Problem 1 (30 Points) - PIT
In this question we will devise a different (and less efficient) hitting set generator for sparse polynomials. This hitting set generator works for some other circuit classes for which we don't know that the Klivans-Spielman hitting set works, for instance, read-once formulas and k-sums of read-once formulas.

Shpilka-Volkovich (SV) generator: Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$ be distinct numbers. For $i \in[t]$, let $\mathcal{G}_{i}: \mathbb{C} \rightarrow \mathbb{C}^{n}$ be defined as follows:

$$
\mathcal{G}_{i}\left(y_{i}\right):=\left(\frac{\prod_{j=1}^{n}\left(y_{i}-\alpha_{j}\right)}{y_{i}-\alpha_{1}}, \ldots, \frac{\prod_{j=1}^{n}\left(y_{i}-\alpha_{j}\right)}{y_{i}-\alpha_{n}}\right)
$$

and finally, let the SV generator $\mathcal{G}^{(t)}: \mathbb{C}^{2 t} \rightarrow \mathbb{C}^{n}$ be defined as

$$
\mathcal{G}^{(t)}\left(y_{1}, \ldots, y_{t}, z_{1}, \ldots, z_{t}\right):=z_{1} \cdot \mathcal{G}_{1}\left(y_{1}\right)+\cdots+z_{t} \cdot \mathcal{G}_{t}\left(y_{t}\right)
$$

Prove that $\mathcal{G}^{(1+2 \log s)}$ hits $\Sigma \Pi$ circuits of size s, where you can assume $s \geq n$.

Hint 1: if $P(\mathbf{x})$ is a non-zero s-sparse polynomial, show that there is a variable x_{i} such that at most half of the monomials of P have the same power of x_{i}.

Hint 2: the SV generator has the ability to "select" certain variables ($\mathcal{G}^{(t)}$ can select up to t variables).

Problem 2 (40 Points) - PIT
In this question, we will show that the SV generator is also a hitting set generator for the class of hom- $\Sigma \wedge \Sigma$ circuits. More precisely, we will show that $\mathcal{G}^{(2 \log s)}$ hits hom $-\Sigma \wedge \Sigma$ circuits of size s.

That is, if $P(\mathbf{x})$ is a nonzero polynomial computed by a hom $-\Sigma \wedge^{d} \Sigma$ circuit of size s (where size is the top fanin of the circuit multiplied by d), that is,

$$
P(\mathbf{x})=\sum_{i=1}^{s} \ell_{i}(\mathbf{x})^{d}
$$

then $P \circ \mathcal{G}^{(2 \log s)} \not \equiv 0$
To show the above result, we will use our knowledge of the lower bounds for the class hom $-\Sigma \wedge \Sigma$ which we learned in the previous homework.

1. Use the dimension of partial derivatives measure to show that if P is a non-zero polynomial computed by a hom $-\Sigma \wedge \Sigma$ circuit of size s, then the leading monomial of P must have support $\leq \log s$
2. after proving part 1 , use the SV generator to hit P

Problem 3 (30 Points) - Reconstruction
Give a deterministic, poly $(n d s)$-time algorithm to reconstruct a polynomial in $\Sigma^{s} \Pi^{d}$ on n variables, given only black-box access to it.

Hint: Klivans-Spielman

