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Symmetric Matrices & Spectral Theorem

A matrix S ∈ Mat(n,R) is symmetric if Sij = Sji for all i , j ∈ [n].

λ ∈ C is an eigenvalue of S if there exists u ∈ Cn such that Su = λu.
The vector u is an eigenvector of S corresponding to λ.

Spectral theorem: any symmetric matrix in Mat(n,R) has n real
eigenvalues (counting with multiplicity), as well as an orthonormal
basis (in Rn) for the eigenvectors.

In other words, we can write

S =
n∑

i=1

λiuiu
T
i

where λi ∈ R and ui ∈ Rn such that ⟨ui , uj⟩ = δij .
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Characterizations of Positive Semidefinite Matrices

If a symmetric matrix S ∈ Mat(n,R) only has non-negative
eigenvalues, we say that S is positive semidefinite (PSD), and we
write S ⪰ 0.

There are several equivalent characterizations of PSD matrices:
1 all eigenvalues of S are non-negative

2 S = Y TY for some Y ∈ Rd×n, where d ≤ n
3 xTSx ≥ 0 for all x ∈ Rn

4 S = LDLT , where D is diagonal and non-negative, and L is unit
lower-triangular

5 S is in the convex hull of the set

{uuT | u ∈ Rn}

6 S = UTDU, where D is diagonal and non-negative and U ∈ Mat(n,R)
is orthonormal matrix (that is, UTU = I ).

7 Any principal minor of S has non-negative determinant

Practice problem: prove that these are all equivalent!
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Mathematical Programming
Mathematical Programming deals with problems of the form

minimize f (x)

subject to g1(x) ≥ 0

...

gm(x) ≥ 0

x ∈ Rn

Very general family of problems.

Special case when all f , g1, . . . , gm are linear. Linear Programming

More general case: Semidefinite Programming

1 A1, . . . ,An,B ∈ Sm are m ×m symmetric matrices
2 Constraints:

x1 · A1 + · · ·+ xn · An ⪰ B

3 Minimize linear function cT x
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What is a Semidefinite Program?

Sm := Sm(R) space of all m ×m symmetric matrices (real entries)

Semidefinite Programming deals with problems of the form

minimize cT x

subject to x1 · A1 + · · ·+ xn · An ⪰ B

x ∈ Rn

Ai ,B ∈ Sm(R) (fixed matrices)

Where we use C ⪰ D to denote that C − D ⪰ 0 (i.e., C − D is PSD).
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How does it generalize Linear Programming?

Linear Programming

minimize cT x

subject to Ax ≥ b

x ∈ Rn

Semidefinite Programming

minimize cT x

subject to x1 · A1 + · · ·+ xn · An ⪰ B

x ∈ Rn

Set Ai ’s to be diagonal matrices, and B = diag(b1, . . . , bm)
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

Semidefinite Programming is no different!

equilibrium analysis of dynamics and control (flight controls, robotics,
etc.)
robust optimization
statistics and ML
continuous games
software verification
filter design
quantum computation and information
automated theorem proving
packing problems
many more

See more here

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
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Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An ⪰ B

x ∈ Rn

1 When is a Semidefinite Program feasible?

Is there a solution to the constraints at all?

2 When is a Semidefinite Program bounded?

Is there a minimum? Is the minimum achievable? Or is the minimum
−∞?

3 Can we characterize optimality?

How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?
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Spectrahedra
To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

A0 +
n∑

i=1

Aixi ⪰ 0,

where A0, . . . ,An are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it
can be defined as:

S =

{
x ∈ Rn |

n∑
i=1

Aixi ⪰ B, Ai ,B ∈ Sm
}
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Example of Spectrahedron

Polyhedron:
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Example of Spectrahedron

Circle:
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Example of Spectrahedron

Hyperbola:
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Example of Spectrahedron

Elliptic curve:
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Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S ∈ Rn is a projected spectrahedron if it has the form:

S =

x ∈ Rn | ∃y ∈ Rt s.t.
n∑

i=1

Aixi +
t∑

j=1

Bjyj ⪰ C , Ai ,Bj ,C ∈ Sm
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Example of Projected Spectrahedron

Projection of hyperbola:
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Example of Projected Spectrahedron

Projection quadratic cone intersected with halfspace:
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How do we test membership in the Spectrahedron?
To be able to optimize, we must be able to test whether a given point
x ∈ Rn is inside our spectrahedron

S =

{
x ∈ Rn |

n∑
i=1

Aixi ⪰ B, Ai ,B ∈ Sm
}
.

Note that x ∈ S is (by definition) equivalent to

Z =
n∑

i=1

Aixi − B ⪰ 0

So, how do we efficiently check if Z ⪰ 0?
Symmetric Gaussian Elimination!
We will use following characterizations of PSDness of symmetric
A ∈ Sm

1 all eigenvalues of A are non-negative
2 A = LDLT for some L lower triangular and unit diagonal, D diagonal

and non-negative
3 zTAz ≥ 0 for any z ∈ Rm

4 Any principal minor of A has non-negative determinant
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x ∈ Rn is inside our spectrahedron

S =

{
x ∈ Rn |

n∑
i=1

Aixi ⪰ B, Ai ,B ∈ Sm
}
.

Note that x ∈ S is (by definition) equivalent to

Z =
n∑

i=1

Aixi − B ⪰ 0

So, how do we efficiently check if Z ⪰ 0?
Symmetric Gaussian Elimination!
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How do we test membership in the Spectrahedron?

Input: symmetric matrix A ∈ Sm

Output: YES if A ⪰ 0, NO otherwise (and output z ∈ Rm such that
zTAz < 0)

Our algorithm runs in time strongly polynomial.
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Stability of Linear Systems

Setup:

Linear difference equation

x(t + 1) = Ax(t), x(0) = x0

Discrete-time dynamical system.1

Used to model time evolution of

Temperatures of objects
Size of population
Voltage of electrical circuits
Concentration of chemical mixtures

Question: when t →∞, under what conditions will x(t) remain
bounded? Or go to zero?

When system converges to zero, we say it is stable.

System is stable iff |λi (A)| < 1

1When A non-negative and x0 non-negative we have Markov chains.
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Stability of Linear Systems
SDP viewpoint:

Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.

For our discrete-time system, we have:

V (x(t)) = x(t)TPx(t)

To make these monotonically decreasing, we need:

V (x(t + 1)) ≤ V (x(t))⇔ x(t + 1)TPx(t + 1)− x(t)TPx(t) ≤ 0

⇔ x(t)TATPAx(t)− x(t)TPx(t) ≤ 0

⇔ ATPA− P ⪯ 0

Theorem

Given matrix A ∈ Rm×m, the following conditions are equivalent:

1 All eigenvalues of A are inside unit circle, i.e. |λi (A)| < 1

2 There is P ∈ Sm such that

P ≻ 0, ATPA− P ≺ 0
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Where is the control?
Setup:

Linear difference equation, with control input

x(t + 1) = Ax(t) + Bu(t), x(0) = x0

where A ∈ Rm×m, B ∈ Rm×k

If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)

Want to do it by setting the control input to be u(t) = Kx(t) for
some fixed K (so that we use the system as its own feedback)

Same thing as replacing A← A+ BK

Now this is harder to solve via simple eigenvalue description. But still
solved the same way via Lyapunov functions!

Want P ≻ 0 such that

(A+ BK )TP(A+ BK )− P ≺ 0

Wait, this ain’t no SDP! But we can make it into SDP with some
matrix manipulations.
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Conclusion
Mathematical programming - very general, and pervasive in
Algorithmic life

General mathematical programming very hard

Special cases have very striking applications!

Linear Programming (previous lectures)
Today: Semidefinite Programming

Semidefinite Programming and Duality - fundamental concepts, lots
of applications!

Applications in Combinatorial Optimization (Max-Cut in next lecture!)
Applications in Control Theory
many more!

Check out connections to Sum of Squares and a bold2 attempt to
have one algorithm to solve all problems! (i.e., one algorithm to rule
them all)

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

2pun intended
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