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Two-player games

Setup:

Two players (Alice and Bob)

Each player has a (finite) set of strategies SA = {1, . . . ,m} and
SB = {1, . . . , n}

Payoff matrices A,B ∈ Rm×n for Alice and Bob, respectively

If Alice plays i and Bob plays j , then
Alice gets Aij

Bob gets Bij

Example: battle of the sexes game

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices
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Nash Equilibrium
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i , j) is called a Nash equilibrium if the strategy played
by each player is optimal, given the strategy of the other player. That is:

1 Aij ≥ Akj for all k ∈ SA
2 Bij ≥ Biℓ for all ℓ ∈ SB

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices

Silent Snitch

Silent (-1,-1) (-10,0)

Snitch (0,-10) (-5,-5)

Table: Prisoner’s dilemma
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Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S . If Alice’s strategies are SA = {1, . . . , n}, her mixed strategies are:

∆A := {x ∈ Rn | x ≥ 0 and ∥x∥1 = 1}

Models situation where players choose their strategy “at random”

Payoffs for each player defined as expected gain. That is, (x , y) is the
profile of mixed strategies used by Alice and Bob, we have:

vA(x , y) =
∑

(i ,j)∈SA×SB

Aijxiyj = xTAy

vB(x , y) =
∑

(i ,j)∈SA×SB

Bijxiyj = xTBy
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile x ∈ ∆A, y ∈ ∆B is called a (mixed) Nash equilibrium if
the strategy played by each player is optimal, given the strategy of the
other player. That is:

1 xTAy ≥ zTAy for all z ∈ ∆A

2 xTBy ≥ xTBw for all w ∈ ∆B

Jump left Jump right

kick left (-1,1) (1,-1)

kick right (1,-1) (-1,1)

Table: Penalty Kick

Zero-Sum Game: payoff matrices satisfy A = −B
No pure Nash Equilibrium!
One mixed Nash equilibrium: x = y = (1/2, 1/2)
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Von Neumann’s Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈∆A

min
y∈∆B

xTAy = min
y∈∆B

max
x∈∆A

xTAy

For given x ∈ ∆A:

min
y∈∆B

xTAy = min
j∈SB

(xTA)j

Left hand side can be written as

max s

s.t. s ≤ (xTA)j for j ∈ SB∑
i∈SA

xi = 1

x ≥ 0

For given y ∈ ∆B :

max
x∈∆A

xTAy = max
i∈SA

(Ay)i

Right hand side can be written as

min t

s.t. t ≥ (Ay)i for i ∈ SA∑
j∈SB

yj = 1

y ≥ 0
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Proof of Duality

25 / 57



Game Theory - Minimax Theorems

Learning Theory - Boosting

Combinatorics - Bipartite Matching

Conclusion

Acknowledgements

26 / 57



Learning Theory

Consider classification problem over X :

Set of hypothesis H := {h : X → {0, 1}}

Each x ∈ X has a correct value c(x) ∈ {0, 1}
Data is sampled from unknown distribution q ∈ ∆X

Weak learning assumption:

For any distribution q ∈ ∆X , there is a hypothesis h ∈ H which is
wrong less than half the time.

∃γ > 0, ∀q ∈ ∆X , ∃h ∈ H, Pr
x∼q

[h(x) ̸= c(x)] ≤ 1− γ

2

Surprisingly, weak learning assumption implies something much
stronger: it is possible to combine classifiers in H to construct a
classifier that is always right (known as strong learning).
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Boosting

Theorem

Let H be a set of hypotheses satisfying weak learning assumption. Then
there is distribution p ∈ ∆H such that the weighed majority classifier

cp(x) :=

1, if
∑
h∈H

ph · h(x) ≥ 1/2

0, otherwise

is always correct. That is, cp(x) = c(x) for all x ∈ X

Let M ∈ {−1, 1}m×n, where m = |X | and n = |H|.

Mij =

{
+1, if classifier hj wrong on xi

−1, otherwise

Weak learning: for each q ∈ ∆X , there is hj ∈ H such that∑
1≤i≤m

qi · δhj (xi )̸=c(xi ) ≤
1− γ

2
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Boosting - Proof

Let M ∈ {−1, 1}m×n,
where m = |X | and n = |H|.

Mij =

{
+1, if hj wrong on xi

−1, otherwise

Weak learning:∑
1≤i≤m

qi · δhj (xi )̸=c(xi ) ≤
1− γ

2

Note that Mij = 2 · δhj (xi )̸=c(xi ) − 1, thus

qTMej ≤ −γ ⇒ min
p∈∆H

qTMp ≤ −γ

By minimax, we have:

max
q∈∆X

min
p∈∆H

qTMp = min
p∈∆H

max
q∈∆X

qTMp ≤ −γ

In particular, right hand side implies weighted classifier given by
optimum solution p∗ always correct.
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Proof of Correctness of Classifier
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Bipartite Matching

Given a bipartite graph G (L⊔ R,E ), does it have a perfect matching?

We saw in lecture 7 that we can randomly isolate a perfect matching,
if one exists

Can we remove the randomness in that process? This would lead to a
fast parallel algorithm for matching.

Breakthrough result of [Fenner, Gurjar and Thierauf 2019]

We will see just a piece of the proof
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Bipartite Matching & Circulation

Given an even cycle C = (e1, e2, . . . , e2k), we say that the circulation
of C is given by

circ(C ) = |w(e1)− w(e2) + . . .+ w(e2k−1)− w(e2k)|

Lemma: if we assign weights w(ei ) such that circ(C ) ̸= 0 for each
cycle C of the bipartite graph G , then we get that the minimum
weight PM is unique!

The approach of [Fenner, Gurjar and Thierauf 2019] is to construct a
set of weights which make all circulations non-zero!

To do that, they iteratively construct a weight assignment that kills
small cycles (i.e., make their circulation non-zero)
Once we have a bipartite graph with no cycles of length 2k, then in
next iteration we kill cycles of length up to 4k
show that no cycles of length 2k ⇒ few cycles of length 4k – similar to
Karger’s min cut lemma!
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Bipartite Matching

Suppose we have a weight assignment w . Let Gw be the subgraph of
G given by the union of all min w -weight perfect matchings in G .

Claim: circulation of each (even) cycle in Gw is zero

Proof: LP duality! (complementary slackness)

Linear programs:

Primal

min
∑
e∈E

wexe

s.t. x ≥ 0∑
e∈δ(u)

xe = 1

for u ∈ L ⊔ R

Dual

max
∑

u∈L⊔R

yu

s.t. yu + yv ≤ we

for e = {u, v} ∈ E

Complementary slackness says xe ̸= 0 in primal, where e = {u, v}
⇒ yu + yv = we in dual optimal.
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Complementary Slackness & Circulation
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Conclusion

Mathematical programming - very general, and pervasive in
Algorithmic life

General mathematical programming very hard (how hard do you think
it is?)

Special cases have very striking applications!

Today and last lecture: Linear Programming

Linear Programming and Duality - fundamental concepts, lots of
applications!

Applications in Combinatorial Optimization (a lot of it happened here
at UW!)
Applications in Game Theory (minimax theorem)
Applications in Learning Theory (boosting)
Applications in Parallel Computation/Derandomization (Perfect
Matching)
many more
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