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Relax... & Round!
In our quest to get efficient (exact or approximate) algorithms for
problems of interest, the following strategy is very useful:

1 Formulate optimization problem as QP
2 Derive SDP from the QP by going to higher dimensions and imposing

PSD constraint

This is called an SDP relaxation.
3 We are still maximizing the same objective function, but over a

(potentially) larger set of solutions.

OPT (SDP) ≥ OPT (QP)

4 Solve SDP (approximately) optimally using efficient algorithm.

1 If solution to SDP is integral and one-dimensional, then it is a solution
to QP and we are done

2 If solution has higher dimension, then we have to devise rounding
procedure that transforms

high dimensional solutions → integral & 1D solutions

rounded SDP solution value ≥ c · OPT (QP)
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Max-Cut

Maximum Cut (Max-Cut):

G (V ,E ) graph.

Cut S ⊆ V and size of cut is

|E (S ,S)| = |{(u, v) ∈ E | u ∈ S , v ̸∈ S}|.

Goal: find cut of maximum size.
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Example - Weighted Variant

Maximum Cut (Max-Cut):

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Cut S ⊆ V and weight of cut is the sum of weights of edges crossing cut.
Goal: find cut of maximum weight.
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Max-Cut

G (V ,E ,w) weighted graph.
∑

e∈E we = 1

Quadratic Program:

maximize
∑

{u,v}∈E

1

2
· wu,v · (1− xuxv )

subject to x2v = 1 for v ∈ V
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SDP Relaxation [Delorme, Poljak 1993]

G (V ,E ,w) weighted graph, |V | = n and
∑

e∈E we = 1

Semidefinite Program:

maximize
∑

{u,v}∈E

1

2
· wu,v ·

(
1− yTu yv

)
subject to ∥yv∥22 = 1 for v ∈ V

yv ∈ Rd for v ∈ V
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What is this SDP doing?

Let γu,v = yTu yv = cos(yu, yv )
for any edge, want γuv ≈ −1, as this maximizes our weight
Geometrically, want vertices from our max-cut S to be as far away
from the complement S as possible
If all yv ’s are in a one-dimensional space, then we get original
quadratic program

OPT (SDP) ≥ Weight of Maximum Cut
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Example

Let’s consider G = K3 with equal weights on edges.

Embed y1, y2, y3 ∈ R2 120 degrees apart in unit circle

We get:

OPTSDP(K3) = 3/4

OPTmax-cut(K3) = 2/3

So we get approximation 8/9 (better than the LP relaxation)

Practice problem: try this with C5.
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Max-Cut - Rounding

1 Let yu ∈ Rn be an optimal solution to our SDP

2 How do we convert it into a cut?

3 Need to “pick sides”

4 [Goemans, Williamson 1994]: Choose a random hyperplane though
origin!

5 Choose normal vector g ∈ Rn from a Gaussian distribution.

6 Set xu = sign(gT yu) as our solution
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Facts we need

We can pick a random hyperplane through origin in polynomial time.

sample vector g = (g1, . . . , gn) by drawing gi ∈ N (0, 1)

If g ′ is the projection of g onto a two dimensional plane, then
g ′/∥g ′∥2 is uniformly distributed over the unit circle in this plane.
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Analysis of Rounding
Probability that edge {u, v} crosses the cut is same as probability
that yu, yv fall in different sides of hyperplane

Pr[{u, v} crosses cut ] = Pr[g splits yu, yv ]

Looking at the problem in the plane:

Probability of splitting yu, yv :

Pr[{u, v} crosses cut] =
θ

π
=

cos−1(yTu yv )

π
=

cos−1(γuv )

π
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Analysis of Rounding
Expected value of cut:

E[value of cut] =
∑

{u,v}∈E

wu,v ·
cos−1(γuv )

π

Recall that

OPTSDP =
∑

{u,v}∈E

1

2
·wu,v ·

(
1− yTu yv

)
=

∑
{u,v}∈E

1

2
·wu,v · (1− γuv )

If we find α such that

cos−1(γuv )

π
≥ α

2
(1− γuv ), for all γuv ∈ [−1, 1]

Then we have an α-approximation algorithm!

For x ∈ [−1, 1], we have

cos−1(x)

π
≥ 0.878 · 1− x

2

proof by elementary calculus.
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Conclusion of rounding algorithm
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Putting Everything Together

1 Formulate Max-Cut problem as Quadratic Programming

2 Derive SDP from the quadratic program SDP relaxation

3 We are still maximizing the same objective function (weight of cut),
but over a (potentially) larger (higher-dimensional) set of solutions.

OPT (SDP) ≥ OPT (Max-Cut)

4 Solve SDP optimally using efficient algorithm.

1 If solution to SDP is integral and one dimensional, then it is a solution
to Max-Cut and we are done

2 If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, we get

E[cost(rounded solution)] ≥ 0.878·OPT (SDP) ≥ 0.878·OPT (Max-Cut)

3 With constant probability, our solution will be ≥ 0.878OPT (Max-Cut)
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Remarks

1 SDPs are very powerful for solving (approximating) many hard
problems

2 Recent and exciting work, driven by Unique Games Conjecture
(UGC), shows that if UGC is true, then all these approximation
algorithms are tight!

https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

3 Other applications in robust statistics, via the SDP & Sum-of-Squares
connection

https://arxiv.org/abs/1711.11581

4 Connections to automated theorem proving

https://eccc.weizmann.ac.il/report/2019/106/

All of these are amazing final project topics!
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Conclusion

Mathematical programming - very general, and pervasive in
(combinatorial) algorithmic life

Mathematical Programming hard in general

Sometimes can get SDP rounding!

Solve SDP and round the solution

Deterministic rounding when solutions are nice
Randomized rounding when things a bit more complicated
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