
Lecture 17: Online Algorithms & Paging

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

June 19, 2024

1 / 102



Overview

Part I
Why Study Online Algorithms?
Competitive Analysis
Examples

Paging & Caching

Conclusion

Acknowledgements

2 / 102



Why Study Online Algorithms?

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future (that is, see the entire
input beforehand)1

1 Worst-case analysis

1“Hindsight is 20/20”
3 / 102



Why Study Online Algorithms?

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future (that is, see the entire
input beforehand)1

1 Worst-case analysis

1“Hindsight is 20/20”
4 / 102



Why Study Online Algorithms?

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future (that is, see the entire
input beforehand)1

1 Worst-case analysis

1“Hindsight is 20/20”
5 / 102



Different Online Models

We will see other online models in class:

Data Streaming (lecture 19): in this case, we not only receive the
input in an online fashion, but we have also memory constraints

1 Goal here is to get reasonable (approximate) answers while obeying
memory constraints

2 worst-case analysis

Today, we will only see algorithms which must deal with the input as
it receives it, no constraints in memory.

1 Goal here is to be competitive against any offline algorithm (that is,
algorithms that could see the entire input beforehand)

2 worst-case analysis

6 / 102



Different Online Models

We will see other online models in class:

Data Streaming (lecture 19): in this case, we not only receive the
input in an online fashion, but we have also memory constraints

1 Goal here is to get reasonable (approximate) answers while obeying
memory constraints

2 worst-case analysis

Today, we will only see algorithms which must deal with the input as
it receives it, no constraints in memory.

1 Goal here is to be competitive against any offline algorithm (that is,
algorithms that could see the entire input beforehand)

2 worst-case analysis

7 / 102



Different Online Models

We will see other online models in class:

Data Streaming (lecture 19): in this case, we not only receive the
input in an online fashion, but we have also memory constraints

1 Goal here is to get reasonable (approximate) answers while obeying
memory constraints

2 worst-case analysis

Today, we will only see algorithms which must deal with the input as
it receives it, no constraints in memory.

1 Goal here is to be competitive against any offline algorithm (that is,
algorithms that could see the entire input beforehand)

2 worst-case analysis

8 / 102



Competitive Analysis
Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

9 / 102



Competitive Analysis
Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

10 / 102



Competitive Analysis
Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

11 / 102



Competitive Analysis
Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

12 / 102



Competitive Analysis
Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

13 / 102



Part I
Why Study Online Algorithms?
Competitive Analysis
Examples

Paging & Caching

Conclusion

Acknowledgements

14 / 102



Ski Rental Problem

During winter, I am stuck in Canada.

So I decided to go Skiing this past winter

Winters in Canada are veeerrryy long... so I may go a bunch of
times...

Having never done this before, I have to decide whether to buy all the
equipment or to rent it at the resort.

Buying the equipment costs me 1k CAD. Renting at the resort costs
100 CAD per day.

Buy or rent?

Depends on how many times we will go skiing...

15 / 102



Ski Rental Problem

During winter, I am stuck in Canada.

So I decided to go Skiing this past winter

Winters in Canada are veeerrryy long... so I may go a bunch of
times...

Having never done this before, I have to decide whether to buy all the
equipment or to rent it at the resort.

Buying the equipment costs me 1k CAD. Renting at the resort costs
100 CAD per day.

Buy or rent?

Depends on how many times we will go skiing...

16 / 102



Ski Rental Problem

During winter, I am stuck in Canada.

So I decided to go Skiing this past winter

Winters in Canada are veeerrryy long... so I may go a bunch of
times...

Having never done this before, I have to decide whether to buy all the
equipment or to rent it at the resort.

Buying the equipment costs me 1k CAD. Renting at the resort costs
100 CAD per day.

Buy or rent?

Depends on how many times we will go skiing...

17 / 102



Ski Rental Problem

During winter, I am stuck in Canada.

So I decided to go Skiing this past winter

Winters in Canada are veeerrryy long... so I may go a bunch of
times...

Having never done this before, I have to decide whether to buy all the
equipment or to rent it at the resort.

Buying the equipment costs me 1k CAD. Renting at the resort costs
100 CAD per day.

Buy or rent?

Depends on how many times we will go skiing...

18 / 102



Ski Rental Problem

During winter, I am stuck in Canada.

So I decided to go Skiing this past winter

Winters in Canada are veeerrryy long... so I may go a bunch of
times...

Having never done this before, I have to decide whether to buy all the
equipment or to rent it at the resort.

Buying the equipment costs me 1k CAD. Renting at the resort costs
100 CAD per day.

Buy or rent?

Depends on how many times we will go skiing...

19 / 102



Ski Rental Problem

During winter, I am stuck in Canada.

So I decided to go Skiing this past winter

Winters in Canada are veeerrryy long... so I may go a bunch of
times...

Having never done this before, I have to decide whether to buy all the
equipment or to rent it at the resort.

Buying the equipment costs me 1k CAD. Renting at the resort costs
100 CAD per day.

Buy or rent?

Depends on how many times we will go skiing...

20 / 102



Ski Rental Problem

During winter, I am stuck in Canada.

So I decided to go Skiing this past winter

Winters in Canada are veeerrryy long... so I may go a bunch of
times...

Having never done this before, I have to decide whether to buy all the
equipment or to rent it at the resort.

Buying the equipment costs me 1k CAD. Renting at the resort costs
100 CAD per day.

Buy or rent?

Depends on how many times we will go skiing...

21 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

Should we buy or rent?

Depends on how many times we will go skiing...

1 If we go skiing 9 times or less (and we see that we are made for
beaches and tropical islands), then clearly better to rent

2 If we go skiing at least 11 times (and surprise ourselves that we can
withstand the cold) then clearly better to buy

3 If we go 10 times, it doesn’t matter which way it goes...

How is this an online algorithm?

Each time we go skiing, we have to decide whether to buy or rent
(unless we bought it beforehand)

Algorithm has to decide when to buy, knowing only that we have
gone skiing t times

22 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

Should we buy or rent?

Depends on how many times we will go skiing...
1 If we go skiing 9 times or less (and we see that we are made for

beaches and tropical islands), then clearly better to rent

2 If we go skiing at least 11 times (and surprise ourselves that we can
withstand the cold) then clearly better to buy

3 If we go 10 times, it doesn’t matter which way it goes...

How is this an online algorithm?

Each time we go skiing, we have to decide whether to buy or rent
(unless we bought it beforehand)

Algorithm has to decide when to buy, knowing only that we have
gone skiing t times

23 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

Should we buy or rent?

Depends on how many times we will go skiing...
1 If we go skiing 9 times or less (and we see that we are made for

beaches and tropical islands), then clearly better to rent
2 If we go skiing at least 11 times (and surprise ourselves that we can

withstand the cold) then clearly better to buy

3 If we go 10 times, it doesn’t matter which way it goes...

How is this an online algorithm?

Each time we go skiing, we have to decide whether to buy or rent
(unless we bought it beforehand)

Algorithm has to decide when to buy, knowing only that we have
gone skiing t times

24 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

Should we buy or rent?

Depends on how many times we will go skiing...
1 If we go skiing 9 times or less (and we see that we are made for

beaches and tropical islands), then clearly better to rent
2 If we go skiing at least 11 times (and surprise ourselves that we can

withstand the cold) then clearly better to buy
3 If we go 10 times, it doesn’t matter which way it goes...

How is this an online algorithm?

Each time we go skiing, we have to decide whether to buy or rent
(unless we bought it beforehand)

Algorithm has to decide when to buy, knowing only that we have
gone skiing t times

25 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

Should we buy or rent?

Depends on how many times we will go skiing...
1 If we go skiing 9 times or less (and we see that we are made for

beaches and tropical islands), then clearly better to rent
2 If we go skiing at least 11 times (and surprise ourselves that we can

withstand the cold) then clearly better to buy
3 If we go 10 times, it doesn’t matter which way it goes...

How is this an online algorithm?

Each time we go skiing, we have to decide whether to buy or rent
(unless we bought it beforehand)

Algorithm has to decide when to buy, knowing only that we have
gone skiing t times

26 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

Should we buy or rent?

Depends on how many times we will go skiing...
1 If we go skiing 9 times or less (and we see that we are made for

beaches and tropical islands), then clearly better to rent
2 If we go skiing at least 11 times (and surprise ourselves that we can

withstand the cold) then clearly better to buy
3 If we go 10 times, it doesn’t matter which way it goes...

How is this an online algorithm?

Each time we go skiing, we have to decide whether to buy or rent
(unless we bought it beforehand)

Algorithm has to decide when to buy, knowing only that we have
gone skiing t times

27 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

Should we buy or rent?

Depends on how many times we will go skiing...
1 If we go skiing 9 times or less (and we see that we are made for

beaches and tropical islands), then clearly better to rent
2 If we go skiing at least 11 times (and surprise ourselves that we can

withstand the cold) then clearly better to buy
3 If we go 10 times, it doesn’t matter which way it goes...

How is this an online algorithm?

Each time we go skiing, we have to decide whether to buy or rent
(unless we bought it beforehand)

Algorithm has to decide when to buy, knowing only that we have
gone skiing t times

28 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

A 1.9-competitive algorithm:

If t ≤ 9, then rent
When t = 10, buy

Analysis:

If t ≤ 9, then best strategy is to rent: so cost is:

CA

Copt
=

100 · t
100 · t

= 1

If t ≥ 10, we buy at the 10th time, so cost is:

CA

Copt
=

100 · 9 + 1000

1000
= 1.9

29 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

A 1.9-competitive algorithm:

If t ≤ 9, then rent
When t = 10, buy

Analysis:

If t ≤ 9, then best strategy is to rent: so cost is:

CA

Copt
=

100 · t
100 · t

= 1

If t ≥ 10, we buy at the 10th time, so cost is:

CA

Copt
=

100 · 9 + 1000

1000
= 1.9

30 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

A 1.9-competitive algorithm:

If t ≤ 9, then rent
When t = 10, buy

Analysis:

If t ≤ 9, then best strategy is to rent: so cost is:

CA

Copt
=

100 · t
100 · t

= 1

If t ≥ 10, we buy at the 10th time, so cost is:

CA

Copt
=

100 · 9 + 1000

1000
= 1.9

31 / 102



Ski Rental Problem

Buying the equipment costs us 1k CAD. Renting at the resort costs
100 CAD per day.

A 1.9-competitive algorithm:

If t ≤ 9, then rent
When t = 10, buy

Analysis:

If t ≤ 9, then best strategy is to rent: so cost is:

CA

Copt
=

100 · t
100 · t

= 1

If t ≥ 10, we buy at the 10th time, so cost is:

CA

Copt
=

100 · 9 + 1000

1000
= 1.9

32 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

33 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

34 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

35 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

36 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

37 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

38 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

39 / 102



Secretary Dating Problem

In the high-tech life, you decide to join a dating site...

There are n people that you are interested in dating, and you would
like to date the best person2 out there.3

But you don’t know who is the best person in advance...

One way to do it: go out with all of them at the same time,4 and
figure out which one is the best!

Not possible, due to time constraints and society’s value system

So we have to go out with one of them at a time, and decide whether
we want to stay with them or date another person, in which case we
must break up

Clearly online setting (pun intended)

Goal: maximize probability of dating the best person

2Assumptions: people are comparable AND we know how to do it
3Go big or go home lonely!
4Also assuming they will all want to date us...

40 / 102



Secretary Dating Problem

Consider the following algorithm:

1 Let’s assume that all people you want to date are ranked and associate
them with their rank: 1, 2, . . . , n

2 Pick random order of the n people: call it π
3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

41 / 102



Secretary Dating Problem

Consider the following algorithm:
1 Let’s assume that all people you want to date are ranked and associate

them with their rank: 1, 2, . . . , n

2 Pick random order of the n people: call it π
3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

42 / 102



Secretary Dating Problem

Consider the following algorithm:
1 Let’s assume that all people you want to date are ranked and associate

them with their rank: 1, 2, . . . , n
2 Pick random order of the n people: call it π

3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

43 / 102



Secretary Dating Problem

Consider the following algorithm:
1 Let’s assume that all people you want to date are ranked and associate

them with their rank: 1, 2, . . . , n
2 Pick random order of the n people: call it π
3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

44 / 102



Secretary Dating Problem

Consider the following algorithm:
1 Let’s assume that all people you want to date are ranked and associate

them with their rank: 1, 2, . . . , n
2 Pick random order of the n people: call it π
3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

45 / 102



Secretary Dating Problem

Consider the following algorithm:
1 Let’s assume that all people you want to date are ranked and associate

them with their rank: 1, 2, . . . , n
2 Pick random order of the n people: call it π
3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

46 / 102



Secretary Dating Problem

Consider the following algorithm:
1 Let’s assume that all people you want to date are ranked and associate

them with their rank: 1, 2, . . . , n
2 Pick random order of the n people: call it π
3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

47 / 102



Secretary Dating Problem

Consider the following algorithm:
1 Let’s assume that all people you want to date are ranked and associate

them with their rank: 1, 2, . . . , n
2 Pick random order of the n people: call it π
3 Go out with n/e of them and reject them5

4 After first n/e dates, you will decide to settle if the person you found is
better than anyone else you have dated before

This algorithm picks the best person (i.e., the one ranked 1) with
probability ≈ 1/e

More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

5It’s not about them, it’s about you... you haven’t seen enough, too young to
commit, etc.

48 / 102



Secretary Dating Problem
More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

Suppose we pick a person at time k , then want to compute probability

Pk = Pr[π(k) = 1 and we pick person at time k]

Then our final success probability will be P =
n∑

k>t

Pk

If π(k) = 1, then 1− Pk is the probability that we picked a person
between [t + 1, k − 1], which means someone in this range better
than the first t people.

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

49 / 102



Secretary Dating Problem
More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

Suppose we pick a person at time k , then want to compute probability

Pk = Pr[π(k) = 1 and we pick person at time k]

Then our final success probability will be P =
n∑

k>t

Pk

If π(k) = 1, then 1− Pk is the probability that we picked a person
between [t + 1, k − 1], which means someone in this range better
than the first t people.

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

50 / 102



Secretary Dating Problem
More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

Suppose we pick a person at time k , then want to compute probability

Pk = Pr[π(k) = 1 and we pick person at time k]

Then our final success probability will be P =
n∑

k>t

Pk

If π(k) = 1, then 1− Pk is the probability that we picked a person
between [t + 1, k − 1], which means someone in this range better
than the first t people.

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

51 / 102



Secretary Dating Problem
More general algorithm: given a time t, go on t dates and from date
t + 1 onwards you decide to settle with a person who is better than
the previous ones.

What is the probability that we pick the number 1 in our list?

Suppose we pick a person at time k , then want to compute probability

Pk = Pr[π(k) = 1 and we pick person at time k]

Then our final success probability will be P =
n∑

k>t

Pk

If π(k) = 1, then 1− Pk is the probability that we picked a person
between [t + 1, k − 1], which means someone in this range better
than the first t people.

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

52 / 102



Secretary Dating Problem

Final success probability will be P =
n∑

k>t

Pk

From previous slide

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

=
1

n
· t

k − 1

We get

P =
n∑

k>t

1

n
· t

k − 1
=

t

n
·

n∑
k>t

1

k − 1
≈ t

n
· (ln n − ln t) =

t

n
· ln(n/t)

Optimizing we get that we should set t = n/e, which gives us 1/e
probability.

Wait a second, where is the competitive analysis?

53 / 102



Secretary Dating Problem

Final success probability will be P =
n∑

k>t

Pk

From previous slide

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

=
1

n
· t

k − 1

We get

P =
n∑

k>t

1

n
· t

k − 1
=

t

n
·

n∑
k>t

1

k − 1
≈ t

n
· (ln n − ln t) =

t

n
· ln(n/t)

Optimizing we get that we should set t = n/e, which gives us 1/e
probability.

Wait a second, where is the competitive analysis?

54 / 102



Secretary Dating Problem

Final success probability will be P =
n∑

k>t

Pk

From previous slide

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

=
1

n
· t

k − 1

We get

P =
n∑

k>t

1

n
· t

k − 1
=

t

n
·

n∑
k>t

1

k − 1
≈ t

n
· (ln n − ln t) =

t

n
· ln(n/t)

Optimizing we get that we should set t = n/e, which gives us 1/e
probability.

Wait a second, where is the competitive analysis?

55 / 102



Secretary Dating Problem

Final success probability will be P =
n∑

k>t

Pk

From previous slide

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

=
1

n
· t

k − 1

We get

P =
n∑

k>t

1

n
· t

k − 1
=

t

n
·

n∑
k>t

1

k − 1
≈ t

n
· (ln n − ln t) =

t

n
· ln(n/t)

Optimizing we get that we should set t = n/e, which gives us 1/e
probability.

Wait a second, where is the competitive analysis?

56 / 102



Secretary Dating Problem

Final success probability will be P =
n∑

k>t

Pk

From previous slide

Pk = Pr[π(k) = 1 and min π(1), . . . , π(k − 1) is in {π(1), . . . , π(t)}]

=
1

n
· t

k − 1

We get

P =
n∑

k>t

1

n
· t

k − 1
=

t

n
·

n∑
k>t

1

k − 1
≈ t

n
· (ln n − ln t) =

t

n
· ln(n/t)

Optimizing we get that we should set t = n/e, which gives us 1/e
probability.

Wait a second, where is the competitive analysis?

57 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.

Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

58 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)

Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

59 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.

With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

60 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list

Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

61 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

62 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

63 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

64 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

65 / 102



Making Dating Competitive
To make the dating problem competitive, we would have to modify it
a little bit.

We can simply minimize the rank.
Say we always want to end up with someone (loneliness has a cost of
−∞, after all nobody wants to be alone)
Previous algorithm would then either pick the best person, or the last
person in the order.
With constant probability, rank of the last person is Ω(n), so we either
date the best, or we date someone in the “bottom percentile” of our list
Expected rank of our life-long partner is Ω(n)

Can we do better?

Yes! There is an algorithm that picks person of average rank O(1),
which is therefore O(1)-competitive.

Complicated algorithm, based on computing time steps t0 ≤ t1 ≤ . . .
and between timesteps tk and tk+1 we are willing to pick person who
is ≤ k + 1 best from our current list.

That is, as we get older, we become more desperate to find someone
and lower our expectations...

66 / 102



Part I
Why Study Online Algorithms?
Competitive Analysis
Examples

Paging & Caching

Conclusion

Acknowledgements

67 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)

Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

68 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)

Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

69 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory

When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

70 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory

If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

71 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time

Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

72 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache

If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

73 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

74 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

75 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

76 / 102



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request (⇔ event in online jargon), we first look up in
cache, then L1, then L2, then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
In negligible extra time, can also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

77 / 102



Common Heuristics

1 Least Recently Used (LRU): delete page in cache whose most
recent request happened furthest in the past

2 Random: delete random page.

3 First-in, First-out (FIFO): delete page that has been in cache the
longest

4 Least Frequently Used (LFU): delete page in cache which has been
requested least often

Today, we will analyze the Least Recently Used heuristic. We will
assume that the size of our cache is k pages.

1 Least Recently Used (LRU): k-competitive

2 Random: k-competitive

3 First-in, First-out (FIFO): k-competitive

4 Least Frequently Used (LFU): NOT competitive

78 / 102



Common Heuristics

1 Least Recently Used (LRU): delete page in cache whose most
recent request happened furthest in the past

2 Random: delete random page.

3 First-in, First-out (FIFO): delete page that has been in cache the
longest

4 Least Frequently Used (LFU): delete page in cache which has been
requested least often

Today, we will analyze the Least Recently Used heuristic. We will
assume that the size of our cache is k pages.

1 Least Recently Used (LRU): k-competitive

2 Random: k-competitive

3 First-in, First-out (FIFO): k-competitive

4 Least Frequently Used (LFU): NOT competitive

79 / 102



Common Heuristics

1 Least Recently Used (LRU): delete page in cache whose most
recent request happened furthest in the past

2 Random: delete random page.

3 First-in, First-out (FIFO): delete page that has been in cache the
longest

4 Least Frequently Used (LFU): delete page in cache which has been
requested least often

Today, we will analyze the Least Recently Used heuristic. We will
assume that the size of our cache is k pages.

1 Least Recently Used (LRU): k-competitive

2 Random: k-competitive

3 First-in, First-out (FIFO): k-competitive

4 Least Frequently Used (LFU): NOT competitive

80 / 102



Common Heuristics

1 Least Recently Used (LRU): delete page in cache whose most
recent request happened furthest in the past

2 Random: delete random page.

3 First-in, First-out (FIFO): delete page that has been in cache the
longest

4 Least Frequently Used (LFU): delete page in cache which has been
requested least often

Today, we will analyze the Least Recently Used heuristic. We will
assume that the size of our cache is k pages.

1 Least Recently Used (LRU): k-competitive

2 Random: k-competitive

3 First-in, First-out (FIFO): k-competitive

4 Least Frequently Used (LFU): NOT competitive

81 / 102



Common Heuristics

1 Least Recently Used (LRU): delete page in cache whose most
recent request happened furthest in the past

2 Random: delete random page.

3 First-in, First-out (FIFO): delete page that has been in cache the
longest

4 Least Frequently Used (LFU): delete page in cache which has been
requested least often

Today, we will analyze the Least Recently Used heuristic. We will
assume that the size of our cache is k pages.

1 Least Recently Used (LRU): k-competitive

2 Random: k-competitive

3 First-in, First-out (FIFO): k-competitive

4 Least Frequently Used (LFU): NOT competitive

82 / 102



Common Heuristics

1 Least Recently Used (LRU): delete page in cache whose most
recent request happened furthest in the past

2 Random: delete random page.

3 First-in, First-out (FIFO): delete page that has been in cache the
longest

4 Least Frequently Used (LFU): delete page in cache which has been
requested least often

Today, we will analyze the Least Recently Used heuristic. We will
assume that the size of our cache is k pages.

1 Least Recently Used (LRU): k-competitive

2 Random: k-competitive

3 First-in, First-out (FIFO): k-competitive

4 Least Frequently Used (LFU): NOT competitive

83 / 102



LRU Analysis

Theorem

For cache of size k, LRU is k-competitive.

1 Upper bound: divide input sequence into phases.

First phase starts immediately after our algorithm first faults, ends
right after the algorithm faults k more times
Second phase starts at end of first phase, ends when algorithm faults
for additional k times
and so on...

2 We will prove that OPT algorithm faults at least once per phase

3 This gives us that CA ≤ k · Copt , which is what we want.

4 Examples of phases, for k = 3:

1, 1, 2, 2, 1, 3, 4, 3, 2, 4, 5, 6, 15, 4, 4, 2, 3, 5, 6, 4,5

1 (1, 2, 2, 1, 3, 4) (3, 2, 4, 5, 6) (15, 4, 4, 2) (3, 5, 6) (4, 5

84 / 102



LRU Analysis

Theorem

For cache of size k, LRU is k-competitive.

1 Upper bound: divide input sequence into phases.

First phase starts immediately after our algorithm first faults, ends
right after the algorithm faults k more times
Second phase starts at end of first phase, ends when algorithm faults
for additional k times
and so on...

2 We will prove that OPT algorithm faults at least once per phase

3 This gives us that CA ≤ k · Copt , which is what we want.

4 Examples of phases, for k = 3:

1, 1, 2, 2, 1, 3, 4, 3, 2, 4, 5, 6, 15, 4, 4, 2, 3, 5, 6, 4,5

1 (1, 2, 2, 1, 3, 4) (3, 2, 4, 5, 6) (15, 4, 4, 2) (3, 5, 6) (4, 5

85 / 102



LRU Analysis

Theorem

For cache of size k, LRU is k-competitive.

1 Upper bound: divide input sequence into phases.

First phase starts immediately after our algorithm first faults, ends
right after the algorithm faults k more times
Second phase starts at end of first phase, ends when algorithm faults
for additional k times
and so on...

2 We will prove that OPT algorithm faults at least once per phase

3 This gives us that CA ≤ k · Copt , which is what we want.

4 Examples of phases, for k = 3:

1, 1, 2, 2, 1, 3, 4, 3, 2, 4, 5, 6, 15, 4, 4, 2, 3, 5, 6, 4,5

1 (1, 2, 2, 1, 3, 4) (3, 2, 4, 5, 6) (15, 4, 4, 2) (3, 5, 6) (4, 5

86 / 102



LRU Analysis

Theorem

For cache of size k, LRU is k-competitive.

1 Upper bound: divide input sequence into phases.

First phase starts immediately after our algorithm first faults, ends
right after the algorithm faults k more times
Second phase starts at end of first phase, ends when algorithm faults
for additional k times
and so on...

2 We will prove that OPT algorithm faults at least once per phase

3 This gives us that CA ≤ k · Copt , which is what we want.

4 Examples of phases, for k = 3:

1, 1, 2, 2, 1, 3, 4, 3, 2, 4, 5, 6, 15, 4, 4, 2, 3, 5, 6, 4,5

1 (1, 2, 2, 1, 3, 4) (3, 2, 4, 5, 6) (15, 4, 4, 2) (3, 5, 6) (4, 5

87 / 102



LRU Analysis

Theorem

For cache of size k, LRU is k-competitive.

1 Upper bound: divide input sequence into phases.

First phase starts immediately after our algorithm first faults, ends
right after the algorithm faults k more times
Second phase starts at end of first phase, ends when algorithm faults
for additional k times
and so on...

2 We will prove that OPT algorithm faults at least once per phase

3 This gives us that CA ≤ k · Copt , which is what we want.

4 Examples of phases, for k = 3:

1, 1, 2, 2, 1, 3, 4, 3, 2, 4, 5, 6, 15, 4, 4, 2, 3, 5, 6, 4,5

1 (1, 2, 2, 1, 3, 4) (3, 2, 4, 5, 6) (15, 4, 4, 2) (3, 5, 6) (4, 5

88 / 102



LRU Analysis

Theorem

For cache of size k, LRU is k-competitive.

1 Upper bound: divide input sequence into phases.

First phase starts immediately after our algorithm first faults, ends
right after the algorithm faults k more times
Second phase starts at end of first phase, ends when algorithm faults
for additional k times
and so on...

2 We will prove that OPT algorithm faults at least once per phase

3 This gives us that CA ≤ k · Copt , which is what we want.

4 Examples of phases, for k = 3:

1, 1, 2, 2, 1, 3, 4, 3, 2, 4, 5, 6, 15, 4, 4, 2, 3, 5, 6, 4,5

1 (1, 2, 2, 1, 3, 4) (3, 2, 4, 5, 6) (15, 4, 4, 2) (3, 5, 6) (4, 5

89 / 102



LRU Analysis - Example

Examples of phases, for k = 3:

1 (1, 2, 2, 1, 3, 4) (3, 2, 4, 5, 6) (15, 4, 4, 2) (3, 5, 6) (4, 5

90 / 102



LRU Analysis - Upper Bound

Need to prove that OPT will fault at least once per phase.

If the same page faulted twice in one phase:

91 / 102



LRU Analysis - Upper Bound

If each page faulted once in a phase.

Claim: in the beginning of each phase, content of OPT and content
of our algorithm A intersect in at least one page.

Proof: Look at last fault page in previous phase.

Since OPT and A had a common page, then OPT must have faulted
as well (since each page faulted in this phase)

92 / 102



LRU Analysis - Upper Bound

If each page faulted once in a phase.

Claim: in the beginning of each phase, content of OPT and content
of our algorithm A intersect in at least one page.

Proof: Look at last fault page in previous phase.

Since OPT and A had a common page, then OPT must have faulted
as well (since each page faulted in this phase)

93 / 102



LRU Analysis - Upper Bound

If each page faulted once in a phase.

Claim: in the beginning of each phase, content of OPT and content
of our algorithm A intersect in at least one page.

Proof: Look at last fault page in previous phase.

Since OPT and A had a common page, then OPT must have faulted
as well (since each page faulted in this phase)

94 / 102



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.6 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

6Common lower bound technique for online algorithms, also commonly used online as
well :)

95 / 102



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.6 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

6Common lower bound technique for online algorithms, also commonly used online as
well :)

96 / 102



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.6 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

6Common lower bound technique for online algorithms, also commonly used online as
well :)

97 / 102



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.6 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

6Common lower bound technique for online algorithms, also commonly used online as
well :)

98 / 102



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.6 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

6Common lower bound technique for online algorithms, also commonly used online as
well :)

99 / 102



Conclusion

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future

100 / 102



Acknowledgement

Lecture based largely on:

Lecture 17 of Luca’s Optimization class
Lectures 19 and 20 of Karger’s 6.854 Fall 2004 algorithms course
[Motwani & Raghavan 2007, Chapter 13]

See Luca’s Lecture 17 notes at

https://lucatrevisan.github.io/teaching/cs261-11/lecture17.pdf

See Karger’s Lecture 19 notes at

http://courses.csail.mit.edu/6.854/06/scribe/s22-online.pdf

See Karger’s Lecture 20 notes at

http://courses.csail.mit.edu/6.854/06/scribe/s24-paging.pdf

101 / 102

https://lucatrevisan.github.io/teaching/cs261-11/lecture17.pdf
http://courses.csail.mit.edu/6.854/06/scribe/s22-online.pdf
http://courses.csail.mit.edu/6.854/06/scribe/s24-paging.pdf


References I

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

102 / 102


	Part I
	Why Study Online Algorithms?
	Competitive Analysis
	Examples

	Paging & Caching
	Conclusion
	Acknowledgements

