge) satisfies Properties 1 and 2. Let S be a non-empty subset of y-edges in
Φn. Then in any cycle cover containing the edges in S, the corresponding edges in the Rosette gadget must
also be included (because of the glue gadget), and therefore there can only be one cycle cover containing
these edges (because Rosette gadget satisfies Property 1). Thus the augmented ABP satisfies Property 1.
Now let there be some s− t path which does not include any y-edge, then none of the edges in the Rosette
corresponding to y-edges will be included in the cycle cover (because of the glue gadget), and therefore there
will be two cycle covers which do not include any y-edge (because Rosette gadget satisfies Property 2). As
mentioned previously, in the more general case when g is a polynomial in x, y1, . . . yk, there is one Rosette
gadget for each variable yi, and there is one glue gadget for each yi edge in the ABP, for every i. Note
that we only add a constant number of nodes and edges in the ABP, for each y-edge, hence the size of the
augmented ABP is cs(n) for a small constant c (say 10). Since the cycle covers of this augmented ABP give
a permanent polynomial, we can conclude that Per is VNP-complete.

References

[Val80] L.G. Valiant. Reducibility by Algebraic Projections. Internal report. University of Edinburgh, De-
partment of Computer Science, 1980.

CS 860 Algebraic Complexity Theory − 6

