
Lecture 16: Semidefinite Programming Relaxation and
MAX-CUT

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

June 17, 2024

1 / 56

Overview

Max-Cut SDP Relaxation & Rounding

Conclusion

Acknowledgements

2 / 56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP
2 Derive SDP from the QP by going to higher dimensions and imposing

PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

3 / 56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP

2 Derive SDP from the QP by going to higher dimensions and imposing
PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

4 / 56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP
2 Derive SDP from the QP by going to higher dimensions and imposing

PSD constraint

This is called an SDP relaxation.

3 We are still maximizing the same objective function, but over a
(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

5 / 56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP
2 Derive SDP from the QP by going to higher dimensions and imposing

PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

6 / 56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP
2 Derive SDP from the QP by going to higher dimensions and imposing

PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

7 / 56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP
2 Derive SDP from the QP by going to higher dimensions and imposing

PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.
1 If solution to SDP is integral and one-dimensional, then it is a solution

to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

8 / 56

Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP
2 Derive SDP from the QP by going to higher dimensions and imposing

PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.
1 If solution to SDP is integral and one-dimensional, then it is a solution

to QP and we are done
2 If solution has higher dimension, then we have to devise rounding

procedure that transforms
high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)

9 / 56

Max-Cut

Maximum Cut (Max-Cut):

G (V ,E) graph.

Cut S ⊆ V and size of cut is

|E (S ,S)| = |{(u, v) ∈ E | u ∈ S , v ̸∈ S}|.

Goal: find cut of maximum size.

10 / 56

Example - Weighted Variant

Maximum Cut (Max-Cut):

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Cut S ⊆ V and weight of cut is the sum of weights of edges crossing cut.
Goal: find cut of maximum weight.

11 / 56

Max-Cut

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Quadratic Program:

maximize
∑

{u,v}∈E

1

2
· wu,v · (1− xuxv)

subject to x2v = 1 for v ∈ V

12 / 56

SDP Relaxation [Delorme, Poljak 1993]

G (V ,E ,w) weighted graph, |V | = n and
∑

e∈E we = 1

Semidefinite Program:

maximize
∑

{u,v}∈E

1

2
· wu,v ·

(
1− yTu yv

)
subject to ∥yv∥22 = 1 for v ∈ V

yv ∈ Rd for v ∈ V

13 / 56

SDP Relaxation [Delorme, Poljak 1993]

G (V ,E ,w) weighted graph, |V | = n and
∑

e∈E we = 1

Semidefinite Program:

maximize
∑

{u,v}∈E

1

2
· wu,v ·

(
1− yTu yv

)
subject to ∥yv∥22 = 1 for v ∈ V

yv ∈ Rd for v ∈ V

14 / 56

What is this SDP doing?

Let γu,v = yTu yv = cos(yu, yv)
for any edge, want γuv ≈ −1, as this maximizes our weight
Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible
If all yv ’s are in a one-dimensional space, then we get original
quadratic program

OPT (SDP) ≥ Weight of Maximum Cut

15 / 56

What is this SDP doing?

Let γu,v = yTu yv = cos(yu, yv)

for any edge, want γuv ≈ −1, as this maximizes our weight
Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible
If all yv ’s are in a one-dimensional space, then we get original
quadratic program

OPT (SDP) ≥ Weight of Maximum Cut

16 / 56

What is this SDP doing?

Let γu,v = yTu yv = cos(yu, yv)
for any edge, want γuv ≈ −1, as this maximizes our weight

Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible
If all yv ’s are in a one-dimensional space, then we get original
quadratic program

OPT (SDP) ≥ Weight of Maximum Cut

17 / 56

What is this SDP doing?

Let γu,v = yTu yv = cos(yu, yv)
for any edge, want γuv ≈ −1, as this maximizes our weight
Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible

If all yv ’s are in a one-dimensional space, then we get original
quadratic program

OPT (SDP) ≥ Weight of Maximum Cut

18 / 56

What is this SDP doing?

Let γu,v = yTu yv = cos(yu, yv)
for any edge, want γuv ≈ −1, as this maximizes our weight
Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible
If all yv ’s are in a one-dimensional space, then we get original
quadratic program

OPT (SDP) ≥ Weight of Maximum Cut
19 / 56

Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.

20 / 56

Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.

21 / 56

Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.

22 / 56

Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.

23 / 56

Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.

24 / 56

Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.

25 / 56

Max-Cut - Rounding

1 Let yu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT yu) as our solution

26 / 56

Max-Cut - Rounding

1 Let yu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT yu) as our solution

27 / 56

Max-Cut - Rounding

1 Let yu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT yu) as our solution

28 / 56

Max-Cut - Rounding

1 Let yu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT yu) as our solution

29 / 56

Max-Cut - Rounding

1 Let yu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT yu) as our solution

30 / 56

Max-Cut - Rounding

1 Let yu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT yu) as our solution

31 / 56

Facts we need

We can pick a random hyperplane through origin in polynomial time.

sample vector g = (g1, . . . , gn) by drawing gi ∈ N (0, 1)

If g ′ is the projection of g onto a two dimensional plane, then
g ′/∥g ′∥2 is uniformly distributed over the unit circle in this plane.

32 / 56

Facts we need

We can pick a random hyperplane through origin in polynomial time.

sample vector g = (g1, . . . , gn) by drawing gi ∈ N (0, 1)

If g ′ is the projection of g onto a two dimensional plane, then
g ′/∥g ′∥2 is uniformly distributed over the unit circle in this plane.

33 / 56

Analysis of Rounding
Probability that edge {u, v} crosses the cut is same as probability
that yu, yv fall in different sides of hyperplane

Pr[{u, v} crosses cut] = Pr[g splits yu, yv]

Looking at the problem in the plane:

Probability of splitting yu, yv :

Pr[{u, v} crosses cut] =
θ

π
=

cos−1(yTu yv)

π
=

cos−1(γuv)

π

34 / 56

Analysis of Rounding
Probability that edge {u, v} crosses the cut is same as probability
that yu, yv fall in different sides of hyperplane

Pr[{u, v} crosses cut] = Pr[g splits yu, yv]

Looking at the problem in the plane:

Probability of splitting yu, yv :

Pr[{u, v} crosses cut] =
θ

π
=

cos−1(yTu yv)

π
=

cos−1(γuv)

π

35 / 56

Analysis of Rounding
Probability that edge {u, v} crosses the cut is same as probability
that yu, yv fall in different sides of hyperplane

Pr[{u, v} crosses cut] = Pr[g splits yu, yv]

Looking at the problem in the plane:

Probability of splitting yu, yv :

Pr[{u, v} crosses cut] =
θ

π
=

cos−1(yTu yv)

π
=

cos−1(γuv)

π

36 / 56

Analysis of Rounding
Expected value of cut:

E[value of cut] =
∑

{u,v}∈E

wu,v ·
cos−1(γuv)

π

Recall that

OPTSDP =
∑

{u,v}∈E

1

2
·wu,v ·

(
1− yTu yv

)
=

∑
{u,v}∈E

1

2
·wu,v · (1− γuv)

If we find α such that

cos−1(γuv)

π
≥ α

2
(1− γuv), for all γuv ∈ [−1, 1]

Then we have an α-approximation algorithm!

For x ∈ [−1, 1], we have

cos−1(x)

π
≥ 0.878 · 1− x

2

proof by elementary calculus.

37 / 56

Analysis of Rounding
Expected value of cut:

E[value of cut] =
∑

{u,v}∈E

wu,v ·
cos−1(γuv)

π

Recall that

OPTSDP =
∑

{u,v}∈E

1

2
·wu,v ·

(
1− yTu yv

)
=

∑
{u,v}∈E

1

2
·wu,v · (1− γuv)

If we find α such that

cos−1(γuv)

π
≥ α

2
(1− γuv), for all γuv ∈ [−1, 1]

Then we have an α-approximation algorithm!

For x ∈ [−1, 1], we have

cos−1(x)

π
≥ 0.878 · 1− x

2

proof by elementary calculus.

38 / 56

Analysis of Rounding
Expected value of cut:

E[value of cut] =
∑

{u,v}∈E

wu,v ·
cos−1(γuv)

π

Recall that

OPTSDP =
∑

{u,v}∈E

1

2
·wu,v ·

(
1− yTu yv

)
=

∑
{u,v}∈E

1

2
·wu,v · (1− γuv)

If we find α such that

cos−1(γuv)

π
≥ α

2
(1− γuv), for all γuv ∈ [−1, 1]

Then we have an α-approximation algorithm!

For x ∈ [−1, 1], we have

cos−1(x)

π
≥ 0.878 · 1− x

2

proof by elementary calculus.

39 / 56

Analysis of Rounding
Expected value of cut:

E[value of cut] =
∑

{u,v}∈E

wu,v ·
cos−1(γuv)

π

Recall that

OPTSDP =
∑

{u,v}∈E

1

2
·wu,v ·

(
1− yTu yv

)
=

∑
{u,v}∈E

1

2
·wu,v · (1− γuv)

If we find α such that

cos−1(γuv)

π
≥ α

2
(1− γuv), for all γuv ∈ [−1, 1]

Then we have an α-approximation algorithm!

For x ∈ [−1, 1], we have

cos−1(x)

π
≥ 0.878 · 1− x

2

proof by elementary calculus.
40 / 56

Conclusion of rounding algorithm

41 / 56

Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.

1 If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done

2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)

42 / 56

Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.

1 If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done

2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)

43 / 56

Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.

1 If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done

2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)

44 / 56

Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.

1 If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done

2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)

45 / 56

Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.
1 If solution to SDP is integral and one dimensional, then it is a solution

to Max-Cut and we are done

2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)

46 / 56

Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.
1 If solution to SDP is integral and one dimensional, then it is a solution

to Max-Cut and we are done
2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)

47 / 56

Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.
1 If solution to SDP is integral and one dimensional, then it is a solution

to Max-Cut and we are done
2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)

48 / 56

Remarks

1 SDPs are very powerful for solving (approximating) many hard
problems

2 Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

3 Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

4 Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!

49 / 56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

1 SDPs are very powerful for solving (approximating) many hard
problems

2 Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

3 Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

4 Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!

50 / 56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

1 SDPs are very powerful for solving (approximating) many hard
problems

2 Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

3 Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

4 Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!

51 / 56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

1 SDPs are very powerful for solving (approximating) many hard
problems

2 Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

3 Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

4 Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!

52 / 56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

1 SDPs are very powerful for solving (approximating) many hard
problems

2 Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

3 Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

4 Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!

53 / 56

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
https://arxiv.org/abs/1711.11581
https://eccc.weizmann.ac.il/report/2019/106/

Conclusion

Mathematical programming - very general, and pervasive in
(combinatorial) algorithmic life

Mathematical Programming hard in general

Sometimes can get SDP rounding!

Solve SDP and round the solution

Deterministic rounding when solutions are nice
Randomized rounding when things a bit more complicated

54 / 56

Acknowledgement

Lecture based largely on:

Lecture 14 of Anupam Gupta and Ryan O’Donnell’s Optimization class

https://www.cs.cmu.edu/~anupamg/adv-approx/

Chapter 6 of book [Williamson, Shmoys 2010]

See their notes at

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture14.pdf

55 / 56

https://www.cs.cmu.edu/~anupamg/adv-approx/
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture14.pdf

References I

Delorme, Charles, and Svatopluk Poljak (1993)

Laplacian eigenvalues and the maximum cut problem.

Mathematical Programming 62.1-3 (1993): 557-574.

Goemans, Michel and Williamson, David 1994

0.879-approximation algorithms for Max Cut and Max 2SAT.

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing.
1994

Williamson, David and Shmoys, David 2010

Design of Approximation Algorithms

Cambridge University Press

56 / 56

	Max-Cut SDP Relaxation & Rounding
	Conclusion
	Acknowledgements

