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Learning from Experts
Setup: investing your co-op money on stock markets (or gambling).
Objective: to get rich, but we don’t know much about stock markets
Have access to n experts (news programs, newspapers, social media)

Each morning, before market opens, experts predict whether the price
of a stock will go up or down
By the time market closes, we can check the outcome, who was right
or wrong.

Experts who were right earn one dollar
Experts who were wrong lose one dollar

Some expert did really well, and if we followed their advice we would
have made a lot of money...
Hindsight is 20/20 though. To make money, need to make a decision
on what & how to trade every day.
Can we hope to do as well as the best expert in hindsight?
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Other Applications

Online Learning

1 Experts are weak classifiers, want to choose hypothesis based on these
experts

Boosting (in learning theory)

Solving linear programs! (today)

Game Theory

many more
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Why this Benchmark?

Say we are trading for T days.

Why not want our algorithm to make as much money as a function of T
as we can?

With the benchmark above, guessing correctly (in expectation) T/2
times is trivial (pick your trades at random)

It turns out, T/2 correct guesses (in expectation) is also optimal

Worst-case analysis.
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Warm-up Idea

Say we knew that there was one expert which will be right every time.
What should we do?

At each trading day, take majority vote of the opinions of the experts.

If we made the right trade, do nothing.

If our trade was bad, at the end of the trading day discard all experts
that made a mistake that day.

1 Every time we made a bad trade, we discard half of the experts.

We took majority vote, so at least half the experts also made bad
trades

2 After log n bad trades, only the expert who is always right will
remain! From then on, we will always be right!

Total money we made: ≥ T − log n

Total money best expert made: T
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Multiplicative Weights Update Algorithm

In general do not have a single expert who is right all the time.

Algorithm from previous slide not robust to having “almost perfect”
experts (say experts that make one mistake)

There is a way of making previous idea robust:

Whenever an expert makes a mistake, “consider their opinions with
less importance.”

1 Let wt : [n] → R+ be a function from each expert to the non-negative
reals, and 0 < ε < 1/2

wt(i) is the weight of expert i at time t

2 In beginning every expert has weight w1(i) = 1

3 If an expert makes a mistake at day t, make wt+1(i) = wt(i) · (1− ε)

4 Each trading day, choose to trade based on weighted majority of the
decisions of the experts
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Multiplicative Weights Update Algorithm
Algorithm:

1 Setup: we have a binary decision to make (i.e., {−1,+1}) and we
have access to n experts, indexed by the set [n].

At each time step t, expert takes decision dt(i) ∈ {−1,+1}
Parameter 0 < ε < 1/2

2 Let wt : [n] → R+ weight function
wt(i) is the weight of expert i at time t
In beginning every expert has weight w1(i) = 1

3 At each time step (i.e. for t = 1, . . . ,T ):

1 Make your decision based on weighted majority:{
+1, if

∑n
i=1 wt(i) · dt(i) ≥ 0

−1, otherwise

2 If an expert makes a mistake at time t, make

wt+1(i) = wt(i) · (1− ε)
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Analysis

Theorem (Multiplicative Weights Update)

Let Mt be the number of mistakes that our algorithm makes until time t,
and let Mt(i) be the number of mistakes that expert i made until time t.
Then, for any expert i ∈ [n], we have:

Mt ≤ 2 · (1 + ε)Mt(i) +
2 log n

ε

Potential function

Φt =
n∑

i=1

wt(i)

Intuition:
If we make mistake, Φt+1 decreases by a multiplicative factor w.r.t. Φt

Φt is monotonically decreasing (so if we get it right, potential does not
increase either)
Initially Φ1 = n
Φt ≥ 0 for all t
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ε

Potential function Φt =
∑n

i=1 wt(i)

If we made a mistake, at least half the weight was on the wrong
answer. Thus

Φt+1 =
∑
i right

wt(i) + (1− ε) ·
∑

j wrong

wt(j) ≤
(
1− ε

2

)
· Φt

Thus,

Φt ≤ Φ1 ·
(
1− ε

2
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= n ·
(
1− ε

2

)Mt

43 / 81



Analysis

Theorem (Multiplicative Weights Update)

Let Mt be the number of mistakes that our algorithm makes until time t,
and let Mt(i) be the number of mistakes that expert i made until time t.
Then, for any expert i ∈ [n], we have:

Mt ≤ 2 · (1 + ε)Mt(i) +
2 log n

ε

Potential function Φt =
∑n

i=1 wt(i)

If we made a mistake, at least half the weight was on the wrong
answer. Thus

Φt+1 =
∑
i right

wt(i) + (1− ε) ·
∑

j wrong

wt(j) ≤
(
1− ε

2

)
· Φt

Thus,

Φt ≤ Φ1 ·
(
1− ε

2

)Mt

= n ·
(
1− ε

2

)Mt

44 / 81



Analysis
1 We have

Φt ≤ n ·
(
1− ε

2

)Mt

2 On the other hand, have:

Φt =
n∑

j=1

wt(j) > wt(i) = (1− ε)Mt(i)

3 Putting (1) and (2) together

n·
(
1− ε

2

)Mt

> (1−ε)Mt(i) ⇒ log(1−ε/2)·Mt+log n > Mt(i)·log(1−ε)

4 Using inequality −x − x2 < log(1− x) < −x for x ∈ (0, 1/2), we get:

−ε/2 ·Mt + log n > Mt(i) · (−ε− ε2)
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Multiplicative Weights Update - General
The same algorithm and argument above, applied to the setting:

1 Setup: have access to n experts, indexed by the set [n].

At each time step t, each expert will guess a value mt(i) ∈ [−w ,+w ].
Cost of i th expert answer at time t is mt(i)
Parameter 0 < ε < 1/2

2 Let pt : [n] → R+ weight function (normalized to sum to 1)

pt(i) is the weight of expert i at time t
In beginning every expert has weight p1(i) = 1/n
Our total cost is

∑
t⟨pt ,mt⟩

3 Our goal is to minimize our total cost:
∑T

t=1⟨pt ,mt⟩

Theorem (Multiplicative Weights Update)

With the setup above, after t rounds, for any expert i ∈ [n], we have:

T∑
t=1

⟨pt ,mt⟩ ≤
T∑
t=1

mt(i) + ε ·
T∑
t=1

|mt(i)|+
w · ln n

ε
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w
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Proof of the Theorem

The proof of the theorem in the previous slide simply follows from the
same idea we had together with the following inequality:

(1− εx) ≥

{
(1− ε)x , if x ∈ [0, 1]

(1 + ε)−x , if x ∈ [−1, 0]

when ε ∈ (0, 1/2).

Also worth noting the inequalities (from Taylor expansion of ln) for
y ∈ (0, 1/2):

ln(1 + y) ≥ y − y2/2 ≥ y − y2

ln(1− y) ≥ −y − y2
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Multiplicative Weights Update

Solving Linear Programs

Conclusion
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Solving Linear Programs
Assume we are given LP in feasibility version:

Ax ≥ b

x ≥ 0

Optimization version reduces to feasibility version by binary search.

Think of x ≥ 0 being the easy constraints to satisfy, whereas Ax ≥ b
are the hard ones

Idea:
1 Think of each inequality Aix ≥ bi as an expert (Ai is i

th row of A)
2 Each constraint would like to be the hardest constraint, i.e. the one

that is violated the most by the current proposed solution x (t)

3 More precisely: cost of i th constraint

Aix − bi

4 We would like to propose feasible solution (i.e. lower cost of all
constraints). Hard to deal with all constraints at the same time.
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Oracle

Definition (Oracle)

Let A ∈ Rm×n. We say that O is an oracle of width w for A if given a
linear constraint

pTAx ≥ pTb, x ≥ 0

O(p) will return a solution y ≥ 0 to the above inequality such that

|Aiy − bi | ≤ w ∀i ∈ [m]
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Solving Linear Programs

Would like to minimize

min
1≤i≤m

Aix − bi

Multiplicative Weights Update (MWU) provides way of combining all
constraints into one constraint!

MWU finds probability distribution over experts (normalized weights),
which in our case are the inequalities.

Thus, we have to deal with only the constraint p(t)Ax ≥ p(t)b, where

p(t) =
1∑

i wt(i)
· (wt(1), . . . ,wt(n))

MWU shows that over the long run:

The total violation of our weighted constraints will be close to the
total violation of the worst violated constraint!
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Solving Linear Programs

Would like to maximize

min
1≤i≤m

Aix − bi

MWU shows that over the long run, for any inequality i ∈ [m]:

T∑
t=1

⟨p(t),Ax (t)−b⟩ < w · logm
ε

+
T∑
t=1

(Aix
(t)−bi )+ε ·

T∑
t=1

|Aix
(t)−bi |

Return solution

x =
1

T
·

T∑
t=1

x (t)

What if there is no x ≥ 0 such that p(t)Ax ≥ p(t)b?

Farkas’ lemma ⇒ the system is infeasible, and we are done!

Thus, we will assume that above never happens.
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Theorem

Theorem (Multiplicative Weights Update)

Let δ > 0 and suppose we are given an oracle with width w for A. The
MWU algorithm either finds a solution y ≥ 0 such that

Aiy ≥ bi − δ ∀i ∈ [m]

or concludes that the system is infeasible (and outputs a dual solution).
Our algorithm makes O(w2 log(m)/δ2) oracle calls.
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Analysis
As we said before, if oracle fails to find a solution, we found a
separating hyperplane and we are done.

Otherwise, we have that MWU algorithm with costs
mt(i) = Aix

(t) − bi gives us that after T steps

T∑
t=1

⟨p(t),Ax (t)− b⟩ < w logm

ε
+

T∑
t=1

(Aix
(t)− bi )+ ε ·

T∑
t=1

|Aix
(t)− bi |

Thus, we have

T∑
t=1

Aix
(t) − bi
T

≥ −w logm

T · ε
− ε · w

Setting ε = δ/2w and T =
4 · w2 · logm

δ2
we get

T∑
t=1

Aix
(t) − bi
T

≥ −δ
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Conclusion

Online Learning
1 Experts are weak classifiers, want to choose hypothesis based on these

experts
2 Boosting (in learning theory)

Solving linear programs! (today)

Convex Optimization

Computational Geometry

many more

80 / 81



Acknowledgement

Lecture based largely on:

Lap Chi’s notes
Yaron Singer’s notes
Elad Hazan’s survey on online optimization

See Lap Chi’s notes at (Lecture 20) https:
//cs.uwaterloo.ca/~lapchi/cs466/notes/FelixNotes.pdf

See Yaron’s notes https://people.seas.harvard.edu/~yaron/
AM221-S16/lecture_notes/AM221_lecture11.pdf

See Elad’s survey at https://arxiv.org/pdf/1909.05207.pdf

See great survey on MWU ar
https://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf

81 / 81

https://cs.uwaterloo.ca/~lapchi/cs466/notes/FelixNotes.pdf
https://cs.uwaterloo.ca/~lapchi/cs466/notes/FelixNotes.pdf
https://people.seas.harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture11.pdf
https://people.seas.harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture11.pdf
https://arxiv.org/pdf/1909.05207.pdf
https://www.cs.princeton.edu/~arora/pubs/MWsurvey.pdf

	Multiplicative Weights Update
	Solving Linear Programs
	Conclusion
	Acknowledgements

